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Abstract: Catalysts play a critical role in producing most industrial chemicals and are essential to
environmental remediation. Under the demands of sustainable development, environment protection,
and cost-related factors, it has been suggested that catalysts are sufficiently separable and conveniently
recyclable in the catalysis process. Magnetite (Fe3O4) nanomaterials provide a possible way to achieve
this goal, due to their magnetism, chemical stability, low toxicity, economic viability, etc. Therefore,
Fe3O4-based materials are emerging as an important solid support to load heterogeneous catalysts
and immobilize homogeneous catalysts. Moreover, the addition of magnetic character to catalysts
will not only make their recovery much easier but also possibly endow catalysts with desirable
properties, such as magnetothermal conversion, Lewis acid, mimetic enzyme activity, and Fenton
activity. The following review comprises a short survey of the most recent reports in the catalytic
applications of Fe3O4-based magnetic materials. It contains seven sections, an introduction into the
theme, applications of Fe3O4-based magnetic materials in environmental remediation, electrocatalysis,
organic synthesis, catalytic synthesis of biodiesel, and cancer treatment, and conclusions about the
reported research with perspectives for future developments. Elucidation of the functions and
mechanisms of Fe3O4 nanoparticles (NPs) in these applications may benefit the acquisition of robust
and affordable protocols, leading to catalysts with good catalytic activity and enhanced recoverability.

Keywords: magnetite (Fe3O4); catalyst; magnetic materials; environmental remediation; electrocatalysis;
organic synthesis; biodiesel; cancer treatment; recovery; recycle

1. Introduction

Catalysts are one of the fundamental pillars of the chemical industry and have been
widely applied in chemical synthesis, energy storage and conversion, biomedical appli-
cations, and environmental remediation [1–3]. Nanomaterials, which have nano-size
intriguing physicochemical properties compared with their bulk materials and excellent
reactivities and selectivities, are becoming more and more extensively adopted as cata-
lysts [4]. Conversely, NPs tend to aggregate, which can result in a severe reduction in
catalytic activity, and the removal of nanoscopic catalysts from reaction media can be
challenging [5,6]. Therefore, NPs with a desirable catalytic activity are commonly loaded
in/on a solid support-yielding supported nanocatalyst, and the NPs can be separated from
the product accompanying the recovery of support if necessary [7,8]. Aside from NPs,
catalysts can also come in the form of water-soluble inorganic matters or organic polymers,
such as silicate, transition metal complexes, and ionic liquids (ILs) [9–11]. It is evident that
green chemistry and environmental protection demand the recovery and reuse of catalysts.
In addition to the cost-related factors and operation procedures, it has been suggested that
catalysts are easily and completely separated from the product and recycled further [12,13].
In heterogeneous catalytic reaction systems, supported nanocatalysts can be separated
via centrifugation and sedimentation with special separation equipment, which is time-
consuming and results in poor recovery and decreased reuse ability of the catalysts [14]. In
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homogeneous catalytic reaction systems, well-dispersed catalysts are even more difficult to
separate due to its homo-phase state with reaction system [15]. Therefore, the design of
easily separable catalysts is an extremely challenging issue which has received tremendous
attention, especially for nanocatalysts and ILs. In order to separate the nanocatalysts from
the reaction media, targeting a controllable delivery of the NPs, a feasible solution involves
developing magnetic recyclable catalysts, which can contribute to efficient separation and
convenient recycling [16].

In recent years, magnetic NPs based on Fe, Co, Ni, and Mn have been evaluated as
promising materials in the field of catalysis, detection, electrochemistry, cancer treatment,
biophysics, and functional materials [17,18]. Iron, which is the second most abundant
metallic element on the earth, is low-cost and eco-friendly, and materials based on iron
have attracted much attention in these fields [19]. Among iron oxides, such as Fe3O4,
FeO, FeS2, γ-Fe2O3, and FeTiO3, Fe3O4 are more commonly used, not only because of
their properties regarding a high degree of spin polarization at the Fermi level, high Curie
temperature (850 K), and electrocatalytic activity, but also because they are stable and
synthesize easily [20–22].

Aside from the above-mentioned properties inheriting bulk from Fe3O4, nano-sized
Fe3O4 have many other characteristics, such as a high size-controllability, high shape-
controllability, high specific surface area, high magnetothermal conversion, and enzyme-
mimetic activity of peroxidases and catalase (Table 1). Synthesis methods for Fe3O4 NPs
include hydrothermal, sol–gel procedure, coprecipitation, thermal decomposition, mi-
croemulsion, biosynthesis, and so on [23]. Fe3O4 NPs with the required size (2–100 nm) and
desired geometry (spherical, cubic, rod, hollow, or 2D nanoplate) can be precisely controlled
in thermal decomposition and microemulsion methods [24]. Additionally, the function-
alities of Fe3O4 NPs, such as stability, biocompatibility, catalytic activity, and oxidation
resistance, can be improved by modifying the surface with additives and dopants [25,26].

Table 1. Characteristics of bulk Fe3O4 and Fe3O4 NPs [24,27–31].

Characteristics Bulk Fe3O4 Fe3O4 NPs

Magnetism Ferromagnetism Superparamagnetism or
ferrimagnetism

Saturation magnetization (Ms, 300 K, emu/g) ~(84–100) Depend on size, shape, and coating:
~(0.5–92)

Size-controllability Un-achievable Precisely controllable: ~(2–100) nm

Shape-controllability
(Spherical, cubic, rod, hollow, 2D nanoplate) Un-achievable Precisely controllable

Specific surface area (m2/g)
0.34

(38–62 µm)
Depend on size, shape, and coating:

~(20–300)

Magnetothermal conversion (W/g) Absent ~(100–2500)

Electrocatalytic activity Achievable Achievable

Enzyme-mimetic activity of peroxidases and catalase Un-achievable Achievable

Moreover, as Fe3O4 NPs have no residual hysteresis, they can be magnetized and
aggregate immediately in the presence of a magnetic field and reach disaggregation immedi-
ately in the absence of a magnetic field [32]. This on and off switch character deriving from
their superparamagnetism behavior has promoted their use in recoverable and recyclable
techniques, especially in catalysis [33].

Therefore, due to the chemical stability, low toxicity, high surface area and high dis-
persibility in many solvents, economic viability, and magnetic properties of Fe3O4 NPs, they
are emerging as an important solid support to load heterogeneous catalysts and immobilize
homogeneous catalysts [34,35]. The development of Fe3O4-based magnetic materials has
facilitated the synthesis of magnetically recyclable catalysts. In this fast-growing field of
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magnetically recyclable catalysts, Fe3O4-based magnetic materials normally play a role
in the formation of core–shell or other structures by adopting Fe3O4 NPs as the magnetic
core, surface decorator, catalyst carrier or homogeneous composition [36,37]. They have
been adopted in various catalytic applications, such as environmental remediation, elec-
trocatalysis, organic synthesis, synthesis of biodiesel, drug delivery, and cancer treatment
(Figure 1) [38,39].
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In these applications, Fe3O4 universally serves as a form of recyclable support due
to its magnetic properties [45]. The link between the magnetic character and catalysts
makes their retrieval and reuse much easier, as they can be conveniently separated by using
an external magnet, washed, dried, and then subjected to the repeated catalytic reaction,
making the catalysis process more sustainable [35,46].

Except for solid support, Fe3O4 can also serve as an Fe-dissolution catalyst towards the
activation of H2O2 and persulfate to produce radicals (•OH, •SO4

−), which are commonly
applied in the oxidation of pollutants [47,48]. This offers Fe3O4-based catalyst, in which
Fe3O4 takes the dual responsibility of offering recoverable support and acting as an Fe-
dissolution catalyst—the advantages of both homogeneous and heterogeneous catalysts.
When grafting catalytically active ILs on Fe3O4 NPs, the generated catalyst can also perform
the advantages of homogeneous and heterogeneous catalysts [49,50].

Fe3O4 can also act as a Lewis acid catalyst [51]. Catalysts possessing the integrated
merits of solid Lewis acid function and magnetic properties are useful in catalytic appli-
cations [52,53]. These things considered, as Fe3O4 NPs can induce the spin alignment of
electrons in the generated hydroxyl radicals and enhance hole injection, Fe3O4 NPs have
been used to prepare electrodes with a reduced turn-on voltage and enhanced current
density in electrocatalysis [20,41,54].
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Notably, Fe3O4 NPs are gifted with an intrinsic enzyme-mimetic activity of peroxidases
and catalase [55–57]. As artificial enzyme mimetics have drawn a lot of interest due to their
low-cost and stable catalytic activity, developing magnetic nano-mimetic enzymes with
excellent recyclability and a wide range of applications is very appealing [58,59]. Due to
the enzyme-mimetic activity, magnetothermal conversion, and thermal enhanced Fenton
reaction effect of Fe3O4 NPs, they have been extensively applicated in noninvasive cancer
treatment, such as magnetic hyperthermia and chemo-dynamic therapy [23,60].

The present study aims to provide a short review of recent works which discuss the
catalytic applications of Fe3O4-based magnetic materials. The review is divided into five
main sections separated by five different catalytic applications. These applications include:

1. Applications in Environmental Remediation.
2. Applications in Electrocatalysis.
3. Applications in Organic Synthesis.
4. Applications in Catalytic Synthesis of Biodiesel.
5. Applications in Cancer Treatment.

This review concludes with observations on the issues that may need to be addressed
in further researches regarding catalytic applications of Fe3O4-based magnetic materials.
Continued research into the use of Fe3O4-based magnetic catalysts is important for the
future development of novel recoverable and recyclable catalysts.

2. Applications in Environmental Remediation

Water is an essential resource for the survival and development of human beings [61].
However, many sources of this essential resource have been contaminated with organic
and inorganic pollutants [8]. Organic pollutants predominate in water pollutants and
are generally harmful to human health, as many of the organic pollutants have been
identified as carcinogenic or mutagenic [62]. These worldwide contaminants are extremely
toxic, carcinogenic, biorefractory, and bioaccumulative, even at low concentrations [63].
Therefore, developing a highly effective technique for the removal of these contaminants
from water sources is an urgent demand.

As pollutants vary significantly in regard to their physiochemical properties, the reme-
diation methods for pollutants can be very different, including catalytic reduction, catalytic
oxidation, catalytic ozonation, photo-assisted oxidation, Fenton catalytic degradation, per-
sulfate catalytic degradation, and so on [64]. Most of these remediation processes require
nanocatalysts, the complete removal of which from the reaction solution is as important as
the removal of pollutants due to the potential toxic effects of nanocatalysts [65]. Therefore,
the expression of superparamagnetism in Fe3O4-based materials in catalysts may promote
the environmental remediation in a green way [36]. On the other hand, Fe3O4 can act
as a catalyst in some remediations, such as catalytic reduction, catalytic oxidation, and
especially advanced catalytic oxidation reactions [66].

2.1. Catalytic Reduction of Pollutants

Nitrophenol, which is vastly found in industrial and agricultural wastewaters, is
one of the most common organic-based contaminants [67]. As mine groups are less toxic
compared to nitro groups, reducing nitro groups to amines can substantially decrease the
toxicity of nitrophenol, which is an important intermediate in the synthesis of various
drugs and dyes [68]. However, the reduction of nitrophenol to aminophenol by NaBH4 in
aqueous media is extraordinarily slow due to the kinetic barrier, which is derived from the
large potential difference between donor and acceptor molecules, decreasing the feasibility
of this reaction [69]. Noble metal NPs are usually adopted as catalysts to promote this
reduction [70]. Developing none-noble magnetic catalysts for the catalytic reduction of
nitrophenol is very attractive, especially when considering cost and recovery.

Yetim et al. fabricated Fe3O4 and Bi2S3@Fe3O4 magnetic nanocomposites, both of
which show good catalytic reduction ability towards p-nitrophenol with rate constants as
high as (1.4–3.8)× 10−3 min−1, which are slightly lower than catalysts supported noble NPs
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(Figure 2) [71]. Ozkan et al. decorated Co3O4, NiO, and ZnO microparticles with Fe3O4
nanoparticles to obtain Co3O4@Fe3O4, NiO@Fe3O4 and ZnO@Fe3O4 with outstanding
magnetic recovery ability. In this research, Fe3O4 exhibited comparable catalytic activity to
ZnO@Fe3O4 towards the reduction of p-nitrophenol and excellent magnetism (Figure 2) [72].
Theses researches showed that Fe3O4 can have a potential catalytic effect in the reduction
of nitrophenol, while researches that specifically focus on the catalytic activity of Fe3O4
towards nitrophenol are scarce. Other applications of Fe3O4-based materials in catalytic
reduction also deserve to be explored.
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2.2. Catalytic Oxidation of Pollutants

Despite the fact that the direct catalytic oxidation of pollutants by Fe3O4 NPs has
not been reported, enhancements in the catalytic activity of oxidation with the assistance
of Fe3O4 NPs-magnetic field and by the incorporation of Fe3O4 NPs with rGO in the
production of reactive radicals have been reported, as described in the following.

AsH3, which is generally emitted from phosphorus, sulfurization, and nonferrous
metal smelting industries, not only has adverse effects on the biogeochemical cycle and
thus poses a major risk to human health due to its relative stability in atmosphere, but
can also poison the oxo catalyst and selective catalytic reduction catalyst, thus hinder-
ing the utilization of carbon monoxide in the exhaust gas [73]. Therefore, the effective
removal of AsH3 in emission gas to its exposure limit of 0.016 mg/m3 is vitally important.
Xie et al. impregnated HZSM-5 zeolite in FeCl3 solution and then fabricated Fe species
(including Fe3O4) via calcining. When introducing an external magnetic field (0.1 T) in
AsH3 catalytic oxidation, the catalytic performance was improved by 52%, and the turnover
frequency value increased from 4.65× 10−3 min−1 to 5.73× 10−3 min−1. The alliance of the
magnetic field and magnetic materials provides new insights into magnetic-field-assisted
catalysis [74].

Premalatha and coworkers prepared a BiOI/rGO/Fe3O4 photocatalyst via the copre-
cipitation method, which can degrade 98.1% Rhodamine B (20 mg/L, 0.8 g/L catalyst
dosage) in 3 h under visible-light-responsive irradiation. The characterizations indicated
that the incorporation of rGO and Fe3O4 slowed the electron/hole recombination rate and
facilitated the generation of reactive species •OH, resulting in an increased photocatalytic
activity (Figure 3) [75].
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2.3. Advanced Catalytic Oxidation Reactions

Among these environmental remediation techniques, advanced oxidation processes
(AOPs) have shown great potential in destroying refractory organic pollutants with high
reaction rate constants in the range of 108–1010 m−1 s−1 [76]. AOPs have a notable perfor-
mance in the non-selective oxidation of organic pollutants by reactive oxygen species (ROS),
such as •OH, •SO4

−, •O2
−, 1O2, and so on [77]. These free radicals, generated from Fenton

reaction, photocatalysis, activated persulfate, ozonolysis, and UV/H2O2 photolysis, can
oxidize persistent organic pollutants to low-toxic or non-toxic small molecule substances,
and ultimately transform the pollutants to CO2 and H2O [78].

Fe3O4-based materials, with environmentally friendly characteristics, not only exhibit
good catalytic performance in heterogeneous Fenton-like reactions for degrading pollutants
but also possess a superparamagnetic behavior, which is an essential property for the
separation and recovery of catalysts [79].

2.3.1. Fenton Catalytic Degradation of Pollutants

The heterogeneous Fenton system has been widely used in water treatment because of
its effective degradability in a wide range of pH levels [80]. Nano-sized magnetic bimetal
oxides (Fe3O4, Mn3O4) with highly well-ordered inner-connected structures and large
surface areas were fabricated, and the obtained catalysts possessed a higher content of
surface-bound Fe(II), which greatly promote the generation of •OHads radicals from Fenton
reaction. High toxicity As(III) in water can firstly be oxidized into low toxicity As(V) by
•OHfree radicals (69.16%) and bulk solution •OHads radicals (30.39%), then the generated
As(V) can be adsorbed by catalysts and be separated from water by a magnet [81].

Li et al. embedded Fe3O4 NPs into chitosan beads with stable porous structures and
abundant active sites to form a porous structure catalyst, which achieves 96.0% degrada-
tion of tetracycline (TC, 48.09 mg/L) and six cycles of recycling with negligible catalytic
activity loss (Figure 4) [82]. Teng et al. loaded nano-Fe3O4 on the surface of illite clay via
the coprecipitation method, and the resulting catalysts had an excellent degradability of
bisphenol A (BPA) from real wastewater of 25 mg/L in 180 min with adsorption-Fenton-like
mechanism (Figure 5) [83]. Ye et al. converted Fenton sludge into a magnetic sludge-based
biochar through a one-step pyrolysis process and employed it as a novel heterogeneous
catalyst to activate H2O2 for the oxidative removal of MB, which exhibited superior cat-
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alytic properties and degraded 98.56% of the MB (100 mg/L) in 3 min via the synergistic
effects of Fe3O4, Fe0, and the biochar. The catalytic ability stood at 88.13% after the 4th
run [84]. Zhang. et al. designed an efficient and recyclable heterogeneous Fenton catalyst
(Fe3O4/reduced graphene oxide aerogel) synthesized via a two-step hydrothermal method
for the degradation of methylene blue (MB). The results indicated that MB was firstly
adsorbed on the catalysts and then efficiently degraded from pH 3 to pH 10, especially
showing a complete degradation in alkaline condition within 60 min. The catalyst can
be conveniently recovered by a magnet and exhibits stable catalytic reactivity after five
degradation cycles [80]. The possible degradation process can be described as follows
(Equations (1)–(3)):

Fe(II) + H2O2 → Fe(III) + OH− + •OH (1)

Fe(III) + H2O2 → Fe(II) + H+ + •OOH (2)

Fe(III) + •OOH→ Fe(II) + O2 + H+ (3)
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Similarly, Pan et al. adopted polydopamine as a bridge for connecting Fe3O4 and the
pullulan matrix, resulting in the formation of hydrogel containing uniformly distributed
Fe3O4 NPs, which showed superior TC degradation efficiency (86.32% within 60 min)
by Fenton reaction and can be repeatedly used five times without significant activity
loss (Figure 6) [85]. This strategy solves the problems posed by the poor distribution of
magnetic nanoparticles in supported materials and enhances the mechanical properties of
the catalysts, which previously severely restricted applications of this type of material from
lab to industrial scale.
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By combining Fe3O4 and Au NPs, activity of the magnetic recoverable catalyst can be
further enhanced. Liu et al. used pine needles as biomass precursors to fabricate N,O-doped
magnetic porous carbon and then embedded them with Au NPs, forming a dual active
component catalyst, which exhibited outstanding catalytic activity and recyclability toward
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TC degradation in the presence of H2O2, with a degradation efficiency and degradation
rate constant of 96% and 0.133 min−1 within the initial 10 min, respectively (Figure 7) [86].
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2.3.2. Photo-Fenton Catalytic Degradation of Pollutants

In Fenton catalytic degradations, the introduction of visible light into reaction systems
can also enhance the degradation of pollutants [87]. Magnetic Cu-Fe oxide derived from
Cu-Fe Prussian blue analogue can work as a heterogeneous photo-Fenton catalyst to
transform active H2O2 into radicals (•OH and •O2−) under visible light (Vis) and oxidize
sulfamethazine (SMZ, 500 mg/L), one of the most commonly used antibiotics, to CO2,
H2O, and low-toxic and biodegradable intermediates in just 30 min. The catalysts can
be recovered by a magnet due to the presence of Fe3O4, and the catalysts are stable and
reusable even after a five-cycle test [88].

A novel core–shell structured Fe3O4@GO@MIL-100(Fe) adopts magnetic Fe3O4
(300–350 nm) as its core and GO (4.5 nm) as its shell, which are then covered by excel-
lent photo responsiveness MIL-100(Fe) (MOFs, thickness is 61 nm). When excited by Vis,
MIL-100(Fe) can generate photo-generated electrons and holes, the former of which can be
efficiently and quickly transferred to Fe3O4 by GO, leading to almost a 100% degradation of
2,4-DCP within 40 min under the reaction conditions of 3 mmol/L H2O2, 50 mg/L 2,4-DCP,
pH 5.5 [89]. The catalyst can be easily recovered under an applied magnetic field and is
still available after four cycles (Figure 8).

Using TiO2 decorated on a magnetically activated carbon (TiO2@Fe3O4@Carbon) cou-
pled with ultrasound and ultraviolet can degrade 93% of TC antibiotic under 180 min and
can operate stably for five consecutive cycles without any chemical/physical modifica-
tion [90].
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Different engineering applications require different Fe3O4 NPs configurations.
Alvaro et al. synthesized Fe3O4 monocrystalline nanoflowers with different configurations
to suit various engineering applications, such as water remediation, hyperthermia therapy,
and enzyme-controlled release. In photo-Fenton-like (visible light irradiation) catalytic
reactions, MO can be efficiently degraded within 30 min under visible light irradiation
using H2O2 (10 mM). The activity of the catalyst remains relatively high (around 75%) after
the fifth cycle, and the amount of dissolved iron only represented 0.4% of the total iron
content [91].

2.3.3. Catalytic Activation of Persulfate for the Degradation of Pollutants

Aside from Fenton reaction, the sulfate radical- (•SO4
−) based advanced oxidation

process has emerged as a powerful technique for the degradation and mineralization of
organic pollutants, due to its relatively low cost, high efficiency, and ability to degrade
refractory organics [92]. •SO4

− can be effectively generated via the catalytic activation of
peroxodisulfate (PDS) and peroxymonosulfate (PMS) with transition-metal catalysts (such
as Fe, Cu, Mn, and Co-based oxides or composites) through electron transfer reaction [93].
However, the utilization of heavy metal-based catalysts has engendered concerns sur-
rounding toxicity, as the release of metal ions during the persulfate (PS) activation process
may cause secondary pollution [94]. As Fe is widely distributed on Earth and generally
friendly to the environment and human health, the development of highly stable Fe-based
catalysts with a low toxicity has attracted wide interest for practical applications of the PS
technique [95].

The fabrication of engineered catalysts with a lower cost, higher activity, and better
reusability is challenging for persulfate-based advanced oxidation processes in wastewater
treatment. Xiao et al. embedded magnetic bimetallic Fe and Ce into a N-enriched porous
biochar (Fe-Ce@N-BC) for peroxymonosulfate activation in metronidazole degradation.
The highly dispersed Fe-Ce oxide nanocrystals serve as PMS activation centers and PMS
can be efficiently activated via the Fe2+/Fe3+ and Ce3+/Ce4+ pathway, leading to the kinetic
reaction rate constant of the Fe-Ce@N-BC/PMS system as high as 5.56 × 10−2 min−1 in
metronidazole degradation. The high loading of iron oxide makes the catalyst magnetically
recoverable after use and convenient for recycling [94].
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Ye et al. proposed the removal of metals from microplastics, which is achieved by
decomposing the organic matter layer that covers the surface of microplastics and releases
the adsorbed heavy metal. To realize this goal, they prepared a magnetic biochar with
the porosity and graphitization of straw and used K2FeO4 for the heterogeneous catalysis
of persulfate activation, which can decrease of more than 60% of the attached Pb on the
surface of microplastics. The Pb was subsequently adsorbed by the catalysts and separated
from the solution using a magnet [96].

Yang et al. synthesized magnetic Fe3O4-N-doped carbon sphere composite catalysts
for the degradation of tetracycline into CO2 and H2O via activated PMS, achieving a high
degradation efficiency of 97.1% within 1 h (C0 = 20 mg/L, catalyst dosage 0.2 g/L, PMS
concentration 2.4 mM, native pH, and 25 ◦C). Degradation performances between the first
and fourth cycles were 93.3%, 79.7%, 80.9%, and 80.9%, respectively, indicating its stable
catalytic activity during recycling [97].

Huang et al. used abandoned rape straw as a raw material to synthesize the biochar
and loaded Fe3O4 on it, forming a magnetic recyclable rape straw biochar catalyst (Figure 9).
As the Fe3O4 in the catalyst greatly promoted the activation of PS, the catalyst exhibited a
high catalytic performance over a wide pH range (2.99–11.01) in the degradation of TC by
PS. After being separated by an external magnet, the degradation rate of TC still reached
87.05% after eight cycles, indicating the catalyst has good stability, recoverability, and high
practical application value [98].
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As the most extensively used brominated flame retardant at present, tetrabromobisphe-
nol A (TBBPA) is an endocrine disruptor and environmental hormone with persistence and
biological concentration, which has been proved to have potential neurotoxicity, cytotoxic-
ity and immunotoxicity [99]. Its degradation in nature is extraordinary difficult, thus its
effective removal has attracted widespread attention. Hou et al. fabricated a CuFeAl-LDO
catalyst containing functional metal oxides (CuOx and Fe3O4) via the high-temperature
calcination method and used it for the catalytic degradation of TBBPA by PMS. The degra-
dation rate of TBBPA (15 mg/L) by 0.1 g/L catalyst and 0.5 mM PMS reached 99.91% within
60 min at pH 8.5. The catalyst still maintained high stability and reproducibility after five
consecutive repeated degradation reactions of TBBPA. These works provide possible ideas
for the application of Fe3O4-based catalysts in the catalytic degradation of brominated
phenolic organic pollutants in actual water by PS [100].

Huang et al. used a self-doped iron/carbon nanocomposite derived from waste toner
powder in the degradation of RhB, methylene blue, tetracycline, and sodium butyl xanthate
by PS. The catalyst achieved a 97.38% degradation of RhB within 11 min in broad operation
pH (3.0–9.0) [101].



Magnetochemistry 2023, 9, 110 12 of 32

2.4. As Support of Catalysts for Environmental Remediation

Metal NPs (MNPs), especially Au NPs, Ag NPs, and Pd NPs, have been widely used
in environmental remediation due to their high reactivity and selectivity, which is derived
from their unique physicochemical properties when compared with bulk materials [5].
Since NPs are in nano scale (10−9 m), their separation from the reaction solution poses
a big problem. To overcome this issue, MNPs are generally loaded onto a solid support,
such as metal oxides, carbon materials, and polymers, in case of aggregation induced by
the high surface energy of NPs [102]. When these catalysts are required to be recovered
from the reaction solution, it usually requires tedious and time-consuming centrifugation-
redistribution cycles, during which the noble NPs may leak from the support, resulting in
poor recovery of the catalysts and a decrease in catalytic reactivity in the next sequence [103].

Fortunately, as an eco-friendly material, Fe3O4 NPs can be conveniently synthesized
and doped in/on other supports with high surface areas or unique features, generating
catalysts with magnetic recoverability, high efficiency, renewability, reusability, and high
thermal stability. This magnetic technology usually appears as a carrier with a magnetic
core or coating and has been developed as a significant separation and recovery method,
considering the advantages of fast, efficient, and economical operations.

As listed in Table 2, magnetic catalysts are usually synthesized via multiple steps
involving pyrolysis, hydrothermal reaction, solvothermal reaction, microemulsion poly-
merization, template synthesis, reduction, and so on. Applications of these catalysts in
pollutant remediation are the reduction of 4-NP and organic dyes (MB, MO, RhB, CR) and
oxidation of BPA, Malathion, Ciprofloxacin, and so on. Benefiting from the magnetism of
Fe3O4, the synthesized catalysts can be conveniently, quickly, and intactly recovered by an
external magnet, getting rid of the need for a cumbersome separation process, and making
the usage of catalysts more eco-friendly.

Table 2. Studies on the applications of Fe3O4 as support in the removal of contaminants detailing
their composition, method for synthesis, contaminant examined and proposed method of removal of
contaminant, and recycling tests.

Material Synthesis Method Contaminant Method of
Removal

Recycle
Time

Residual
Activity Ref.

Pd@Fe3O4/biochar Pyrolysis + reduction 4-NP Reduction 10 ~80% [104]

Fe3O4/PEG/FeO Immobilization BPA
Photo-
Fenton

catalysis
3 78% [105]

Fe3O4/ZnO-CdO/rGO Hydrothermal method MB/RhB/MO Ultrasonic
degradation 4 92% [106]

Pd@CMC/Fe3O4
Solvothermal method +

reduction 4-NP Reduction 7 – [107]

GO-Fe3O4/Dop/Au Hydrothermal method +
reduction MB/MO Reduction 7 – [108]

Fe3O4@SiO2-
Thiotet-Pd(II) Capsulation 4-NP/Cr(VI)/Nigrosine Reduction 8 ~100% [109]

Ag@RF@Fe3O4
Solvothermal method +

Photoreduction 4-NP Reduction 5 93% [110]
Chiosan@SiO2@Fe3O4 Thiol-ene click chemistry Hg(II) Adsorption 6 ~88% [111]

Fe3O4/PANI/Au Solvothermal method +
coating 4-NP Reduction 15 99% [112]

Fe3O4@PS@Ag Microemulsion
polymerization

MB/RhB/
4-NP Reduction 7 ~90% [113]

ZnO@SiO2@Fe3O4 Hydrothermal method Malathion Photocatalysis 5 82% [114]
Fe3O4/GO/Ag Solvothermal method MB/Ciprofloxacin Reduction – – [115]

h-Fe3O4@Ag/PDA Hydrothermal method MO/CR/MB Reduction 5 >90% [116]
Asparagine chitosan

modified Fe3O4
Reduction-precipitation 4-NP Reduction 4 ~70% [117]

Fe3O4@LigA/Cu Hydrothermal method 4-NP/MB/CR Reduction 3 ~90% [118]
g-C3N4/Al2O3@Fe3O4 Hydrothermal method Textile wastewater Ozonation 5 ~92% [119]

For example, Zhang et al. coated Ag NPs on a magnetic core–shell nanocomposite
composed of hollow Fe3O4 (h-Fe3O4) core and stable polydopamine (PDA), which showed
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excellent catalytic activity in the reaction for reducing azo dyes and excellent antibacterial
activity. The catalysts maintained more than 90% activity after five repetitive uses [116].

As Fe3O4 does not participate in the catalytic reaction and is usually coated with
modification layers for the accommodation of MNPs, the recyclability of the catalysts can
be as high as 99% after 15 cycles of reuse (Figure 10) [112].
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2.5. Concepts for the Future

As there are various contaminants in actual polluted water, future researches may focus
on the synchronous remediation of multiple pollutants via adsorption-recovery, adsorption-
enrichment-degradation, or other effective pathways. Additionally, the multiple pollutants
involved in remediation mechanisms should be clarified. Moreover, as the recovery of
the catalytic activity after repeated use was commonly low in the reported researches, an
Fe3O4-based catalyst with higher stability is required.

3. Applications in Electrocatalysis

Water electrolysis, which is powered by renewable energy sources, is considered as the
most promising technique for the establishment of a clean and sustainable H2 source [121].
Many studies have confirmed that a magnetic catalyst has a spin polarization effect, which
may promote a superior electrocatalytic activity and selectivity [121,122]. Adopting Fe, an
earth-abundant element, for the design of magnetic catalysts is not only an economically
viable route for H2 but could also lead to improved efficiency.

In electrochemical water splitting, the application of Fe3O4 NPs coated with chiral
molecules on the anode catalyst (which possesses chiral-induced spin selectivity effect,
large surface areas, and abundant reactive sites) can suppress the formation of H2O2 and
enhance the triplet oxygen evolution [41]. The mechanism showed that Fe3O4 NPs can
induce the spin alignment of electrons in the generated hydroxyl radicals, in addition to
the chiral-induced spin selectivity effect, both of which are responsible for the large anode
currents of about 10 mA/cm2. This finding brings a rational design strategy for highly
active anode material by Earth-abundant elements. When an anode composed of magnetic
materials (NiZnFe4Ox) is placed to a moderate magnetic field (≤450 mT), current density
increments are above 100% (over 100 mA/cm2) [121]. Similar research results have been
reported in oxygen reduction reaction (ORR), which achieved a strongly enhanced ORR
process by applying the external magnetic field and using magnetic materials as cathode
catalysts [123].

Magnetic electrocatalysts have also been applied in electrochemical sensing. Prepared
with magnetic Fe3O4 NPs, cellulose nanocrystal (CNC), and Cu NPs, Fe3O4@CNC/Cu was
used for modifying a graphite screen-printed electrode and then applied in the analysis
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of venlafaxine concentration [54]. The experiment results proved that the linear dynamic
range was 0.05–600.0 µM, and the limit of detection was 0.01 µM, suggesting that the
sensor has good performance for the electrochemical detection of venlafaxine. In addition,
the magnetic catalyst can be easily recovered from a reaction mixture using an external
magnetic field, which shows promise for the development of a selective, easy, and precise
electrochemical sensor to identify special chemicals.

Concepts for the Future: Magnetic electrocatalysts have been applied in electrochemi-
cal water splitting and electrochemical sensing due to their remarkable properties, while
the mechanism of the specific roles of Fe3O4 NPs in the electrocatalysis process is still am-
biguous. The stability and reusability of electrodes need to be improved by the regulation
of shape, size, and coating of Fe3O4 NPs and the preparation techniques of electrodes.

4. Applications in the Synthesis of Chemicals
4.1. Catalytic Hydrogenation/Dehydrogenation

The catalytic upgrading of platform compounds deriving from biomass to fuels and
high-value chemicals is more and more appealing because biomass is a sustainable and
renewable organic carbon resource generally regarded as a promising substitute for un-
renewable fossil resources in producing chemicals and fuels [10]. Furfural (FF), generated
from acid-catalyzed hydrolysis and the dehydration process of lignocellulose, is an im-
portant platform compound due to its highly functionalized molecular structure [120].
FF can be used as feedstock for the synthesis of furfuryl alcohol (FAOL), which has been
widely used for the synthesis of fine chemicals including resins, fibers, and so on. Seeing as
adopting H2 as H donor will increase costs, alcohols and formic acid have been proposed
as H donors in the catalytic transfer hydrogenation (CTH) method. Prepared via the co-
precipitation method, the acid/base bifunctional Al–Zr@Fe3O4 catalysts showed a high
FAOL yield (90.5%) in the hydrogenation of FF by CTH [120]. This magnetic catalyst can
be easily recovered by an external magnet and reused for at least five consecutive reaction
runs without a significant drop in catalytic activity (Figure 10).

Fe3O4@C synthesized via the solvothermal method with glucose was adopted in the
hydrogenation of FF with isopropanol as a H donor, which achieved a 93.6% conversion of
FF and 98.9% yielding of FAOL (200 ◦C, 4 h) [52]. Fe3O4 takes the role as the Lewis acid
catalyst and benefits the recovery of the catalyst through magnetism (Figure 11). Another
biomass-derived magnetic Fe3O4@Zr-FDCA with a core–shell structure was applied in the
conversion of ethyl levulinate to γ-valerolactone by CTH, with a yield of 94.5% at 180 ◦C for
5 h, and recovered by a magnet for repeated use [124]. Both of these two catalysts showed
no significant activity loss after four or more cycles.
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Adopted Pd NPs as a catalyst of hydrogenation and carbonized Fe3O4 as support,
Pd@Hal@Glu-Fe3O4-C, achieved a high reactivity on the hydrogenation of five nitroarenes
in water at low temperature (40 ◦C) and high recyclability in repeated uses [127].

Fischer–Tropsch synthesis is a vital process for obtaining low-molecular-weight C1–C6
hydrocarbons from syngas (Figure 11). Core-shell Pt@Fe3O4, which was synthesized with
Fe(CO)5 and Pt salt precursors, exhibited an efficient conversion (18–34%) of syngas and
high selectivity (69–90%) for C2–C4 in Fischer–Tropsch synthesis [125].

As H2 is in high demand in the new energy industry and chemical industry, various
techniques for the production of H2 have been proposed. Among these techniques, catalytic
hydrolysis of NaBH4 for hydrogen production has attracted considerable attention due to
its low operating cost [128]. Due to the advantages of high stability, availability, relatively
low cost, and easy separation from reaction reactor, adopting a magnetic catalyst for
the generation of H2 from NaBH4 has attracted a lot of interest. Soltani et al. prepared
CoNi@Fe3O4@C via the co-deposition-precipitation method, which can be easily separated
from the solution at the end of the hydrogen generation cycle and repeated use for six
cycles [128].

4.2. Catalytic Oxidation

The oxidation and epoxidation of olefins has emerged as a class of essential reactions
which is capable of producing various important fine chemicals and intermediates, at-
tracting great interest in academic research and industry [21]. In the oxidation of olefins
(styrene) to benzoic acid, Fe3O4 was adopted as support for the fabrication of a recyclable
oxidation catalyst, which displayed negligible loss in activity and high selectivity within
several successive runs [129].

Supported Fe3O4 NPs on multiwalled carbon nanotubes (Fe3O4@MWCNT) showed
an outstanding performance in the catalytic aqua-thermolysis of heavy asphaltic crude oil.
The redox cycle of the Fe3+/Fe2+ species within the Fe3O4 NPs significantly enhanced the
oxidization of hydrocarbon molecules, which benefits the upgrading of asphaltic crude oil
by reducing its viscosity (Figure 11). This technique is advantageous due to its low cost in
catalyst preparation and catalyst recovery operation, providing a potential opportunity for
the industrial exploitation of heavy oil [126].

Sulfoxides are essential in the synthesis of natural products and high-value physiolog-
ically and pharmacologically active molecules, and they have received special attention
regarding organic synthesis. Synthesized by supporting zirconium on Fe3O4 NPs through
creatinine post-functionalization modification, Fe3O4@Creatinine@Zr offered strong Lewis
acid sites for the efficient and selective oxidation of methyl phenyl sulfide to methyl phenyl
sulfoxide. The catalyst can be simply separated and recovered by using a magnet and can
be reused for seven cycles without any significant decrease in the catalysis activity and
selectivity [130].

4.3. Catalytic Epoxidation

The selective catalytic conversion of carbohydrates to platform compounds is an-
other way to obtain fuels and fine chemicals from biomass. Thus, the development of
efficient solid acidic catalysts with stable catalytic performance is enticing. Various mag-
netic catalysts with Fe3O4 as support have been applied in the epoxidized catalysis of
olefins to organic acid [21]. Fe3O4@C-SO3H, prepared by hydrothermal carbonization of
glucose, Fe3O4 grafting, and –SO3H group functionalization, can serve as an efficient and
recyclable carbon-based solid acidic catalyst in the catalytic dehydration of fructose to
5-hydroxymethylfurfural (HMF) and the subsequent etherification of HMF with ethanol for
ethoxymethylfurfural (EMF) [131]. Recycling experiments showed that the catalyst could
be easily separated by a magnet and repeatedly used four times consecutively without
significant activity loss.
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4.4. C-C Coupling Reactions

C-C coupling reactions, including the Suzuki, Heck, and other reactions, are one of
the valuable routes for the synthesis of fine chemicals via the construction of C-C bonds
catalyzed by metal catalysts [5]. The previously described Pd@CMC/Fe3O4 was applied in
a model cross-coupling reaction, coupling 4-iodoanisole and phenyl boronicsynthesis for
biaryls compounds via Suzuki–Miyaura reactions under microwave irradiation. Reusability
studies showed that this magnetic catalyst could be reused for nine cycles without signifi-
cant activity loss [107]. Another research converted Fe3O4/SiO2 support anchoring Pd(II)
to Pd@Fe3O4/SiO2 by NaBH4, and the obtained catalyst performed desirable catalytic
activity in the Suzuki–Miyaura cross-coupling of 4-iodobenzene and phenylboronic acid for
biphenyl derivatives [132]. The nanocatalyst was reused ten times and the coupling reaction
yield varied from 98% to 83% (Figure 12). Similarly, a catalyst prepared by supporting
PdNi NPs on dendrimer-functionalized GO@Fe3O4 also performed excellent recyclability
in the Suzuki–Miyaura coupling reaction (Figure 12) [133].
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4.5. Catalytic Etherification

As a renewable carbohydrate, 5-ethoxymethylfurfural (EMF) is not only desirable for
transformation into platform compounds, which can subsequently be transformed to fuels
and fine chemicals, but also is a potential biofuel alternative due to its high cetane number
deriving from the etherification of the alcoholic functionalized HMF [131]. Therefore,
the catalytic etherification of HMF to EMF is vitally important for producing renewable
biofuels and fuel additives from biomass. The magnetic catalyst can not only benefit for
the separation of the catalyst from the reaction solution but also promote the recycling of
the catalyst, thus leading to a cost-effective synthesis technique of advanced biofuel by this
magnetic recoverable solid acidic catalyst.

As the etherification of HMF to EMF reactions can be effectively performed in the
presence of acid catalysts, previous researches have supported/grafted tungstophosphoric
acid (PTA) or sulfonic acid (–SO3H) on Fe3O4-based support (Fe3O4@SiO2, Fe3O4@C) to
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fabricate a magnetic recoverable catalyst, both of which were used four –five times without
significant activity loss [131,134].

4.6. Other Catalytic Reactions for Organics

A homogeneous catalyst is superior to a heterogeneous catalyst in terms of mass
diffusion and transfer but inferior in terms of recovery and reuse of the catalyst [135].
An approach that centers around the immobilization of a homogeneous catalyst on a
magnetic hybrid support to convert it to a heterogeneous catalyst will not only retain
the homogeneous activity in the catalytic processes but also achieve the advantage of
being recyclable as well as the heterogeneous catalyst. In view of this issue, Maleki et al.
decorated SO3H-dendrimer on Fe3O4 NPs and applied this heterogeneous–homogeneous
catalyst in the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines
(Figure 13), achieving high product yields and reuse for five cycles with no significant
activity loss [136].
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Kore et al. prepared a magnetically recyclable Fe3O4 NP-supported [HN222][Al2Cl7]
catalyst by grafting chloroaluminate ILs on Fe3O4 NPs (Figure 13). The catalyst achieved a
100% conversion and 77% product selectivity in alkylation of benzene with benzyl chloride
reaction [35].

Adopting Fe3O4 and nitrogen-doped carbon derived from the thermal processing of
natural silk cocoons as support and Cu NPs as an active ingredient, Tahmasbi et al. prepared
a Cu@Fe3O4@C catalyst for the synthesis of 5-substituted 1H-tetrazole derivatives by [3+2]
cycloaddition reaction of aromatic aldehydes, azide ions, and hydroxylamines [138]. The
fabricated catalyst shows considerable reactivity in this [3+2] cycloaddition reactions, and
can be reused for five sequential runs without notable reduction in activity.

A recyclable catalyst of Fe3O4@acacia–SO3H was synthesized with acacia gum and
iron oxide magnetic NPs, and applied to facilitate the synthesis of 9-phenyl hexahydroacri-
dine pharmaceutical derivatives, which afforded ten cycles of repeated use with a slight
activity loss of 9% (Figure 13) [137]. A catalyst composed of C-SO3H@Fe3O4/C, pre-
pared from Fe3O4 NPs, glucose, and hydroxyethyl-sulfonic acid via one-pot hydrothermal
precipitation-sulfonation, was adopted to produce a high yield of glucose (62.59%) and
a high yield of total reducing sugar (73.01%) from NaOH-freeze-pretreated sugarcane
bagasse [139]. The catalyst could be easily separated and recovered by an external magnetic
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force at a high recovery rate (93.18%) and could be recycled five times with a glucose yield
of 54.47%.

4.7. Concepts for the Future

The present section addresses the increasing applicability of Fe3O4-based nanocatalysts
in the process of organic synthesis due to its special properties of superparamagnetism,
eco-friendly, high reusability, and high stability in catalysis. However, there is still room for
the development of highly efficient methodologies that prepare Fe3O4-based nanocatalysts
with superior dispersibility in the organic phase and high activity retention in recycling,
exploiting for synthetic chemistry.

5. Applications in Catalytic Synthesis of Biodiesel

As a renewable energy source, biodiesel has gained increasing attention for its poten-
tial to act as a substitute for the currently used fossil energy due to the non-renewable nature
and rapid depletion of fossil energy, and its distinct advantages of being non-poisonous,
high cetane number, bio-degradability, renewability, and low emissions [140]. The synthesis
of biodiesel is normally accomplished by the transesterification of triglycerides (vegetable
oils or animal fats) and alcohols (methanol or ethanol) catalyzed by base catalysts. Homo-
geneous base catalysts, such as sodium or potassium alkoxide, carbonates, or hydroxide
are conventionally used as catalysts on account of their high catalytic activity [141]. Nev-
ertheless, the drawbacks of homogeneous alkaline catalysts, such as the fact that they
are non-recoverable and the generation of abundant waste water in the neutralizing and
separating processes are major disadvantages that impede the industrial application of
homogeneous alkali-catalysts. Therefore, several heterogeneous base catalysts have been
investigated for the transesterification processes (Table 3). Among these investigations,
magnetic heterogeneous base catalysts have received significant interest due to their ad-
vantages of being environmentally benign, ease of separation via magnet, and convenient
recyclability, which avoids the leaching of catalyst components into the liquid reaction
mixture during traditional filtration and centrifugation.

Xie et al. developed a magnetically recyclable solid catalyst by cross-linking sodium
silicate on core–shell Fe3O4/MCM-41 composites, which exhibited a 99.2% conversion of
soybean oil in 8 h at methanol-to-oil molar ratio of 25:1, with a catalyst loading of 3 wt.%.
The catalyst can be easily recovered and reused five times without apparent mass loss,
and maintained more than 80% catalytic activity [142]. Li et al. synthesized CaO@Fe3O4
with MIL-100(Fe) and calcium acetate, which performed good activity and recyclability
in the production of biodiesel with palm oil and methanol (Figure 14) [143]. Similarly,
Carrera et al. synthesized CaO@Fe3O4 from the calcination of the precipitation mixture
of Na2CO3, FeSO4, FeCl3, Ca(NO3)2, and pectin. The catalyst exhibited a methyl ester
yield of 99.5% at 3 wt.% catalyst, 14:1 of methanol-to-soybean-oil molar ratio, and 7.5 h
of reaction time, while the yield decreased from 99.5% to 21.3% after the fourth cycle,
which may be attributable to surface saturation of the catalyst [144]. This reveals that the
CaO@Fe3O4-based biodiesel catalysts have excellent recoverability, which may be enhanced
via intermitted activation by a re-calcination.

CaO–ZSM-5 zeolite/Fe3O4 synthesized with ZSM-5 zeolite and CaO also performed
excellently in the production of biodiesel with the use of cooking oil and methanol. It
showed a biodiesel yield of 91% with a low leached Ca2+ concentration of 3.87 ppm and a
remarkable recyclability of up to four consecutive cycles with a yield over 85% due to the
protection of CaO by mesoporous ZSM-5 zeolite (Figure 14) [145].
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Table 3. Studies on the applications of Fe3O4 as support in transesterification of triglycerides for
biodiesel. The figures for the reaction conditions are shown in the following order: mole ratio of
alcohol to oil, catalyst adopting (with respect to oil), reaction temperature, and reaction time.

Material Reactants Reaction
Conditions Yield Recycle

Time
Residual
Activity Ref.

Na2SiO3@Fe3O4/
MCM-41

Soybean
oil

Methanol

25:1/3 wt.%/
65 ◦C/8 h 99.2% 5 >80% [142]

CaO@Fe3O4
Palm oil

Methanol
12:1/4 wt.%/

65 ◦C/2 h 95.1% 4 66% [143]

CaO–ZSM-5
zeolite/Fe3O4

Used
cooking oil
Methanol

5:1/3 wt.%/
65 ◦C/4 h 91% 4 85% [145]

CaO@Fe3O4

Soybean
oil

Methanol

14:1/3 wt.%/
65 ◦C/7.5 h 99.5% 4 21.3% [144]

Acidic
ILs@SiO2@Fe3O4

Soybean
oil

Methanol

30:1/8 wt.%/
65 ◦C/8 h 94.2% 5 91% [146]

PBIL@GO@ Fe3O4
Seed oil

Methanol
10:1/25 wt.%/

60 ◦C/4 h 92.4% 6 89.6% [147]

As sulfonic acid-functionalized ionic liquids (ILs) have a high catalytic activity in
the production of biodiesel, Xie et al. grafted dual acidic ILs (1-vinyl-3-(3-sulfopropyl)
imidazolium hydrogen sulfate) on the SiO2@Fe3O4 composite and implemented it into
the synthesis of biodiesel by soybean oil and methanol. Benefiting from the synergism
of the homogeneous catalyst and magnetic homogeneous support, the catalyst exhibited
excellent catalytic activity and recycling use, which can still achieve a yield of 86% of
biodiesel after five cycles [146]. Similarly, an enzyme-like phenylalanine bisulfate ionic
liquid (PBIL) grafted on Fe3O4@GO support not only possess eco-friendly properties but
also have superior catalytic activity and recyclability in the synthesis of biodiesel by seed
oil and methanol [147].

When Fe3O4 is combined with these biodegradable biomaterials, the catalyst will be
aligned with and better prepared for use in the green chemical industry.

Concepts for the Future: The Fe3O4-based catalyst can be easily recovered from the
synthesized biodiesel by applying an external magnetic field, while their catalytic reactivity
can suffer a significant decrease upon repeated use, according to the reported studies.
Future studies may focus on the solid supporting or grafting of active components of Fe3O4
NPs and the magnetic field-assisted reinforcement of catalytic activity.
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6. Applications in Bio-Catalysis
6.1. Applications in Biological Enzyme Catalysis

Due to their unique advantages of having a low toxicity, mild reaction conditions, and
high reaction specificity, enzymes have been used in biotechnology, the food processing
industry, and pharmaceutical industry [148], while the extensive industrial application
of free enzymes is still subject to their inherent defects associated with instability during
storage, vulnerability to inactivation, and lack of recyclability [149]. Thus, the immobi-
lization of enzymes on Fe3O4-based magnetic recoverable support with enhanced activity
and stability has attracted widespread attention. The introduction of Fe3O4-based mag-
netic materials makes the immobilized enzyme quickly and easily removable from the
reaction solution via an external magnet without damaging the catalyst, providing a perfect
way to maintain enzyme activity and their rapid and easy separation from products in a
continuous catalytic reaction.

In a recent research, Ren et al. prepared magnetic lipase–Cu3(PO4)2 nanoflowers with
lipase, CuCl2, amino-functional Fe3O4 NPs, and phosphate-buffered solution, which was
applied in the solvent-free biosynthesis of benzyl acetate through benzyl alcohol and vinyl
acetate. The amino functionalization of Fe3O4 NPs is essential for the grafting of lipase
via crosslinking. The catalyst performed better thermal and pH stability compared with
free lipase (at 60 ◦C and pH 10.0). Additionally, the catalyst can be quickly separated from
the reaction system under an external magnetic field, and maintained 57.78% of the initial
yield after four consecutive cycles of catalysis [150].

Artificial enzyme mimetics have also attract a lot of interest due to their low cost and
stable catalytic activity. It has been proven that Fe3O4 NPs are gifted with an intrinsic
enzyme mimetic activity similar to that found in natural peroxidases [151]. In an early
study, Fe3O4 NPs were adopted in the colorimetric detection of H2O2 by catalyzing the
oxidation of a peroxidase substrate 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid)
diammonium salt with H2O2 to an oxidized colored product, and the detection of glucose
by the combination of glucose oxidase and Fe3O4 NP [56].

As more mimetic enzyme characters of Fe3O4 are discovered, Fe3O4-based materials
have been tested in more and more catalytic reactions. Fe3O4@MIL-100(Fe) synthesized in
situ by the microwave-assisted method showed satisfactory intrinsic dual enzyme mimetic
activities, including peroxidase-like and catalase-like activities, the former of which was
adopted in the design of a biosensor for glutathione detection, and the latter of which
was adopted in the catalytic decomposition of H2O2 to quickly produce O2 and H2O [152].
The catalytic activity of both peroxidase and catalase was approximately constant during
the recyclability, indicating the high stability and excellent reusability of the nanozyme
(Figure 15).

Inspired by the additional functions of nanomaterials that enhance catalytic activity,
the combination of the nano-mimetic enzymes, Fe3O4, Ag, and MnO2 were fabricated and
tested in peroxidase-like, catalase-like, and oxidase-like activities. The study verified that
the combination of nano-mimetic enzymes will endow the Fe3O4–Ag–MnO2 with all three
of the catalytic activities [153].

Regarding the mechanism and origin of Fe3O4 NPs, Qiu et al. implemented research
on an atomic view into the origin of Fe3O4 NPs as peroxidase mimetics. They found that
redox between H2O2 and Fe(II) sites on surface of Fe3O4 NPs was the key step to producing
•OH radicals for the oxidation of substrates. Moreover, single and polycrystalline Fe3O4
NPs have a very different distribution and chemical state of Fe species, and polycrystalline
Fe3O4 NPs bear not only a higher Fe(II)/Fe(III) ratio but also a more reactive Fe(II) species
at surface grain boundaries. This kind of research will not only give us better insights into
the origin of Fe3O4 NPs of various crystal forms but also will benefit for the future design
of Fe3O4-based nanozymes [154].
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6.2. Applications in Cancer Treatment

Possessing a mild acidity, low catalase activity, hypoxia, and high H2O2 concentration
(~(50–100) × 10−6 M), the tumor microenvironment is not only suitable for tumor devel-
opment, which finally leads to cancer, but also creates a “gate” for efficient and selective
tumor treatments, i.e., the in situ apoptosis inhibits the tumor by employing the Fenton
reaction or Fenton-like reactions to produce •OH in tumor sites [155,156].

A composite with two self-activating nanocatalysts was assembled, including the
inner core peroxidase-mimic Fe3O4 NPs and the outer glucose oxidase-mimic AuNPs
situated within large aperture mesoporous silicon, and subsequently functionalized with
cell ligand hyaluronic acid, which can specifically target the receptors of special tumor
cells. In treatment, AuNPs can effectively catalyze glucose to produce H2O2, which is
then contiguously catalyzed by Fe3O4 NPs and AuNPs to produce •OH in the tumor
microenvironment, ultimately leading to apoptosis and the death of 53.21% of cancer
cells without toxicity affecting healthy cells. This composite nanozyme treatment strategy
adopting, self-activating ROS-mediated cascade reactions, initiates a non-toxic drug and
non-invasive nano-catalytic biomedicine [44].

Other cancer treatment strategies are also proposed in succession, based on the self-
augmented synergistic effects, such as magnetothermal conversion and thermally enhanced
Fenton reaction. A novel multifunctional nanosphere that adopted a Fenton catalyst Fe3O4
NPs as the core and photothermal therapy polypyrene as the shell was proposed. In this
cancer therapeutic strategy, the multifunctional nanospheres could effectively enrich the tu-
mor site under the guidance of the magnet; then, polypyrene strongly absorbs near-infrared
light and converts it into heat for tumor photothermal ablation and effectively promotes
Fe2+/3+ release from Fe3O4 NPs to enhance the catalysis conversion of H2O2 into •OH,
leading to the apoptosis of the tumor cell (Figure 16) [156]. In another research, hollow
Fe3O4 meso-crystals took on dual role: (1) magnetic hyperthermia, which can produce
heat in the tumor tissue via Fe3O4 and an external magnetic field; (2) Fenton catalyst. This
research indicated that meso-crystals of Fe3O4 were superior to polycrystals, not only
because the former showed excellent magnetothermal conversion efficiency (722 W/g) but
also because they exhibited high peroxidase-like activity in the generation of •OH [60].
Zhang et al. developed engineering encapsulin-produced magnetic iron oxide nanocom-
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posites with genetically engineered encapsulin protein nanocages via a biomineralization
procedure. The magnetic hyperthermia therapy, which contains Fe3O4 and FeO, demon-
strated a superior magnetic-to-thermal conversion efficiency (2390 W/g) and performed an
enhanced catalase-like activity in the presence of an alternative magnetic field, leading to
effective tumor suppression [30]. This integration of magnetic-to-thermal conversion and
magnetic-enhancing Fenton catalysis presents a potent tool for cancer treatments.
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6.3. Concepts for the Future

Considerable efforts have been made in Fe3O4-based medicine for cancer treatment,
but their long-term toxicity and metabolization in the human body should be seriously
and comprehensively studied before these materials can be safely used to increase life
expectancy and prolong cancer patient survival. Further studies may focus on the selective
and accurate enrichment of Fe3O4-based medicine in cancerous environments and impose
its catalytic activity to generate toxic ROS and kill cancer cells while sparing normal cells.
This could be achieved by using strategies such as surface functionalization or cancer-
recognizing grafting based on related toxicological mechanisms.

7. Toxicity of Fe3O4-Based Nanocatalysts in Environmental Remediation and
Cancer Treatment

The potential toxicity of Fe3O4-based nanocatalysts is highly concerning, especially in
the applications of environmental remediation and cancer treatment.

7.1. Toxicity of Fe3O4-Based Nanocatalyst in Environmental Remediation

Studies showed that ~10/100 nm-sized bared Fe3O4 NPs and coated Fe3O4 NPs
(L-cysteine, 3-(triethoxysilyl) propylsuccinic anhydride, 3-aminopropyl triethoxysilane,
graphitic carbon nitride) demonstrated relatively low toxicity, and did not affect the long-
term survival and welfare of the animals at concentrations of 0.001–1 mg/mL [157,158].
Fe3O4 NPs at low concentration can even act as nanonutrition for barley growth [159].
Bared and oxidizing Fe3O4 NPs of ~7 nm (96 h, 3300 mg/L) were proven to not be ecotoxic
to plants, while the addition of humic acids or oxidization will increase the inhibitory effect
on their unicellular ciliates [160]. Halloysite nanotubes supporting Fe3O4 NPs (~10 nm,
48 h, 200 mg/L) showed no acute toxicity on freshwater organisms [161]. In the application
of Fe-dissolution catalysts (activation of H2O2 and persulfate), the dissolved iron ions can
be toxic to unicellular ciliates (24 h, 1 mg/L) and slightly toxic to white mustard (96 h,
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35 mg/L) [160], while another study indicated that water samples remediated by carbon-
supported Fe3O4 (96 h, 500 mg/L) via Fenton reaction exhibited safe effects on aquatic
organisms (fish and green algae) in acute and chronic toxicity tests [162].

As Fe3O4 is always adopted as a support, the toxicity of the catalyst should also take
the potential toxicity of the supported NPs into consideration. Most of the engineered NPs
have adverse effects on living organisms, and their nanotoxicology is highly dependent
on exposure dosage [163,164]. Therefore, despite the toxicity of some nanocatalysts, their
risk of causing environmental and biological damage can be significantly reduced by
magnetically recovering them from the reaction system.

Nonetheless, as the leakage of supported NPs, Fe3O4 NPs, and iron ions from nanocat-
alysts is commonly reported on in current application researches, further studies may
focus on the following: (i) improving hybridization strategy to prevent leakage; (ii) de-
veloping a deeper understanding of the size, coating, shape, structure, and dosage on
environmental fate and toxicity of the nanocatalyst, for the development of biocompatible
and biodegradable Fe3O4-based catalysts.

7.2. Toxicity of Fe3O4-Based Nanocatalyst in Cancer Treatment

When applied in cancer treatment, studies have shown that Fe3O4 NPs may cross
the blood–brain barrier and pose potential cytotoxicity- and genotoxicity-related risks to
healthy human cells, tissues, and organs via the generation of ROS, which may give rise to
lipid peroxidation, mitochondrial dysfunction, chromosomal and DNA damage, leading to
protein denaturation and altered cell cycle and gene expression [165,166], while the level
of toxicity in Fe3O4 NPs depends on their size, shape, surface coating, dosage, exposure
time, and type of cells [167,168]. Poly(acrylic acid) coating on Fe3O4 NPs can significantly
reduce their innate toxicity of bared Fe3O4 NPs [169]. A study conducted by Wu et al.
indicated that Fe3O4 NPs with a size of 8 nm and coated with polymers could inhibit tumor
growth efficiently without expressing obvious toxicity [170]. A toxicity determination
test for nanocomposites of reduced graphene oxide, Fe3O4, and poly-(ethylene) glycol by
standard assay revealed over 70% cell survival after 48 h, suggesting that the synthesis
of nanocomposites is feasible for magnetic hyperthermia [171]. Whilst plenty of toxicity
studies have been carried out in the literature, our collective understanding of the exact
fate of Fe3O4-based materials inside the human body in cancer treatment still remains
ambiguous [172].

Therefore, it is essential to comprehensively investigate the toxicity of and potential
threat to human health Fe3O4-based materials pose. This would involve investigating
their biocompatibility, biodegradation, biodistribution, on-demand targeting release in
the human body, and their fate inside human body. Further studies need to be carried
out using in vivo and in vitro models, along with a systematic evaluation of the toxicity
of Fe3O4-based materials and their potential threat to human health, while considering
their size, morphology, coating, delivery route, and dosing strategy. In addition, measures
and strategies to prevent or shield their toxicity for a safer use in cancer treatment are
also required.

8. Conclusions and Perspectives

In this mini-review, the recent advances in the catalytic applications of Fe3O4-based
magnetic materials are surveyed, such as their applications in environmental remediation,
electrocatalysis, organic synthesis, catalytic synthesis of biodiesel, and bio-catalysis. The
applications of Fe3O4-based magnetic materials can be summarized as follows:

(1) In the application of environmental remediation, Fe3O4 is usually adopted as a
magnetically recoverable support and hybridized with other active ingredients, such as
noble metal NPs (Au, Ag, Pd, etc.) and photocatalysts, which have been applied in the
oxidized degradation of antibiotics and dyes, as well as the reduction of nitro-benzenes
and dyes. Additionally, Fe3O4 is adopted as a recyclable catalyst for the activation of H2O2
and persulfate by dissolving out Fe2+/3+ and the generated •OH, •SO4

−, which contribute
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towards the oxidative decomposition of organic pollutants to low-toxic intermediates
such as CO2, and H2O. Fe3O4-modified catalysts can be easily separated from the reaction
solution by an external magnet and exhibit stable catalytic activity during repeated use.

(2) Fe3O4-based electrocatalysts have been applied in effective and selective electro-
chemical water splitting so that the spin polarization effect of Fe3O4 can suppress the
formation of H2O2 and enhance the triplet oxygen evolution. Designing magnetic catalysts
is becoming an economically viable route for H2 with desirable efficiency. In addition,
Fe3O4 NPs can be used for the preparation of selective, easily recoverable, and precise
electrochemical sensors to identify special chemicals.

(3) Synthetic chemicals, especially those relating to energy and pharmaceuticals, are
essential in the modern world. Fe3O4 NPs are widely adopted as a form of magnetic support
in the design of catalysts featuring efficient separation and convenient recycling during the
processes of reduction, oxidation, C-C coupling, etherification, and so on. Notably, Fe3O4
can effectively catalyze hydrogenation reactions, in which Fe3O4 takes the role of a Lewis
acid catalyst.

(4) Fe3O4 is also used as a magnetically separable support for decorating homogeneous
catalysts (acidic ILs) and loading alkali-catalysts, typically being applied in the synthesis of
biodiesels via transesterification with various triglycerides and alcohols and making the
process more sustainable.

(5) These things considered, Fe3O4 NPs have mimetic peroxidase and catalase ac-
tivities, thus Fe3O4 NPs have been adopted in the fabrication of artificial enzymes for
recyclable catalysis. More importantly, Fe3O4 NPs have been widely employed in cancer
treatments, in which Fe3O4 can act as a guide for delivering the therapy to tumor sites
under a magnetic field and implement the Fenton reaction for the suppression of cancer
cells. The Fenton reaction can be considerably enhanced by the heat that is generated from
the magnetothermal conversion of Fe3O4 and photothermal conversion of photothermal
materials decorated on Fe3O4. However, these academic researches cannot be transferred
to clinical applications until the obstacles related to the expelling of Fe3O4 outside and the
elimination of their long-term toxicity are surmounted.

However, there are some research gaps between the reported studies and the current
status. These include the following:

(1) When adopting Fe3O4 as a magnetically recoverable support, the flawless recovery
of catalytic activity (100%) upon repeated use can be hard to achieve, as seen in the reported
researches. Therefore, the connection between the active component and magnetic support
is a critical factor for the fabrication of efficient and stable catalysts. An appropriate
connection will not only create a suitable space for the active component, preventing
the leak of the active component and maintaining catalytic activity during repeated use,
but will also promote the sufficient exposure of active sites of the catalyst. Therefore,
further researches that aim to obtain highly active and highly recyclable magnetic catalysts,
may take the connection styles of Fe3O4 and the active component, crystal form of Fe3O4
(polycrystal, monocrystal), and their surface-decoration/coating in to consideration.

(2) Fe3O4 NPs have mimetic peroxidase and catalase activities and can be used as
catalysts of Lewis acid and Fenton reaction, while naked Fe3O4 NPs are subject to oxidation
and aggregation, especially under high-temperature reaction conditions, and may cause
accountable cytotoxicity in vivo use. To alleviate these restrictions, various strategies,
such as supporting, surface coating, and decorating, have been developed to maintain the
stability of Fe3O4 or make it biocompatible. However, protecting Fe3O4 from oxidation and
aggregation via modification without disturbing catalytic activity is difficult.

In closing, the issues which need to be addressed in future research before their
widespread application include:

1. Improving the hybridization of catalysts and Fe3O4 to prevent the leaking and
deactivation of catalysts supported on Fe3O4 during recovery and reuse, when Fe3O4 works
as a support;
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2. Maintaining a high catalytic activity of Fe3O4 while protecting it from oxidation
and aggregation when Fe3O4 works as a catalyst;

3. Developing biocompatible and biodegradable Fe3O4-based catalysts when Fe3O4 is
applied in the field of environmental remediation;

4. Diminishing or eliminating the cytotoxicity of Fe3O4 in vivo use when Fe3O4 is
applied in the field of oncology;

5. Endow Fe3O4-based catalysts with more functionalities to deal with actual applica-
tion situations.
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