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Abstract: It is a challenge to detect pre-seismic anomalies by using only one dataset due to the
complexity of earthquakes. Therefore, it is a promising direction to use multiparameteric data. The
earthquake cross partial multi-view data fusion approach (EQ-CPM) is proposed in this paper. By
using this method, electromagnetic data and seismicity indicators are fused. This approach tolerates
the absence of data and complements the missing part in fusion. First, the effectiveness of seismicity
indicators and electromagnetic data was validated through two earthquake case studies. Then, four
machine learning algorithms were applied to detect pre-seismic anomalies by using the fused data
and two original datasets. The results show that the fused data provided better performance than the
single-modal data. In the Matthews correlation coefficient index, the results of our method showed
an 8% improvement compared with the latest study.

Keywords: electromagnetic data; seismicity indicator; pre-seismic anomaly detection; multi-view
data fusion

1. Introduction

Earthquakes are profound natural disasters that threaten economic development and
people’s lives and property. Pre-seismic anomalies have been found before almost all
major earthquakes [1], such as the 1995 Kobe Ms7.3 [2,3] and the 2008 Wenchuan Ms8.0 [4].
Therefore, the research for extracting and detecting pre-seismic anomalies has been a top
priority in recent studies.

In the past 20 years, seismologists have conducted ample research on seismic-related
data, including electromagnetic data (EM data) [5–7], geoacoustic data [8,9], radon [10–12],
stress [13], and seismicity indicators [14–22]. Among them, EM data and seismicity indica-
tors are often employed for pre-seismic anomaly detection.

Seismicity indicators are usually calculated from earthquake catalogs by using Guten-
berg Richter’s law [16], which describes the relationship between the magnitude and
frequency of earthquakes. The parameter b in this law is considered a statistical parameter
and is related to the area’s physical characteristics [18,19]. Reyes et al. [14] calculated seven
seismicity indicators based on the value of b as input into artificial neuronal networks
(ANN) for pre-seismic anomaly detection. Asencio-Cortés [20] implemented these seven
indicators, but he modified T, τ and c. Fault density (FD) [21] was proposed to describe
the density of active faults in the study zone. The authors thought that there is a higher
probability of a large earthquake occurring along active fault zones or in their proximity.
Salam et al. [22] calculated seven seismicity indicators based on an earthquake catalog for
California. They predicted a specific magnitude in the following fifteen days. However, the
reliability of the results is yet to be examined, and taking pre-seismic anomaly detection as
a binary classification is a choice.

The EM data are considered to be closely related to earthquakes [23–25]. Chen et al. [26]
summarized seismo-electromagnetic phenomena in the lithosphere, the lower atmosphere

Magnetochemistry 2023, 9, 48. https://doi.org/10.3390/magnetochemistry9020048 https://www.mdpi.com/journal/magnetochemistry

https://doi.org/10.3390/magnetochemistry9020048
https://doi.org/10.3390/magnetochemistry9020048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/magnetochemistry
https://www.mdpi.com
https://orcid.org/0000-0001-8376-3502
https://doi.org/10.3390/magnetochemistry9020048
https://www.mdpi.com/journal/magnetochemistry
https://www.mdpi.com/article/10.3390/magnetochemistry9020048?type=check_update&version=1


Magnetochemistry 2023, 9, 48 2 of 14

and the upper atmosphere. Hayakawa [3] found a seismo-ionospheric perturbation before
the 1995 Kobe earthquake (Ms7.2), where the amplitude or phase of the very-low-frequency
(VLF) reached a minimum at sunrise and sunset. It is worth mentioning that the same
phenomenon was found in [27]. Hayakawa analyzed the statistical correlation between VLF
anomalies and earthquakes. He discovered that earthquakes with a source depth of less
than 40 km are usually more correlated with VLF anomalies. Moustra et al. [28] utilized
magnitude data and seismic electric signal (SES) to predict earthquakes. Li et al. [24]
discovered that the anomalies of earthquakes appeared 20 days before the earthquake by
analyzing the ultra-low-frequency (ULF) and VLF bands of electrical data.

Geographic activities are complex, which increases the difficulty of pre-seismic
anomaly detection. A survey of available research is listed in Table 1. Some seismicity
indicators calculated from earthquake catalogs are treated as inputs of pre-seismic
detection models [14,20–22,29]. However, these studies mainly focus on the choice of
seismicity indicators, but some small earthquakes may be a mistake due to the lack
of sensor accuracy. It is necessary to calculate the minimum completeness magnitude
and then ignore earthquakes smaller than the minimum completeness magnitude [30].
In addition, some research on EM data ignores the effects of magnetic storms, which
usually yield anomalous fluctuations [31]. Sometimes the EM data during a magnetic
storm is excluded, which leads to missing data. Therefore, how to deal with missing
data is still a problem. Moreover, the above studies detected pre-seismic anomalies by
using one kind of data. It is a promising direction to use multiparameteric data. It can
make full use of the complementarity between different related data and improve the
accuracy of pre-seismic anomaly detection.

Table 1. Survey of pre-seismic anomaly detection research.
√

means covered and × means not
covered.

Research Seismicity
Indicators EM Data Consider Data

Fusion
Consider

Missing Data

[14,20–22,29]
√

× × ×
[11,28] ×

√
× ×

This Paper
√ √ √ √

A novel approach based on the fusion of seismicity indicators and EM data is proposed
in this paper. Considering that there may exist missing data, the earthquake cross partial
multi-view data fusion approach (EQ-CPM) is proposed based on a partial multi-view
fusion method [23]. This approach tolerates the absence of data and complements the
missing part in fusion. Firstly, the effectiveness of EM data and seismicity indicators was
analyzed based on two earthquake case studies. Then, EQ-CPM was applied to acquire
fusion data from seismicity indicators and EM data. Finally, a comparison of pre-seismic
anomaly detection between fused data and two original data was conducted based on four
machine learning methods: logistic regression, AdaBoost based on decision trees, stochastic
gradient descent (SGD) and support vector machines (SVM). The main contributions of
this paper are summarized as follows:

1. The effectiveness of EM data and seismicity indicators was further validated in pre-
seismic anomaly detection based on the 2017 Jiuzhaigou Ms7.0 earthquake and the
2019 Changning Ms6.0 earthquake in China.

2. Propose an earthquake data fusion approach that leverages the temporal characteristic
of earthquake data by convolution. The proposed approach tolerates the absence of
data and complements the missing part in fusion.
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The following content is organized as follows: Section 2 introduces the datasets used
in this paper, including EM data and seismicity indicators; Section 3 specifies the data
fusion algorithm; Section 4 analyzes EM data, seismicity indicators and the fused data
separately and compares the pre-seismic anomaly detection of fused data and two original
data; Section 5 presents a summary of this paper.

2. EM Data and Seismicity Indicators

This section introduces the data used to detect pre-seismic anomalies, including EM
data and seismicity indicators. The details of the data are presented in each subsection.

2.1. EM Data

The Key Laboratory of Integrated Microsystems (IMS) of Peking University Shenzhen
Graduate School deployed the acoustic and electromagnetics on an artificial intelligence
(AETA) system. AETA provides the EM data used in our study. The EM data are collected
at 0.1 Hz. There are 159 AETA stations in Sichuan and Yunnan (22° N–34° N, 98° E–107° E).
Unfortunately, the datasets are incomplete due to weather or equipment failure. Therefore,
stations with more than 30% missing data were filtered out. As a result, 74 stations were
selected for this study, which is shown in Figure 1.

Figure 1. AETA stations’ distribution. The blue inverted triangle indicates stations, and the red solid
line plots the fault contours in the area.

There are 51 types of EM data features provided by AETA, which are shown in
Figure 2. The features are divided into three categories: time-domain-related features,
frequency-domain-related features and wavelet-transform-related features.

Figure 2. Waveform of EM data from AETA.

The following is some description of these features, and more details can be found on
the homepage of AETA.

Some basic statistical features, such as mean value and maximum value, were extracted.
The variance is the expectation of the squared deviation of the original signal from its
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population mean or sample mean. The power means the energy of the signal, and in most
cases, the power of the time series is reckoned in terms of the square of the signal. The
skewness indicates the asymmetry of the observed signal. The kurtosis represents how
often outliers occur and reflects anomalies of the signal to a certain extent. The energy of
the signal of different frequency bands is expressed by power_rate_atob. levelx means the
reconstruction of the xth level while wavelet transforming. The features with ul f as a prefix
represent relative features in ultra-low frequencies (300 Hz to 3 kHz).

Solar activity can cause disturbances in the magnetosphere of Earth, which are gener-
ally known as magnetic storms. Strong storms can cause significant disruptions in EM data,
leading to many false alarms. The magnetic storm can be measured through the disturbance
storm time (Dst) index. Magnetic storms can be divided into five categories: weak magnetic
storms (Dst ∈ [−50,−30]), medium magnetic storms (Dst ∈ [−100,−50]), strong magnetic
storms (Dst ∈ [−200,−100]), intense magnetic storms (Dst ∈ [−350,−200]) and giant mag-
netic storms (Dst ≤ −350 nT). In our study, the data were excluded when Dst ≤ −30 nT,
even if the data are viewed as anomalies.

2.2. Seismicity Indicators

Earthquake catalogs typically contain the time, latitude and longitude of the epicenter,
magnitude and depth of the source. The earthquake catalog is available from the National
Earthquake Data Center (NEDC). The Gutenberg–Richter law [16] is used when calculating
seismicity indicators from the earthquake catalog, which states the relationship between
magnitude and frequency of earthquakes:

log N = a− bM, (1)

where a and b is constant and N is the number of earthquakes with a magnitude greater
or equal to M. The b value is a vital seismicity indicator. Reyes et al. [14] calculated seven
seismicity indicators for pre-seismic anomaly detection based on the b value. Maximum
likelihood method is used to estimate the b value [32]:

b =
log e

Mmean − (Mc − ∆M/2)
, (2)

where Mmean represents the average of magnitude, Mc is the completeness magnitude and
∆M is the magnitude accuracy (equals 0.1 in most cases). The calculation is affected by the
completeness of the earthquake catalog [30]. Therefore, we have to check the completeness
of the earthquake catalog and get the completeness magnitude. Then, the earthquake
events smaller than the completeness magnitude should be ignored.

The maximum curvature method (MAXC) was used to calculate the completeness
magnitude of the earthquake catalog as Ms0.3, as shown in Figure 3. The blue box represents
the number of earthquakes larger than the current magnitude; the orange triangle is the
number of earthquakes equal to the current magnitude. The green curve is the fitted curve.
The red pentagram is the maximum curvature point, and the magnitude Ms0.3 is the
completeness magnitude of this earthquake catalog.

Figure 3. The completeness magnitude of the earthquake catalog is Ms0.3.
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A sliding window was used to generate seismicity indicators for each AETA station,
and the length of the window was one day. Seismicity indicators calculated from the
earthquake catalog are listed in Table 2.

Table 2. Seismicity indicators [14,20–22,29].

Seismicity Indicator Expression

b lg e
Mmean −(Mc−∆M/2)

a lg N + b
T tn − t1

Mmean
1
n ∑n

i=1 Mi

dE
1
2 1

T ∑n
i=1

√
1011.8+1.5Mi

x6 max{Mi | i ∈ [1, n]}, when t ∈ [−7, 0)
x7 P(Ms ≥ 6.0) = e−3b/ log(e) = 10−3b

δb 2.3b2
√

∑n
i=1(Mi−Mmean )

2

n(n−1)

η ∑(lg N−a−bM)2

n−1

Mde f
Mmax, actual −Mmax, excepted =

Mmax, actual − a
b

Trecurrence
T

10a−bM0
, for M0 in [4.0, 4.1, 4.2, . . . , 6.0]

b and a are the constants of the Gutenberg–Richter Law; they imply the activity of
seismic events to some extent. T represents the time interval between N earthquakes,
and this indicator partially reflects the frequency of earthquakes. Mmean is the average
magnitude of n seismic events. dE

1
2 describes the release of seismic energy; seismic energy

is continuously released from the ground through small earthquakes; and a seismic quiet
period is reached when the energy stops being released. x6 means the maximum magnitude
in the past seven days. x7 is the probability of an earthquake with magnitude six or greater.
δb represents the deviation value of b. η indicates the correspondence of the real data
distribution and the Gutenberg–Richter law. Mde f is the difference between the expected
maximum magnitude and the observed maximum magnitude. Trecurrence represents the
time between two earthquakes with magnitude greater or equal to M0.

3. Method

This section introduces the fusion method, including the network design and loss
function design, as shown in Figure 4. The network is a generative model and converts
latent representations into seismic-related data. Reconstruction and classification loss
functions are applied to update the network parameters and the latent representations.

Figure 4. Framework of the fusion method.
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3.1. Network

The network is designed as a generative model with two layers: the 1D convolution
layer and the densely-connected layer. Each view (dataset) corresponds to a model with
the same structure but different parameters, as shown in Figure 5.

(a) Structure of the network (b) Details of the network

Figure 5. Network design.

The 1D convolution layer can extract deep features of latent representations, which
takes advantage of the temporal characteristic of the sequence. The size of the convolution
kernel is 3. The features of the adjacent three days are converged when the convolution
kernel slides. Zeros are padded evenly into the upstream and downstream parts of the input
such that the output has the same length as the input. The convolution layer is followed by
a densely-connected layer, whose main roles are feature aggregation and mapping. The
output is the generated seismic-related data, including EM data and seismicity indicators.
The network parameters and the latent representations are updated by comparing output
with true data.

The network can fuse missing data because the data are not used directly but in the
process of backpropagation. In other words, the problem of missing is put into the part of
the loss function.

3.2. Loss Function

Given a dataset X with multiple views:

X =
{

x(v)i

}V

v=1
, i ∈ [1, N], (3)

where V is the number of views and N is the number of samples. The latent representations
of X are expressed as H = {hi}, where i ∈ [1, N] and hi ∈ RD×1.

Reconstruction and classification loss functions are applied to update the network
parameters and the latent representations, as shown in Figure 4. The reconstruction loss
function is mainly used to update network parameters. Both loss functions are used to
update the latent representations.

Matrix Ω ∈ RN×V describes the completeness of X, and Ω(i, j) = 1 denotes the j-th
view of the i-th sample data that are available or missing. For the convenience of expression,
Ω(v) ∈ RN×1 is used to describe the completeness of the v-th view for all samples. Missing
parts of the data are ignored by multiplying Ω(v) when calculating the reconstruction loss
(see Equation (4) for details).

Lr(H, Θ) = min
H,Θ

N

∑
i=1

V

∑
v=1

Ω(v)
i

∥∥∥x(v)i − fv(hi; Θv)
∥∥∥2

F
, (4)

where fv(hi; Θv) is the forward propagation of the network and Θv are the parameters of
the v-th view.
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Classification loss is derived from triplet loss [33], which increases the distance
between different classes by clustering.

G
(
hi, hj

)
=

hT
i ·h

T
j

|hT
i |·|h

T
j |

;

ŷi = argmax
yi

Eh∗∼T(yi)
G(hi, h∗);

Lc(ŷi, yi, hi) = max
(

Eh∗∼T(ŷi)
G(hi, h∗)− Eh∗∼T(yi)

G(hi, h∗) + ∆(ŷi, yi), 0
)

,

(5)

where G
(
hi, hj

)
is cosine similarity indicating the similarity of hi and hj, and the higher the

similarity, the greater the value. ŷi is the prediction of the i-th sample. The expression of
h∗ ∼ T(yi) represents all the samples that belong to class yi. A margin distance denoted as
∆(ŷi, yi) in Lc is aimed at avoiding the training process stopping before convergence.

Classification loss is controlled by λ, and the combined loss function is:

L = min
H,Θ

(
N

∑
i=1

V

∑
v=1

Ω(v)
i

∥∥∥x(v)i − fv(hi; Θv)
∥∥∥2

F
+ λ

1
N

N

∑
i=1

Lc(ŷi, yi, hi)

)
(6)

Lr is used to update the parameters of the network, and L is used to update the latent
representations. During training, update H and Θ alternately.

4. Results

This section presents the results and analysis of seismicity indicators, EM data and the
fused data. Firstly, EM data and seismicity indicators are assessed, which is a prerequisite
for fusion. Then, a comparison between the fused data with two original data is presented.

4.1. Assessment of Seismicity Indicators

The earthquake catalog from 2009 to 2017 was selected to analyze the changes in b
before the 8th of August 2017, Jiuzhaigou Ms7.0 earthquake in the study area of 32.5° N to
34° N, 103° E to 104.5° E, as shown in Figure 6a.

The epicenter of the Jiuzhaigou Ms7.0 earthquake was located at the intersection
of the Kunlun Fault Zone and the Minshan Tectonic Zone. In this area, the most recent
earthquake of magnitude seven or greater occurred in 1976, well before the occurrence of
Jiuzhaigou Ms7.0. In other words, there was a seismic quiet period between 1976 and 2017.
It is worth mentioning that no earthquakes with a magnitude greater than four occurred
from 2009 to 2017. In the region’s surrounding areas, the Wenchuan Ms8.0 earthquake
occurred on 12 May 2008, and the Lushan Ms7.0 earthquake occurred on 20 April 2013. The
strong earthquakes in the surrounding areas increased the coulomb stress in this region and
promoted the occurrence of Jiuzhaigou Ms7.0. This geotectonic situation can be reflected to
some extent by the trend in the b value in Figure 6b.

Changning Ms6.0 occurred in June 2019. Earthquakes that occurred between 2018 and
2019 (in Figure 6c) were selected to study the value of b before Changning Ms6.0. The value of
b increased before Changning Ms6.0 and decreased after the earthquake, as shown in Figure 6d.
The trend matches the change pattern of b presented in [17]. However, the change trend was
subtle and not as obvious as before Jiuzhaigou Ms7.0. The reasons are complex. Unlike the
Jiuzhaigou area, there are more earthquakes near Changning area, including earthquakes of
magnitude 5 or higher. There were more than ten thousand earthquakes within two years
after the 2018 event around Changning. On the contrary, only 5561 earthquakes occurred
between 2009 and 2017 around Jiuzhaigou. Namely, the coulomb stress accumulated around
Jiuzhaigou, and this contributed in part to the Ms7.0 earthquake. Contrary to this, the coulomb
stress was released through continuous earthquakes before Changning Ms6.0, such as Ms5.7
in December 2018 and Ms5.1 in January 2019, and these two earthquakes may have caused
the change in b to not be obvious.
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(a) (b)

(c) (d)

Figure 6. Analysis of b based on Jiuzhaigou Ms7.0 and Changning Ms6.0. (a) The distribution of
earthquakes near Jiuzhaigou Ms7.0; the redder the color the larger the magnitude. (b) Trend of b
before the Jiuzhaigou Ms7.0 earthquake. (c) The distribution of earthquakes near Changning Ms6.0.
(d) Trend of b before the Changning Ms6.0 earthquake.

4.2. Assessment of EM Data

The Dst index shows no apparent magnetic storms before the occurrence of Jiuzhaigou
Ms7.0, 2017. We found that anomalies in EM data existed both before and after the earth-
quake. The types of anomalies varied from station to station, which can be roughly classified
as period anomalies, amplitude anomalies and waveform-disturbance anomalies. The dif-
ferent anomalies may be related to the distance between each station and the epicenter. As
shown in Figure 7:

1. The periodic disturbance anomalies were found when the distance between the station
and the epicenter was closer than 200 km; see Figure 7(ai).

2. The amplitude anomalies appeared when the distance between the station and the
epicenter was about 400 km; see Figure 7(aii,aiii).

3. The waveform-disturbance anomalies appeared when the distance between the station
and the epicenter was farther than 1000 km; see Figure 7(aiv,av).

To analyze the statistical characteristics of the EM data, firstly, we generated the
subseries of the EM data for each station by sliding windows. Then, the fractal dimension
of each subseries was calculated using the Higuchi fractal algorithm [34]. Finally, the
fractal dimensions were analyzed by using the interquartile range (IQR) method. We took
Changning Ms6.0 as the earthquake case.
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(a) (b)

Figure 7. EM data anomalies based on Jiuzhaigou Ms7.0. (a) EM data waveforms from different
stations. (b) Distribution of stations in relation to the Jiuzhaigou Ms7.0 earthquake.

Stations 48 and 77 were selected for analysis because their epicenter distances were
lower than 100 km. The fractal dimension is shown in Figure 8a. It can be seen that before
the Changning Ms6.0 earthquake, simultaneous fractal dimension anomalies occurred at the
two stations on 20 April 2019 and 15 May 2019. It is worth mentioning that almost the values
are negative, which means the fractal dimension decreased before the earthquake [35]. In
addition, Station 48 had more anomalies from June 17 to early July, and one of possible
reasons is that it is closer to the epicenter, as shown in Figure 8b. In contrast, Station 77 had
only one anomaly of a smaller magnitude from June 17 to early July. A clear hypothesis is
that the closer the epicenter, the more the EM data can reflect the associated anomalies.

(a) (b)

Figure 8. Fractal dimension anomalies of EM data based on Changning Ms6.0. (a) Fractal dimension
of EM data. The green vertical lines are earthquakes, the red line is the fractal dimension of EM
data and the blue vertical line represents anomalies detected by the IQR method. (b) Distribution of
stations and the Changning Ms6.0 earthquake.
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4.3. Comparison between Fused Data and Single-Modal Data

The ultimate goal of data fusion is to improve the accuracy of detection tasks. In this
paper, pre-seismic anomaly detection is viewed as a binary classification problem, where
positive samples are pre-seismic anomalies and negative samples are background data. The
fused data are high-dimensional data and challenging to visualize. The t-SNE method [36]
reduced the data to two dimensions for data visualization.

After dimensionality reduction, the data are only a projection of a two-dimensional
plane, without any physical meaning. However, we can visualize the two-dimensional
data to analyze the distribution of positive samples and negative samples. When there is
an overlap of positive and negative samples, the negative samples will cover the positive
samples. The more red points (positive samples), the easier it is to distinguish between
positive and negative samples.

It can be seen in Figure 9 that it is easier to detect positive samples from fused data,
because there are more red points. As a pre-processing step for pre-seismic anomaly
detection, the data fusion is meaningful. The overlap of positive and negative samples
may lead to important information being hidden. In contrast, the distribution of fused data
is more dispersed, probably because in the process of reconstruction, the loss function Lc
increases the distance of different classes and influences all samples meanwhile.

Figure 9. Visualization of Stations 77, 48 and 90. The blue points are background data and the red
points are anomalies. After the dimensionality reduction, the horizontal and vertical coordinates only
represent the scale.

Four machine learning methods were applied to compare the fused data with EM data
and seismicity indicators. The dataset was split into a training set and a test set in the ratio
of 8:2. The SMOTE method was used to alleviate the data imbalance problem. Five metrics
were used to measure the detection result: PPV (positive predictive value), NPV (negative
predictive value), recall, TNR (true negative rate), MCC (Matthews correlation coefficient)
and AVG, where AVG is the average of PPV, NPV, recall and TNR.

Table 3 shows the detection performance of the fused data, EM data and seismicity
indicators of station 47. As Table 3 depicts, the values of six metrics of fused data are
large except recall based on decision tree method. The good performance mainly resulted
from increasing the distances of different classes through Lc. The bad result of the decision
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tree method was probably caused by the imbalance of the dataset. The proposed method,
EQ-CPM, complements the missing part of data through Lr, and fully utilizes the comple-
mentary information between different views (different dataset). Therefore, in two overall
metrics, AVG and MCC, the value of the fused far exceeds those of the two original data.

Table 3. Comparison of detection results among fused data, EM data and seismicity indicators.

Method Dataset PPV NPV Recall TNR AVG MCC

Logistic Regression
EM data 0.4000 0.9179 0.5926 0.8367 0.6868 0.3694

seismicity indicators 0.1522 0.7706 0.4565 0.4179 0.4493 −0.0984
fused data 1.0000 0.9213 0.6222 1.0000 0.8859 0.7571

Decision Tree
EM data 0.0483 0.3103 0.2593 0.0612 0.1698 −0.6602

seismicity indicators 0.1959 0.8200 0.4130 0.6119 0.5102 0.0199
fused data 0.3636 0.8550 0.3556 0.8593 0.6084 0.2167

SGD
EM data 0.1145 0.7209 0.5556 0.2109 0.4005 −0.1961

seismicity indicators 0.1250 0.7748 0.2609 0.5821 0.4357 −0.1254
fused data 1.0000 0.9387 0.7111 1.0000 0.9124 0.8170

SVM
EM data 0.5200 0.9060 0.4815 0.9184 0.7065 0.4127

seismicity indicators 0.1364 0.7862 0.2609 0.6219 0.4513 −0.0953
fused data 1.0000 0.9522 0.7778 1.0000 0.9325 0.8606

There were 74 stations selected for the study, and the data fusion results of these
74 stations are given in Table 4. For the imbalance dataset, the recall metric is more
important, and a lower recall value in pre-seismic anomaly detection means a lower
leakage rate and a better detection effect. With the recall rate as the main index, the effect
of fusion is considered better when the recall rate of the fused data is higher than that of
the EM data and the seismicity indicators. All four methods had better fusion effects for
more than 50% of the stations, indicating that the method proposed in this paper has better
generalization for seismic data.

Table 4. The detection results for all stations. Effective stations represent stations whose recall of
fused data is higher than that of EM data and seismicity indicators.

Method Effective Stations 1 Total Number of
Stations Ratio

Logistic Regression 65 74 87.84%
Decision Tree 51 74 68.92%

SGD 57 74 77.03%
SVM 73 74 98.65%

1 The number of effective stations.

The results in this paper are compared with those of existing studies, as shown in
Table 5. The fused data are better than EM data in all indexes but inferior to the seismicity
indicators in some indexes, such as NPV and recall. A possible reason is that earthquake
catalogs are different in different regions. However, the performance of the fused data
in both AVG and MCC is much better than that of the EM data and seismicity indicators.
That is to say, the fused data has a better overall performance. Since the distances of some
classes are larger, the false positives and false negatives, which are related to the metrics
PPV, NPV, recall and TNR, can be significantly reduced.
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Table 5. Comparing our fusion dataset with the datasets from other research.

Used Dataset Year PPV NPV Recall TNR AVG MCC

ANN [23] Seismic Electric Signals 2011 0.61 - - - - -
ANN [14] seismicity indicators 2013 0.63 0.81 0.48 0.88 0.70 0.58

EQP-ANN [20] seismicity indicators 2017 1.00 0.69 0.18 1.00 0.72 0.35
DNN [21] seismicity indicators 2021 0.88 0.97 - 0.96 - -

K-means [37] seismicity indicators 2021 0.90 0.85 0.99 0.07 0.70 0.22
AMA [29] seismicity indicators 2022 0.73 0.96 0.98 0.82 0.87 0.78
LSTM [8] EM data 2022 0.64 0.74 0.81 0.55 0.69 -

This paper(SVM) Fusion data 2023 1.00 0.95 0.78 1.00 0.93 0.86

5. Conclusions

In this paper, we leveraged the advantage of multimodal data for pre-seismic anomaly
detection. EM data and seismicity indicators were considered. First, the effectiveness of
EM data and seismicity indicators with related earthquake cases was investigated. The
anomalies were further confirmed by focusing on the b-value change curves before the
occurrence of the Jiuzhaigou Ms7.0, 2017 earthquake. At the same time, different EM data
anomalies were discovered from different AETA stations before the Jiuzhaigou Ms7.0, 2017
earthquake. Multiple anomalies in the fractal dimension of the EM data were found in
relation to the Changning Ms6.0, 2019 earthquake.

There are few relevant studies that have detected pre-seismic anomalies using multi-
parameteric data. We proposed a method called EQ-CPM to fuse EM data and seismicity
indicators. The proposed method tolerates the absence of data and complements the miss-
ing data by fusion. Therefore, we can improve the use of a dataset with missing parts via
EQ-CPM. Meanwhile, the proposed method brings together complementary information
between different datasets during the reconstruction and leverages the advantage of multi-
modality. The fused data surpassed the original data in performance when used by four
classical machine learning algorithms. Most importantly, more relevant datasets can be
fused by EQ-CPM if possible.
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