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Abstract: Amoxicillin (AMX) is an antibiotic frequently used for the treatment of bacterial disorders
and respiratory problems in both humans and animals. This work aims to synthesize a molecularly
imprinted superparamagnetic polymer (SP-MIP) with a core-shell structure for the selective detection
of AMX in real samples. Magnetite superparamagnetic nanoparticles (SNP) were prepared by the
polyol method, coated with silica, and functionalized with silane groups. The polymerization process
was executed using the free-radical precipitation method. Thermogravimetric analysis (TGA) was
used to evaluate the thermal stability of the synthesized materials. The results obtained from N2

adsorption and desorption analyses showed that the surface area of SP-MIP (19.8 m2/g) was higher
than that of the non-molecularly imprinted superparamagnetic polymer (SP-NIP—9.24 m2/g). The
optimized adsorption analysis showed that both SP-MIP and SP-NIP followed SIP-type behavior,
with adsorption constant KS 0.01176, 1/n 1.73. The selectivity tests showed that SP-MIP is highly
selective for AMX in the presence of other molecules. Finally, for the recovery analysis, the application
of SP-MIP for determining AMX in samples of tap water, river water, and drugs using HPLC yielded
a mean recovery value of 94.3%.

Keywords: amoxicillin; core shell; superparamagnetic nanoparticles; MIP

1. Introduction

Amoxicillin (AMX) belongs to the β-lactam group. It is one of the most important
drugs used in clinics and hospitals worldwide and is widely used for the treatment of
infectious diseases in both humans and animals [1]. AMX is constituted by a structure
of variable side chains based on a β-lactam ring, which is responsible for antibacterial
activity. After consumption, approximately 60% of the drug is excreted unchanged in the
urine, and the drug residue ends up being disposed of in rivers, lakes, and other water
bodies. The presence of AMX in these water bodies eventually leads to the contamination
of humans and other living beings [2]. Its metabolites in the environment can lead to
allergic reactions, antibiotic resistance, and the development of other related diseases. In
this sense, the development of analytical methodologies that are capable of effectively
helping monitor this compound in aqueous matrices is essential [3]. Several methods
have been applied to determine the presence of AMX in aqueous matrices, including spec-
trophotometry [4–6], electrochemical methods [7,8], flow injection analysis [9,10], capillary
electrophoresis [11,12], atomic absorption spectroscopy [13], and chromatography [14,15].
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One of the relevant materials used in separation processes that has gained considerable
traction among researchers in the last few years are magnetite nanoparticles (NPS-Fe3O4).
This material has become increasingly popular due largely to its extraordinary magnetic
and electrical properties [16], which allow it to be employed for a wide range of purposes,
including bulk catalysts [17,18], catalytic support [19–21], core material in catalysts or
core-shell materials [22–24], and electronic devices. Furthermore, owing to its high degree
of stability and biocompatibility, NPS-Fe3O4 are also employed in different areas, including
industries [25–27], medicine/pharmacology [28–30], biomedical applications [31,32], and
in the environmental field [33–35]

Magnetite nanoparticles can be synthesized through different methods, including
co-precipitation, hydrothermal, microemulsion, solvothermal, and polyol techniques. The
application of these synthesis methods enables us to obtain magnetite nanoparticles of
different sizes, shapes, dispersion, and crystalline structures with different properties.
The synthesis of the SP-MIP was conducted using the polyol polymerization technique,
as detailed by Cai and Wan [36], who used iron salt of acetylacetonate, Fe(acac)3, as a
precursor. Its decomposition takes place via polyols, such as triethylene glycol (TREG),
that work simultaneously as a hydrophilic solvent for the iron salt at 120 ◦C as well as
a reducing agent producing enough Fe+2 for the formation of magnetite. Finally, due to
its long polar terminations, it keeps the magnetite particles separated and prevents their
agglomeration. Nanoparticles between 7–10 nm homogeneity are achieved, which makes
them superparamagnetic and hydrophilic character.

The present study sought to determine AMX through the application of high-performance
liquid chromatography (HPLC) using molecularly imprinted superparamagnetic polymer
(SP-MIP), which was constructed using magnetite superparamagnetic nanoparticles (SNP)
and the molecular imprinting technique. The SNP were obtained through applying tri
ethylene glycol (TREG) as solvent.

The most important advantages of the proposed method are that it does not require
any pretreatment procedures, such as filtration and extraction, and all the analyses are
performed at room temperature. Following the optimization of the method with standard
solutions, the technique was successfully applied to determine amoxicillin in different real
samples.

2. Materials and Methodologies
2.1. Chemicals

Ethyl acetate (EtAcet, CH3COOC2H5. ACS reagent, ≥99.5%), iron (III) acetylacetonate
(Fe(acac)3, C15H21FeO6, for synthesis), ethanol absolute (EtOH, CH3CH2OH, for analy-
sis EMPARTA® ACS), ammonia solution (NH4OH, p.a. EMSURE® ACS, Reag. Ph Eur),
toluene (C6H5CH3, for analysis EMSURE® ACS, ISO, Reag. Ph Eur), tetraethyl orthosilicate
(TEOS, Si(OC2H5)4, for synthesis), methanol (MeOH, CH3OH, for liquid chromatography
LiChrosolv®), urea (NH2CONH2, ACS reagent, 99.0–100.5%) were purchased from Merck,
Supelco, Milwaukee, Wisconsin, USA and amoxicillin (AMX, C16H19N3O5S, 95.0–102.0%
anhydrous basis), acrylamide (Aam, C3H5NO, for synthesis), 3-(Methacryloyloxy)propyl]
trimethoxysilane (MPS, H2C=C(CH3)CO2(CH2)3Si(OCH3)3, ≥97%), potassium persulfate
(KPS, K2S2O8, ACS reagent, ≥99.0%), N,N′ -methylene(bisacrylamide) (MBAA,
H2C=CHCONH)2CH2, 99%), Caffeine (CAF, C8H10N4O2, powder, ReagentPlus®), ciprofloxacin
(CIPRO, C17H18FN3O3, ≥98% (HPLC), uric acid (C5H4N4O3, ≥99%, crystalline) were pur-
chased from Sigma Aldrich, USA. All the solutions were prepared using Milli-Direct Q®-3
ultrapure water of 18.2 MΩ cm−1 at 298 K (Millipore).

The tap water sample was obtained from a laboratory in Lima, Peru, while the river
water sample was obtained from a river located in the city of Puquio, Huacayo, Perú.

2.2. Computational Simulation

The preliminary study was conducted with a focus on theoretical determination
analyses through a computational simulation in which the functional monomer effectively
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interacted with AMX, where water was used as a solvent, leading to better results in the
synthesis and selectivity of the MIP [37,38]. The semi-empirical simulations were performed
using HyperChem® 8.0.5 (Hypercube, Inc., Gainesville, FL, USA). These simulations are
necessary for designing the molecules since they serve as an input parameter for the other
software employed in the study.

Table 1 shows the 20 monomers employed in the simulation analysis and the interac-
tion of AMX. The OpenEye® software (OpenEye Scientific Software, Inc., Santa Fe, NM,
USA), which performs several functions in the simulation, was also employed. This soft-
ware comes with VIDA 3.0.0, used to visualize the molecules modeled with HyperChem
and to verify possible bonding errors between the atoms and Omega2, which generates
various conformers of the molecules. This helps when considering possible spatial imped-
iments of a particular conformer. AutoIt 3.3.6.0 is a free BASIC-like scripting language
designed to automate the Windows graphical interface and scripts in general. The simula-
tion experiments were carried out based on the method applied for ciprofloxacin, described
by Marestoni et al. [39].

Table 1. Monomers used in the computational simulation analyses for the most stable interaction
between AMX and monomers.

Sigla Monomer

MP1 N,N-methylenbisacrilamide
MP2 Imidazole-4-acrylic acid
MP3 Imidazole-4-acrylic ethyl ester
MP4 Acrylic acid
MP5 Acrylamide
MP6 Acrolein
MP7 Alylamine
MP8 Acrylonitrile
MP9 Ethylene glycol Dimethacrylate

MP10 2-(cyanoethyl amine)ethylmethacrylate
MP11 Methylensuccinic acid
MP12 Methacrylic acid
MP13 3-divinylbenzene
MP14 4-divinylbenzene
MP15 Estiren
MP16 1-vinylimidazole
MP17 2-vinylpyridine
MP18 4-vinylpyridine
MP19 2-acrylamide-2-methyl-1-propanesulfonic acid
MP20 2-hydroxyethyl methacrylate

2.3. Synthesis of a Molecularly Imprinted Superparamagnetic Polymer with Core-Shell
Structure (SP-MIP)

A molecularly imprinted superparamagnetic polymer with a core-shell structure
(SP-MIP) was prepared based on the procedure described by R. López [8]. First, magnetite
SNP (Figure 1) were synthesized by the polyol method using Fe(acac)3 and TREG initially
under a controlled temperature of 120 ◦C for 30 min, and subsequently at 180 ◦C for
an additional period of 30 min, and finally at 280 ◦C for 60 min [40,41]. The material
under synthesis was coated with TEOS-based silica in ethanolic and ammoniacal media
to chemically stabilize it (Fe3O4@SiO2); this was followed by applying the Stöber sol-
gel method [42]. Finally, the material’s surface was functionalized with silane groups
(Fe3O4@MPS) until the coating was effectively completed.
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Figure 1. A schematic diagram illustrating the synthesis of the magnetite superparamagnetic nanopar-
ticles (SNP) along with the stabilization and silanization processes.

Polymerization was carried out as a second step using the free-radical precipita-
tion method for 3 h at 60 ◦C; the procedure was conducted using AMX (analyte), AAm
(functional monomer), MBAA (crosslinker), and KPS (radical initiator) in the ratio of
1:4:100:0.185 mol, respectively. The polymerization process gave rise to SP-MIP. In addition,
a non-molecularly superparamagnetic imprinted polymer (SP-NIP) was prepared using the
aforementioned procedure but without adding AMX. Finally, AMX was removed from the
previously synthesized polymer (SP-MIP). The extraction of AMX was performed using a
Soxhlet extraction system with mixtures of methanol and water for 8 h (90:10, 70:30 v/v).
High-performance liquid chromatography with ultraviolet (HPLC-UV) detection analysis
was applied to ensure that all the AMX molecules (templates) had been removed from the
supernatant. Finally, the SP-MIP and SP-NIP were repeatedly washed with water under a
vacuum at 60 ◦C.

2.4. Characterization Experiments

Surface area, average pore sizes, and adsorption isotherms were determined by N2 ad-
sorption measurements at 77 K (liquid nitrogen temperature) using Micromeritics Gemini
VII 2390. Both the SP-MIP and SP-NIP were subjected to a pretreatment analysis which con-
sisted of degassing the polymers with helium at 80 ◦C for 4 h to remove any non-dissolvable
or remaining substances on the surface of the materials. In addition, the Barrett-Joyner-
Halenda (BJH) and Brunauer–Emmett–Teller (BET) methods were also used to calculate
the surface area and average pore sizes of the polymers, respectively. Both the SP-MIP and
SP-NIP (using about 10 mg of the polymers) were also subjected to thermogravimetric anal-
yses (TGA) (about 10 mg) using a Thermal Analyzer STA6000 (PerkinElmer, Waltham, MA,
US) under an inert atmosphere of nitrogen and by heating the samples from 40 to 800 ◦C
with a heating rate of 20 ◦C min−1. The FTIR–Vertex 70 Spectrometer Bruker Shimadzu
(Anan, Japan) was utilized to analyze the various functional groups used to fabricate the
materials. Finally, to examine the surface morphology of the synthesized nanomaterials,
scanning electron microscopy (SEM) was performed with a JSM-7500F microscope.

2.5. High-Performance Liquid Chromatography Analysis of AMX

The HPLC analysis of AMX was performed at the Department of Analytical Chemistry
of the Institute of Chemistry, São Paulo State University, Brazil, using a Shimadzu chromato-
graph 20A coupled to a UV-Vis SPD 20A detector with SIL-A autosampler and DGU-20A5
degasser controlled by a microcomputer. Column C18 (250 mm × 4.6 mm) was used as the
stationary phase, while methanol:water (40:60 v/v) at a flow rate of 1.0 mL min−1 was used
as the mobile phase. The sample injection volume and wavelength applied were 20 µL and
230 nm, respectively. AMX standards were prepared by diluting aliquots of 5, 10, 15, 20, 25,
and 30 mg L−1 of AMX from a 500 mg L−1 stock solution (pH 7.0–7.2).

All the adsorption experiments were performed using 2.0 mL AMX solution in an
aqueous medium. The SP-MIP was added to the solution, and the mixture was shaken
using a rotary shaker. Subsequently, the magnetic SP-MIP was separated using an external
neodymium magnet, while the supernatant solution was separated using a 0.22 µm PTFE
membrane filter and analyzed by the chromatographic method. The study of the adsorption
capacity of SP-MIP involves finding the optimal parameters of pH, AMX concentration,
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amount of SP-MIP, and agitation time. The adsorption capacity Qe of the AMX in the
SP-MIP was calculated using Equation (1):

Qe =
(C0 − Ce)×V

m
(1)

where C0 (mg L−1) is the initial AMX concentration, Ce (mg L−1) is the remaining AMX
concentration, V is the volume of the solution in mL, and m is the applied mass of SP-MIP
or SP-NIP. AMX standards of 5, 10, 15, 20, and 25 mg L−1 were also prepared to construct
the calibration curve.

The results related to AMX adsorption in SP-MIP were obtained by plotting AMX
concentration at equilibrium Ce, and the quantity of AMX adsorbed at equilibrium Qe using
isotherm models including Langmuir (Equation (2)), Freundlich (Equation (3)), and SIPS
(Equation (4)). In Equations (2)–(4), which are related to the isotherm models, K stands for
the constant affinity adsorbent of each model, Qmax is the maximum adsorption capacity of
SP-MIP for AMX, and β is the heterogeneity factor [43,44]:

Qe =
QmaxKLCe

1 + KLCe
(2)

Qe = KFCβ
e (3)

Qe =
QmaxKSIPSCβ

e

1 + KSIPSCβ
e

(4)

2.6. Selectivity for AMX Binding

To evaluate the selectivity of SP-MIP and SP-NIP toward AMX, experiments were
conducted using AMX in the presence of possible interfering molecules like urea, uric
acid, caffeine, and ciprofloxacin. All the solutions of interferents were prepared similarly
to prepare AMX standard solutions, and further experiments related to the analysis of
the selectivity of the polymers toward AMX were carried out under the same optimal
experimental conditions obtained in the adsorption study. For each interferent, standard
solutions were prepared, and analytical curves were obtained using HPLC. The data
obtained from these measurements were used to determine the distribution coefficient Kd
(mL/g, Equation (5)), the selectivity (S, Equation (6)) impression factor (Ifactor, Equation (7)),
and the relative selectivity coefficient (KSR, Equation (8)); these variables were calculated
based on the procedure described by Ndunda et al. [45] and using Equations (7)–(10) below:

Kd =
Qe

Ce
=

(C0 − Ce)×V
Ce ×m

(5)

S =
Kd(AMX)

Kd(i)
(6)

I f actor =
Kd(SP−MIP AMX)

Kd(SP−NIP AMX)
(7)

KSR =
I( f actor,AMX)

I( f actor,i)
S (8)

2.7. Real Samples

The performance of the synthesized SP-MIP was evaluated by testing two real sam-
ples: river water (collected from the Puquio river located in Huancayo, Peru) and tap
water (obtained from the laboratory). Both samples were enriched with AMX of different
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concentrations. An amount of 2 mL of the samples was spiked with a standard solution
of AMX at three different concentration levels, and the pH was adjusted between 7.0 and
7.2 using NaOH (2 mol L−1). Thereafter, 6 mg of SP-MIP was added to the mixture, which
was shaken in a rotary shaker for 90 min. The SP-MIP polymers were separated using a
neodymium magnet and were filtered through a PTFE membrane. Finally, the supernatant
solution was analyzed by HPLC. This procedure was performed in triplicate.

3. Results and Discussion
3.1. Computational Simulation

The results obtained from the simulation analyses are presented in Figure 2; as can be
clearly observed, the monomers M5 (acrylamide), M1 (N,N-methylene bisacrylamide), and
M3 (Imidazole-4-acrylic ethyl ester) have higher binding energies and are found to be the
best choices for application toward the synthesis of the polymers.

The monomers M5, M1, and M3 possess nitrogen atoms capable of producing a
hydrogen bond with the amoxicillin molecule, leading to the formation of highly stable
complexes, which effectively enhance the selectivity of the MIP. For the present study, the
monomer acrylamide M5, with a binding energy of −141.6 kJ mol−1, was chosen as a
functional monomer.
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3.2. Characterization Experiments

The specific surface area of SP-MIP and SP-NIP were evaluated through applying N2
adsorption-desorption isotherm measurements. The isotherms (Figure 3) present wide and
asymmetrical hysteresis loops. The results obtained from the BET analysis are presented
in Table 2, where some differences between the SP-MIP and its respective SP-NIP can be
highlighted. As can be noted, the specific surface area of SP-MIP (155.5 m2 g−1) was slightly
higher than that of SP-NIP (109.3 m2 g−1); this shows that the SP-MIP adsorption level was
somewhat higher than that of SP-NIP, and preliminary tests indicate that the polymers with
core-shell structure generally have a greater surface area than those without this structure
(SP-MIP: 19.8 m2 g−1; SP-NIP: 9.2 m2 g−1). This behavior may be attributed to the fact
that the magnetite SNPs influence the coating process of the polymer, and this allows a
more homogeneous deposition of the polymer along with a larger surface area. An analysis
of the isotherms also showed that the synthesized polymers are mesoporous with almost
similar average pore diameters.
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Table 2. BET surface area and porosity obtained for the SP-MIP and SP-NIP materials.

Sample BET Surface Area (m2 g−1) Mesopore Area (m2 g−1)
Average Pore

Diameter (nm)

SP-MIP 155.5 129.5 8.5

SP-NIP 109.3 83.84 7.8

Figure 4 shows the TGA curves obtained for SP-MIP and SP-NIP, which are aimed at
determining the response of these materials to temperature changes and calculating the
content of the organic shell covering the surface of the core functionalized Fe3O4 [46]. Both
the SP-MIP and SP-NIP exhibited similar behavior, and the total process of thermal decom-
position occurred in two stages. The first weight loss (−15% SP-MIP and −25% SP-NIP)
occurred in the temperature range of 30–140 ◦C; this was attributed to eliminating water
physically adsorbed in the polymer. The second weight loss occurred in the temperature
range of 320–500 ◦C; this loss (−50% in both) was attributed to the elimination of volatile
substances and the combustion of organic compounds [47,48]. The assessment of the second
weight loss leads us to the conclusion that only 50% of the mass of the SP-MIP and SP-NIP
represents the adsorbent polymer, while the remaining 50% is the core (functionalized
magnetite SNP).

Scanning electron microscopy (SEM) was used to examine the surface morphologies
of the constructed material. Figure 5 shows that images from the micrographs indicated
that SP-MIP was composed of sphere-shaped particles and had a greater porosity when
compared with SP-NIP. Moreover, the surface of the produced SP-MIP has improved sites
and a unique structure rougher texture, providing a greater surface area and porosity
for the recognition of the target compound. In Figure 5a, we can see that the magnetite
NPS has a diameter between 8 and 10 nm. In Figure 5b, the magnetite is protected and
surrounded by a thick layer of SiO2, in which it can be seen that the diameter has changed
considerably. The particles, completely covered with TEOS and polymerized, reached a
diameter of up to 300 nm, having the shape of the almost perfect sphere as discussed by the
Stöber synthesis [42]. Figure 5c shows Fe3O4@SiO2 modified with MPS that have almost
maintained their spherical shape but have increased their size to approximately 500 nm.
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Figure 5. SEM Images of the synthesized nanomaterials: (a) Fe3O4—NPS; (b) Fe3O4@SiO2;
(c) Fe3O4@MPS; (d) SP-MIP.

The FTIR spectrum (Figure 6) of Fe3O4-NPS shows two characteristic peaks at 590 cm−1

and 1075 cm−1, related to Fe-O stretching vibration in tetrahedric sites. The bands near
3200 cm−1 and 1600 cm−1 refer to the O-H stretching vibration and FTIR spectrum of
SP-MIP and SP-NIP) indicating that the surface after polymerization has changed since
a wide and broad peak appears between 3100 and 3500 cm−1 corresponding to the N-H
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bonds of a primary amide of the polyacrylamide formed. The peak is better defined in
1637 cm−1 of the vibration of C=O. The weak peaks at 1120 and 1213 cm−1 belong to the
C-N bands.
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3.3. HPLC-UV Analysis of AMX

The retention time for AMX was around 1.7 min under the conditions described
in Figure 7a. The calibration curve for AMX exhibited a linear range of 5–30 mg L−1

with R2 of 0.9996; the limits of detection (LOD) and quantification (LOQ), defined as
LOD = 3 × SD/slope and LOQ = 10 × SD/slope, obtained from the calibration curve were
0.147 and 0.491 mg L−1, respectively (Figure 7b) [49]. For the LOD and LOQ equations,
SD (lowest concentration) is the standard deviation of the (above) baseline noise, which is
typically three times the noise level; and LOQ is defined as the lowest amount of analysis
that can be reproducibly quantified above the baseline noise [50].
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3.4. Optimizaion of SP-MIP Adsorption

Based on the structure of AMX, in Figure 8, one can predict the occurrence of in-
teractions, such as hydrogen bonding with the adsorbent, leading to the adsorption and
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subsequent removal of AMX from the solution. AMX can be found in different forms: when
the molecule accepts a proton, forming a cation (AMX+) at a pH level lower than 2.68; in
molecular form (AMX) at pH between 2.68 and 7.49 (pKa2 = 7.49) in aqueous solution; and
in anionic form (AMX1−) at pH between 7.49 and 9.63 (pKa3 = 9.63). Additionally, AMX
exhibits a higher negative charge (AMX2−) in solutions at pH values above 9.63 when the
molecule loses one or two protons [51,52] (Figure 7a).
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Figure 8. Amoxicillin (AMX) Ionized forms with different pKa values.

The amount of MIP influences the adsorption of AMX, as shown in Figure 9a. The
value of Qe increases rapidly with the increase of SP-MIP up to 6 mg, and higher doses
of SP-MIP are found to decrease the capacity of the adsorption of AMX; this may be due
to the agglomeration of the adsorbent in the aqueous solution when it is present in high
doses. With the application of 6 mg of polymers, one notices the expected differences in
terms of the behavior of the MIP and SP-MIP and the NIP and SP-NIP (Figure 9b).
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Figure 9. Results obtained from the optimization of adsorption on SP-MIP and SP-NIP with (a) pH effect,
(b) polymer mass effect, (c) AMX concentration effect, and (d) time. All measurements were carried out
in triplicate. Table 3 outlines the optimal conditions obtained for the AMX adsorption process.
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The binding efficiency of AMX on the SP-MIP and SP-NIP at 25 ◦C can be found in
Figure 9c. It is obvious that as the concentration of AMX increases, the adsorption of AMX
on the SP-MIP and SP-NIP increases. The capacity of AMX adsorption of the SP-MIP was
found to be higher than that of SP-NIP; this is attributed to the imprinting cavities of the
SP-MIP and its high affinity binding sites, which were generated during the cross-linking
reactions. The results obtained from the adsorption analysis show that an increase in
the AMX concentration from 5 to 30 ppm (10 mg SP-MIP/2 mL) leads to an increase in
the adsorption capacity, which is attributed to the availability of active sites during the
adsorption process. At the concentration level of 30 ppm, there is a significant change
in slope, which indicates a change in the adsorption trend due to a possible saturation
(Figure 9c). At this point, one notices the expected differences between the behavior of the
SP-MIP and the SP-NIP.

Table 3. Optimal conditions for the Amoxicillin (AMX) adsorption process.

Parameter Value

pH 7.0

Polymer mass 6.0 mg

AMX concentration 10 mg L−1

Adsorption time 90 min

3.5. Adsorption Isotherms

Figure 9d presents the adsorption kinetic curves of the SP-MIP and SP-NIP in the
presence of 10 mg L−1 AMX solution, at pH 7, at room temperature; as can be observed,
the adsorption capacity of the polymeric materials increases over time up to 90 min, after
which it reaches an equilibrium. The adsorption capacity of SP-MIP was approximately
twice that of SP-NIP; this can be attributed to the greater surface area exhibited by SP-MIP,
which is attributed to the cavities formed when the polymeric material was subjected to
molecular imprinting during the synthesis.

The results obtained from the adsorption process were plotted using three isotherm
models: Langmuir, Freunlich, and SIPS; the parameters calculated in each case are shown
in Table 4. As can be observed, the SIPS model exhibited a better correlation (R2 = 0.989
for SP-MIP and 0.999 for SP-NIP); this model combines the Langmuir model and the
Freundlich model. Based on the result, it can be concluded that our materials have binding
site heterogeneity, assumed to predict the heterogeneity of the adsorption systems and
limitations associated with the increased concentrations of the adsorbate of the Freundlich
model (10,21). The constant β values obtained for SP-MIP and SP-NIP were 1.73 and 2.91,
respectively; this shows that the system exhibits heterogeneity values greater than 1.00.

Table 4. Experimental results were based on Linear fitting for the Langmuir, Freundlich, and SIPS
isotherm models.

Qmax (mg g−1) SP-MIP SP-NIP

Langmuir a
Ka (L mg−1) 12.61 ± (0.0618) 13.42 ± (0.059)

R2 8.37 × 10−3 ± (1.03) 7.87 × 10−3 ± (1.08)
Qmax (mg g−1) 0.114 0.104

Freundlich b
Ka (mg1−β Lβ g−1) 0.107 ± (0.091) 0.0243 ± (0.276)

β 0.95 ± (0.079) 1.27 ± (0.235)
R2 0.960 0.850

SIPS c

Qmax (mg g−1) 2.76 ± (0.36) 1.35 ± (0.035)
Ka (L µmol−1) 0.0118 ± (0.0055) 0.0011 ± (3.98 × 10−4)

β 1.73 ± (0.28) 2.91 ± (0.175)
R2 0.989 0.999
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3.6. Selectivity

One of the key aspects of the SP-MIP is that the selectivity is directly attributed to
the binding sites obtained during the synthesis. The results obtained from the selectivity
study are shown in Figure 10; the parameters used for the quantitative determination of
the selectivity of the proposed SP-MIP are presented in Table 5.

The first thing that can be highlighted is that in the SP-MIP, the imprinting factor (Ifactor)
was, in all cases, higher for the AMX, reflecting the improvement in selectivity derived
from molecular imprinting. Furthermore, this outcome (higher Ifactor) also shows that the
proposed SP-MIP exhibits specific recognition properties that make it highly selective
toward AMX in the presence of various possible interferents.
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The first thing that can be highlighted is that in the SP-MIP, the imprinting factor 

(Ifactor) was, in all cases, higher for the AMX, reflecting the improvement in selectivity de-

rived from molecular imprinting. Furthermore, this outcome (higher Ifactor) also shows that 

the proposed SP-MIP exhibits specific recognition properties that make it highly selective 

toward AMX in the presence of various possible interferents. 
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Figure 10. Profiles of the results obtained from the selectivity analysis conducted in this study using
optimal conditions.

Table 5. Selectivity parameters for amoxicillin removal (SP-MIP and SP-NIP) using optimal conditions.

Interferent Kd-SP-MIP
(mL g−1)

Kd-SP-NIP
(mL g−1) S Ifactor KSR

Amoxicillin 69.79 11.97 - 5.83 -
Uric acid 22.983 5.33 3.04 4.31 1.35
Caffeine 16.094 14.674 4.34 1.10 5.3

Ciprofloxacin 10.360 9.483 6.74 1.09 5.35
Urea 16.970 17.372 4.11 0.97 6.01

3.7. Real Sample

The SP-MIP was used to determine the amount of AMX adsorbed from real samples,
including tap water and river water fortified with 30 ppm of AMX under the optimum con-
ditions evaluated in the previous tests conducted in this study. The analysis in real samples
was performed in triplicate, and the AMX present in the samples was calculated using the
calibration curve. Table 6 shows the recovery percentages obtained in the quantification
of AMX, which were 94.3% on average; this result shows that the synthesized material is
a suitable and efficient alternative tool for extracting AMX in these matrices without the
need for pretreatment.
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Table 6. % Recovery from superparamagnetic Imprinted polymer (SP-MIP) in the analysis of regional
river and tap water and two types of amoxicillin pills. Standard deviation for n = 3.

Samples AMX Added (ppm) % Recovery

Tap water
(Laboratory, Lima, Perú) 30 94.43 ± 0.13

River Water
(Puquio, Huancayo, Perú) 30 92.82 ± 0.14

Amoxicillin pills (generic formulation) 30 95.30 ± 0.02

Amoxicillin pills (Commercial formulation) 30 94.99 ± 0.13

4. Conclusions

The present study reported the development of magnetite superparamagnetic nanopar-
ticles (SNP) and the synthesis of superparamagnetic molecularly imprinted polymer
(SP-MIP) with a core-shell structure for the selective detection of AMX in real samples.
Compared with the non-imprinted polymer and other components from the literature, as
shown in Table 7, the SP-MIP demonstrated a significantly higher capacity and LOD for
AMX. Selectivity adsorption tests demonstrated that SP-MIP is highly selective for AMX in
the presence of other interfering molecules. The results obtained from applying SP-MIP
using HPLC for the quantification of AMX in samples of tap water, river water, and drugs
pointed to an average recovery percentage of around 94.3%. The proposed mag-MIP extrac-
tion method exhibited simplicity, rapidity, and satisfactory selectivity. Based on the findings
of this study, one can conclude that the proposed SP-MIP is a novel efficient alternative
tool that can be used for the effective determination of AMX in aqueous matrices.

Table 7. Comparative study of the fabricated material with the literature for Amoxicillin (Amx).

Material Analyte/
Real Sample

LOD/
% Recovery Ref.

MIP coated on CdTe
quantum dots

Amoxicillin/
egg, milk, and honey

0.14 µg L−1/
85–102%

[53]

MIP grown on
MWCNT surface

Amoxicillin/
milk and honey

8.9 × 10−10 mol L−1/
88–96%

[54]

Magnetic MIP—CPE
Sensor

Amoxicillin/
Capsule

0.26 × 10−9 mol L−1/
98.8 and 103.2%

[55]

Magnetic MIP—CPE
Sensor

Amoxicillin/
milk and river water

0.75 × 10−6 mol L−1/
96–100%

[8]

Hybrid MIP Amoxicillin/
Tap water

73 × 10−12 mol L−1/
93–96%

[56]

This work Amoxicillin/river water,
tap water, and pills

0.147 mg L−1 or 4.02 × 10−7

mol L−1/93–95%
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50. Üstündağ Okur, N.; Çağlar, E.Ş.; Yozgatlı, V. Vorikonazol Etken Maddesi ve Farmasötik Formülasyonları Için HPLC Yönteminin
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