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Abstract: Lithium–ion batteries are well established as traction batteries for electric vehicles. This has
led to a growing market for second-life batteries that can be used in applications like home energy
storage systems. Moreover, the recyclability and safe handling of aged or damaged cells and packs
has become more important. While there are several indicators, like state of health (SOH), state of
power (SOP), or state of safety (SOS), which describe the state of a battery before its defined end of
life (EOL), there is no consistent classification methodology by which to describe the usability of a
cell or pack after its EOL is reached. The proposed state of usability (SOU) provides a new indicator
that accounts for the usability for second life, recyclability, and possible required safety handling of
a lithium–ion battery after its first intended life cycle. This work presents a decision tree method,
which in turn leads to five discrete usability levels enabling a fast and rough determination of the
SOU for practical use. Further, a calculation methodology for reasonable continuous regions of the
SOU is proposed. Both methods are based on a literature-based rating of all of the relevant defect
and aging mechanisms displayed in a risk matrix. Finally, some experimental methods that can be
used for SOU determination are proposed. The developed methodology and the hands-on approach
using a decision tree are well-suited for real world application in recycling companies and battery
test laboratories.
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1. Introduction

Nowadays, lithium–ion batteries are well established as traction batteries for electric
vehicles (EVs) [1,2]. Along with this comes a growing demand for second-life applications,
recycling processes and the safe handling of aged battery cells and packs.

There are several well-known indicators for the state of batteries in general and lithium–
ion batteries in particular. The state of charge (SOC) indicates the remaining discharge
capacity of the cell. The state of health (SOH) indicates the remaining capacity of the cell in
relation to its initial capacity [3]. The state of power (SOP) describes the power performance
of the battery and indicates the retrievable maximum power of the battery within a certain
time span. Furthermore, a state of function (SOF) is presented in the literature and is
usually defined similarly to the SOP [4–6]. The common range for these indicators is from
0 to 1 or 0% to 100% respectively.

All these indicators possess limited significance when it comes to the categorization of
used batteries or battery packs in terms of their usability for second-life applications, their
readiness for recycling or possible safety issues caused by their past usage.

Cabrera-Castillo et al. proposed the calculation of a state of safety (SOS) [7] to account
for the failure probability of a cell without considering a specific operational state. The SOS
can be used to prevent battery abuse and may also be applicable for other energy storage
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systems. However, the SOS does not provide any information about the usability of the
battery for second-life applications or recycling.

This work introduces the state of usability (SOU), which enables the categorization of
batteries and battery packs regarding their usability for second-life applications, recycling,
and possible safety hazards. This new metric also ranges from 0 to 1, i.e., from 0% to
100%. The aim is to establish an indicator that is able to classify battery packs and cells
in miscellaneous conditions. The SOU is intended to be used by automotive engineers,
recycling companies and even firefighters when determining the proper handling of a
battery. Recycling companies, in particular, often face the decision as to whether or not a
battery is fit for recycling or second life usage. This decision has a high economic relevance
for the companies and can be supported by a proper metric describing the usability state of
the battery or battery system. A direct comparison between the information contained in
each indicator is shown in Table 1.

Table 1. Comparison of well-known indicators and SOU regarding their information content.

Feasible Information On SOC SOH SOP/SOF SOS SOU

Current battery state
√

✗ ✗ ✗ ✗

Degradation ✗
√ √ √ √

Safety ✗ ✗ ✗
√ √

Recyclability ✗ ✗ ✗ ✗
√

Second life usability ✗ ✗ ✗ ✗
√

2. Derivation of the State of Usability

The usability of a battery cell or pack can generally be divided into three sub cate-
gories [8]:

• Second life usability;
• Recyclability;
• Limited recyclability after required safe handling.

The first category includes batteries that are directly (e.g., usage of full batteries to
replace damaged batteries in an identical system) or indirectly (implementing full batteries
in a new system) usable for second life application. The second category includes all
batteries that have reached their defined end of life (EOL) with an SOH < 80% [9] and
that are, for some reason, not suited for a second life application. Possible reasons include
mechanical defects and connection faults. The third category includes all batteries that are
suited for recycling after proper and safe handling, i.e., batteries that are at risk of catching
fire or where the safety state of the cell or pack is not directly identifiable. This also includes
possible pollution of the materials, e.g., caused by a fire.

Saxena et al. [10] have investigated the influence of SOH on second life usability. In
contrast with the usual definition of EOL, it has been shown that EV batteries often still
satisfy the typical needs of people’s everyday driving habits. Hence, reaching the standard
EOL does not necessarily disqualify batteries from second-life use. Therefore, an SOH
smaller than 0.8 only limits the applicability in high energy demanding applications. The
same applies for an SOP smaller than 0.8 for high power demanding applications [11].

The existing usability definitions are therefore not appropriate for the classification of
aged or damaged batteries. A more detailed approach is necessary. Thus, in the following
the SOU is introduced.

The state of usability of a battery indicates in which way the battery and its components
may be reused or recycled after their previous usage. The aim of this work is twofold. First,
a general and broad approach is presented and, second, a methodology is provided for a
more precise determination of the SOU for second life applications, taking into account the
strong dependence on the intended further use of the battery.
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To determine the SOU, it is necessary to account for all relevant defect and aging
mechanisms, including their impact as well as their likelihood. Generally the three main
categories are mechanical, thermal and electric defects [9]. Figure 1 shows a risk matrix that
categorizes the most common and relevant defect and aging mechanisms that are essential
to identify when determining the usability of a battery. The risk matrix displays how likely
the mechanism is to occur (y-axis) and how severe the impact on the cell safety is (x-axis).
It contains the following mechanisms [12]:

1. External

a. Sensor faults (SF)
b. Cell connection faults (CCF)
c. Cooling system faults (CSF)

2. Internal:

a. Overcharge (OC)
b. Overdischarge (OD)
c. Internal short circuit (ISC)
d. External short circuit (ESC)
e. Overheating (OH)
f. Accelerated degradation (AD)
g. Thermal runaway (TR)
h. SEI growth (SEI)
i. Lithium plating (LP)
j. Electrolyte leakage (EL)
k. Open current interrupt device (CID)
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Note that SEI growth is an inevitable mechanism that can be quantified by the rising in-
ternal resistance, which is the dominating degradation effect caused by the SEI growth [13].
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Furthermore, mechanisms like EL, TR, or an open CID are classified as binary, and thus
no continuous range is applicable. The proposed ratings for likelihood and impact for all
mechanisms in Figure 1 are based on a literature review considering the related effects
and possibilities of each mechanism. In the following, the terms high, moderate, and low
are specified:

- A high impact means that an occurrence leads to a cell with limited recyclability
and a safety risk. This applies for mechanisms like a thermal runaway, where a
contamination of the electrode active materials is inevitable or a severe overcharge
that usually also leads to a thermal runaway of the cell [14,15].

- A moderate impact means that an occurrence leads to a cell that does not require safety
handling but the usability for second life may be limited to low power demanding
applications. This applies for mechanisms like sensor or cooling system faults, where
the single battery is usually not damaged and may be used in a newly built second
life battery pack [12,16].

- A low impact either means that the cell is usually not affected by the mechanism
(e.g., cooling system faults are usually detected by the BMS and do not severely
affect the single cells) or that the effect is limited and does not necessarily limit the
general usability (e.g., mild capacity losses due to conditions causing accelerated
degradation) [12].

- A high likelihood means that the mechanism is inevitable or arises in almost ev-
ery lithium–ion battery system, e.g., this applies for SEI growth [14] and lithium
plating [13].

- A moderate likelihood means that the mechanisms should normally not occur but
may occur due to incorrect handling. For instance, this might be the case for a cell that
is exposed to AD mechanisms such as high ambient temperatures [17].

- A low likelihood means that those mechanisms are usually prevented by a battery
management system (BMS) or other safety barriers like CIDs, which are usually not
prone for faults [17–19]. This applies for overcharges, which are typically prevented
by voltage control [12].

The risk of each mechanism rises with an increasing likelihood and an increasing
impact. The grey arrow in Figure 1 displays this relation. A mechanism in the upper right
corner contains the greatest risk (high likelihood and high impact), whereas a mechanism
in the lower left corner contains the smallest risk (low likelihood and low impact).

The risk matrix and its rating of impact and likelihood of a defect or aging mechanism
is used to quantify the influence on the usability of the battery cell or pack. Now, a metric is
introduced, which divides the continuous range from 0–1 into five regions, and therewith
roughly defines the usability of the battery cell or pack. The division is based on the practical
application of the approach in the second life and recycling stream. Thereby, each region
can be interpreted as a specific case for further usage or handling of the battery. Details
about necessary investigations and the corresponding general handling classification can
be found in [20,21]. Here, each region corresponds to a small range of the related state of
usability that can be used as an indicator for a different treatment in the afterlife of the
battery.

❖ 1 ≥ SOU > 0.8: Fully usable for second life applications, only mild capacity or power
losses (SOH and SOP > 80%).

❖ 0.8 ≥ SOU > 0.6: Usable for certain second life applications, e.g., with limited power
demands.

❖ 0.6 ≥ SOU > 0.4: Not usable for second life, still fully recyclable.
❖ 0.4 ≥ SOU > 0.2: Limited recyclability because of unknown components or safety

issues due to defects (e.g., CID is open, but cell did not catch fire), minor active
material contamination or mechanical damage on the cell casing.

❖ 0.2 ≥ SOU ≥ 0: Very limited recyclability, safe handling is required, severe active
material contamination.
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The division into five equally spaced intervals for the SOU is to be understood as a
suggestion, i.e., that this can be adapted for particular use cases where specific information
is at hand. In the following, the methodology regarding determination and calculation of
the above classification is presented.

3. Classification Scheme

To classify the battery SOU, the following two-step methodology is proposed. This
methodology is in accordance with the impact rating of the defect and aging mechanisms
as shown in Figure 1. In a first step, a rough classification into the five discrete usability
levels, introduced in Section 2, is carried out by employing a decision tree. For practical
applications, this often yields a sufficient classification regarding appropriate further battery
handling and can be performed quickly. In a second step, a calculation method is proposed
that allows for a more precise determination of the SOU within the upper two usability
levels.

3.1. Decision Tree

In practice, the available information about a used battery or battery pack is often
limited [8]. For a fast and practical estimation of a battery’s usability, a decision tree is
introduced that has five possible outcomes. These five classes are separated by the deduced
treatment of the battery or system and are described above in Section 2. Figure 2 depicts the
decision tree. The first step for classifying used batteries is to check for visible mechanical
damage. If this is the case and either a thermal runaway or electrolyte leakage has occurred,
safe handling is required. Thus, the battery is assigned the lowest class on the bottom
right, corresponding to an SOU range from 0 to 0.2. When only corrosion has occurred,
the recyclability of some materials may be limited but safe handling is not required. If
none of the mentioned defects appear, but the CID is open and hence the flow of current is
interrupted, the cell is also counted as limited recyclable. Hence, the second lowest class
is assigned with an SOU range from 0.2 to 0.4. If the CID is still closed and no visible
defects are detectable or only the cell casing is damaged but did not visibly affect the cell
materials, the battery is fully recyclable. If no mechanical damage was detected but an
overcharge or overdischarge occurred, the cell is also fully recyclable but not usable for
second life applications. The same applies for detected internal short circuits. In this case,
the medium class is assigned with an SOU range from 0.4 to 0.6. If none of the above
damage has occurred, and depending on the desired second life application, the SOP and
SOH values need to be checked. Note that effects like buckling of electrode particles lead
to a decrease in SOH and SOP and are therefore not separately covered in the decision
tree [22]. If the SOH and the SOP, or one of both values, are below 0.8, the battery is usable
for second life applications with corresponding limited power or capacity demands. If
both the SOH and the SOP are below 0.8, the battery is usable for second life applications
with correspondingly limited power and capacity demands. This relates to the second
highest class, with an SOU range from 0.6 to 0.8. If SOH and SOP are both greater or equal
to 0.8, the battery is fully deployable in second life applications, and the highest class is
assigned, with an SOU range from 0.8 to 1. The classification of the case SOH > 0.8 and
SOP ≤ 0.8, (or vice versa for SOP > 0.8 and SOH ≤ 0.8), depends on the intended second
life use case. For applications with low power demands (or low capacity demands), the
battery can nevertheless be assigned to the highest class, since all requirements are fully
met. If this does hold, the battery is assigned to the second highest class.
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The choice of 0.8 as threshold for SOH and SOP is also to be understood as a suggestion
based on the usual boundaries for these values and can be adapted if specific knowledge of
a certain use case is at hand.

To showcase the practical applicability of the decision tree for SOU determination, two
exemplary test scenarios are presented.

#1: Application as home energy storage for PV
Assunção et al. modelled the usage of used traction batteries from EVs as residential

energy storage for a photovoltaic (PV) plant [11]. They showed that the power demand of a
residential energy storage is far below the power demand of an EV. Hence, when assessing
the SOU of a used traction battery for this application, it is mainly the SOH that is relevant
when reaching full second life usability.

We assume a battery with the following indicators:

- No visible mechanical damage.
- CID is not open.
- No overcharge or deep discharge.
- No detected internal short circuits.
- SOH = 0.85.
- SOP = 0.72.

Following the logic of the proposed decision tree from Figure 2, with the threshold
choice of 0.8 for SOH and SOP, the SOU is in the range of 0.8–1 and thus implies full second
life usability for the desired use case.

#2: Usage as off-grid PV charging station
Tong et al. have proposed the application of used EV battery packs as off-grid PV

powered charging stations for EVs [23]. Usually, the demanded capacity for such an
application can be easily met by choosing the number of second life packs accordingly. On
the other hand, for providing the possibility of fast charging for EVs, the SOP of the battery
pack needs to meet certain requirements. In our exemplary use case, we assume that a
minimum SOP of 0.9 is required.

We assume a battery with the following indicators:

- No visible mechanical damage.
- CID is not open.
- No overcharge or deep discharge.
- Detection of internal short circuits.
- SOH = 0.65.
- SOP = 0.93.



Batteries 2024, 10, 57 7 of 13

While all other indicators suggest that the battery pack is suitable for its desired
application, the detection of internal short circuits leads to a medium SOU classification
in the range of 0.4–0.6. Hence, the battery is fully recyclable but is not appropriate for the
desired use case.

3.2. Calculation of SOU for Second Life Application

Similar to the SOS calculation by Cabrera-Castillo et al. [7] we assume a reversed
proportionality between the SOU and the defect and aging mechanisms of the battery:

fusability(x) =
1

d(x) + 1
(1)

where fusability is the function describing the SOU and d(x) is a function describing the
occurred defects and aging mechanisms. The vector x includes all relevant variables that
represent the defect and aging states of the battery. By adjusting the denominator via
d(x) ∈ [0, ∞), the SOU values are located in the interval from 0 to 1.

In contrast with SOH and SOS, the introduced SOU does not only have one specific
lower boundary value, like the EOL at 0.8 for SOH or the safety threshold at 0.8 for
the SOS [7]. Further, because, for example, the recyclability is bound to specific criteria
defined by recycling companies, the definition of d(x) for calculating the SOU needs to
be a piecewise-defined function to account for classification into the five discrete usability
levels of Section 2. Moreover, only the first two regions between 1 and 0.8 and between
0.8 and 0.6 have a continuous physical meaning, as they are determined by SOH and SOP.
Hence, for the lower three classes discrete usability values are sufficient, as they are directly
related to a specific treatment of the battery.

For the high-level grouping into the five levels, the following relevant classification
criteria are introduced:

- Mechanical damage (MD) ∈ {0, 1}.
- Thermal runaway (TR) ∈ {0, 1}.
- Open CID (CID) ∈ {0, 1}.
- Overcharge/overdischarge (OC/OD) ∈ {0, 1}.
- Electrolyte leakage (EL) ∈ {0, 1}.
- Corrosion (CR) ∈ {0, 1}.
- Internal short circuits (ISC) ∈ {0, 1}.
- State of health (SOH) ∈ [0, 1].
- State of power (SOP) ∈ [0, 1].

The five classes can be defined by the disjunctive normal form of the decision tree,
using the binary switching variables ai ∈ {0, 1}, i = 1, . . . , 5:

MD = 0 ∧ CID = 0 ∧ [OC = 0 ∧ OD = 0] ∧ ISC = 0 ∧ [SOH ∧ SOH > 0.8] −→ a1 = 1
MD = 0 ∧ CID = 0 ∧ [OC = 0 ∧ OD = 0] ∧ ISC = 0 ∧ [SOH ∨ SOH ≤ 0.8] −→ a2 = 1
[MD = 0 ∧ CID = 0 ∧ ([OC ∨ OD = 1] ∨ ISC = 1)]

∨[MD = 1 ∧ EL = 0 ∧ CR = 0 ∧ CID = 0 ∧ ([OC ∨ OD = 1] ∨ ISC = 1)] −→ a3 = 1
[MD = 0 ∧ CID = 1] ∨ [MD = 1 ∧ TR = 0 ∧ EL = 0 ∧ CR = 1] −→ a4 = 1
[MD = 1 ∧ TR = 1] ∨ [MD = 1 ∧ TR = 0 ∧ EL = 1] −→ a5 = 1

When one of the five cases apply, the corresponding switching variable ai is set to one,
while the remaining switching variables are set to zero. Note that the above definitions
for a1 and a2 are quite restrictive, i.e., only batteries with SOH and SOP larger than 0.8 are
assigned to the highest SOU class. In case the specific application does not require high
capacity and power demands, these definitions can be adapted accordingly.

Equation (1) becomes:

fusability(x; ai) =
1

d(x; ai) + 1
with d(x; ai) = ∑5

i=1di(x)·ai (2)
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where the values of the di(x) are in the following distinct intervals or take on the following
fixed values, respectively:

d1(x) ∈
[

0,
1
4

)
, d2(x) ∈

[
1
4

,
2
3

)
, d3(x) = 1, d4(x) =

7
3

and d5(x) = 9. (3)

The d1(x) and d2(x) terms account for the defect mechanisms within the first two
usability levels corresponding to second life applicability. The interval for the defect and
aging function d1 from

[
0, 1

4

)
, i.e., for the highest SOU class, corresponds to the interval

fusability ∈ (0.8, 1 ]. The interval
[

1
4 , 2

3

)
for d2, corresponding to the second highest SOU

class, is related to the interval fusability ∈ (0.6, 0.8 ]. The three fixed values for d3, d4 and
d5 correspond to the center values of the corresponding ranges for the lower three SOU
classes, i.e., d3(x) = 1 yields fusability = 0.5, d4(x) = 7

3 yields fusability = 0.3, and d5(x) = 9
yields the usability value of fusability = 0.1.

The vector x ∈ Rn consists of its elements xi, with i = 1, ..., n, reflecting the n consid-
ered defect and aging mechanisms. Typically, the value of an element xi is between 0 and
1, with 0 as no defect, and 1 for a full defect. Intermediate values between 0 and 1 might
also be reasonable, depending on the specific mechanism. Suitable possible variables for
considered defects and aging xi are, e.g., 1-SOP, 1-SOH, 1-SOS, CR, EL, ISC, MD, CID, OD,
OC, or other suitable binary indicators, such as SOP < 0.7 or SOH < 0.9. To map the vector
x to the corresponding intervals for the first two defect and aging functions d1 and d2, an
additional variable y is introduced, which is a linear combination of the single defects xi,
i.e., a weighted average of the vector x:

y(x; bi) = ∑n
i=1xi·bi, (4)

with non-negative weighting factors 1 ≥ bi ≥ 0, which sum up to one, i.e., ∑i bi = 1. As
the values for the single xi range from 0 to 1, the same holds for the resulting range of
the variable y. This weighting variable y can now be used for mapping onto the intervals
specified in Equation (3). In general, different suitable shapes for di(x) can be applied, as,
e.g., inverse tangents, or sigmoid or exponential decay functions. Here, the use of properly
scaled sigmoid functions are employed, which are commonly used activation functions [24].
One variant of the sigmoid function is the logistic function, with its general adapted form
given by:

d
(∼

y
)
= c + d · 1

1 + e−k·∼y
(5)

with real parameters c and d, and a scaling parameter k > 0. The range of d
(∼

y
)

is the
interval (c, c + d) or (c + d, c), depending on the sign of d. For proper application of the
sigmoid function in (5) a mapping from y ∈ (0, 1) to

∼
y ∈ (−∞, ∞) must be performed.

Here, the simple mapping function
∼
y = −

(
1
y + 1

y−1

)
is chosen, which monotonically maps

the interval [0, 1] to the complete real axis with y = 0.5 corresponding to
∼
y = 0, and y → 1

corresponding to
∼
y → ∞ . Using the sigmoid function as the basis, the specific defect

functions d1(y) and d2(y) are obtained by adjusting the parameters c and d in Equation (5),
such that the limits from Equation (3) are met:

d1(y) =
1
4
· 1

1 + e−k·∼y
, d2(y) =

1
4
+

5
12

· 1

1 + e−k·∼y
, (6)

Figure 3 shows exemplary SOU plots for the two continuous regions of second life
usage. Here, the sigmoid activation function was used for calculating d1(y) and d2(y).
Using different scaling parameters, k yields different curves. The value y = 0 on the left
corresponds to a negligible defect or aging effect, with respect to all actual considered
mechanisms, and thus is related to the largest SOU values of 0.8 for d2 and 1 for d1.
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The proposed approach is now applied to test case #1 from Section 3.1. The SOH is
assigned to x1 and the SOP is assigned to x2. Further, x3 and x4 are introduced as lost
capacity and power as x3 = 1− SOH and x4 = 1− SOP, respectively. The weighting factors
are b1 = 0.6, b2 = 0.1, b3 = 0.2, and b4 = 0.1. This leads to y = 0.158 and d1(ỹ) = 0.0015.
The SOU can now be calculated by:

fusability(x) =
1

0.0015 + 1
≈ 99.85%

This value changes with varying weightings and scaling factors depending on the
specific application case.

4. Experimental SOU Determination

There are numerous well-established ways to determine the necessary indicators
for the SOU. In the following, we categorize the most relevant indicators and propose
some state-of-the-art determination methods. Note that for completely unknown batteries
the identification of the cell chemistry may also be important for determining the listed
indicators. Furthermore, a visual inspection should always be carried out in the first place
in order to detect visible mechanical damage like traces of a thermal runaway or corrosion.
Figure 4 depicts the basic procedure by which to obtain the SOU of an unknown battery.
Each individual block in Figure 4 may contain other experimental techniques depending
on the use case. The SOU estimation can be carried out using the decision tree method, the
calculation method, or other heuristics.
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4.1. State Estimation

To ensure that the battery is currently not in a state of overcharge or deep discharge,
the determination of SOC is crucial. Ampere counting, which is the most basic approach for
SOC estimation, is not suited for systems where the initial SOC is unknown and is prone
to measurement errors. Hence, a better approach would be a lookup table method using
either voltage measurements or impedance responses from electrochemical impedance
spectroscopy (EIS) for estimating the SOC [25]. The drawback of these methods is that,
usually, parameterization data from the exact same battery type is necessary for valid
results. The most common and well-established method for SOC estimation in real world
applications is the model-based approach, e.g., with equivalent circuit models (ECM) [26]
or electrochemical models [27]. The latter ones, in particular, are also extensively used
for SOH estimation, usually in combination with Kalman filters, particle filters, or state
observers [28]. Similar approaches have been presented and tested for SOP estimation [29].
Furthermore, Yang et al. have presented a model-based Kalman filter approach to detect
internal soft short circuits [30].

Finally, open circuit voltage (OCV) measurements, current profiles or driving cycles
may be applied to the battery in order to estimate its states via model-based approaches [25].

4.2. Defect and Aging Mechanism Detection by EIS

As mentioned above, EIS can be used to determine states like SOC, SOH or SOP in
lithium–ion batteries [31,32]. Moreover, the impedance response and its corresponding
metrics, e.g., total harmonic distortion (THD) or distribution of relaxation time (DRT), can
also be analyzed for the determination of aging and defect mechanisms in batteries and
for state estimation purposes [33–36]. Furthermore, Kim and Kowal have used the THD to
identify over-discharged cells in a battery pack [35]. Ongoing research in this field has led
to several new analysis and measurement techniques [33].
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4.3. Non-Invasive Defect Detection

On the experimental side, several non-invasive detection methods have been studied in
recent years. For identifying mechanical defects like an open CID or delaminated electrode
layers, methods like X-ray measurements and computer tomography (CT) have been
validated as well-suited methods [37–39]. The detection of triggered CIDs is particularly
crucial for a safe and fast diagnosis of batteries, as it indicates severe abuse or defects such
as overcharge, high cell pressure, or high temperature and thus immediately leads to a low
SOU classification [19].

4.4. Data-Driven Approaches

More recently, many data-driven approaches have been presented to determine battery
states [25]. For example, Li et al. have applied ensemble learning for SOH estimation [3]
and Beltran et al. have tested the suitability of different machine learning models for SOH
estimation based on partial charge/discharge events [40]. Wang et al. have presented a
fuzzy c-means clustering algorithm for SOP estimation [5]. Machine learning methods can
also be used for the detection of isolation and grading faults in battery packs, as shown by
Yang et al. [41].

Furthermore, data-driven approaches have been developed in combination with non-
invasive experimental methods. For example, Chen et al. proposed a sorting method based
on the analysis of X-ray data [42].

5. Conclusions

The state of usability methodology presented in this paper provides an approach by
which to estimate the usability of used lithium–ion batteries after their initial deployment.
The impact and proposed likelihood of relevant defect and aging mechanisms are rated
based on state-of-the-art literature. The SOU range from 0 to 1 is separated into five different
regions that are related to all basic decisions required for second life, recycling, and proper
safety handling of the battery. A practical approach using a decision tree is proposed for
determining the SOU based on a number of critical indicators and two exemplary test
scenarios are presented. Furthermore, a calculation methodology is proposed that allows
for a continuous determination of the SOU for second life applications, i.e., within the
upper two SOU levels. Finally, measuring and analysis methods for determining the crucial
parameters and necessary information for SOU determination are presented. The developed
methodology is suited for application in various fields like battery recycling and second
life assessment, battery test laboratories, and safety assessment for accident vehicles.
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