
Citation: Hussein, H.M.; Esoofally, M.;

Donekal, A.; Rafin, S.M.S.H.;

Mohammed, O. Comparative

Study-Based Data-Driven Models for

Lithium-Ion Battery State-of-Charge

Estimation. Batteries 2024, 10, 89.

https://doi.org/10.3390/

batteries10030089

Academic Editors: Fu-Kwun Wang

and Shih-Che Lo

Received: 31 December 2023

Revised: 1 March 2024

Accepted: 1 March 2024

Published: 3 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

Comparative Study-Based Data-Driven Models for
Lithium-Ion Battery State-of-Charge Estimation
Hossam M. Hussein , Mustafa Esoofally, Abhishek Donekal, S M Sajjad Hossain Rafin
and Osama Mohammed *

Energy System Research Laboratory, Department of Electrical and Computer Engineering,
Florida International University, Miami, FL 33174, USA; hhuss013@fiu.edu (H.M.H.);
mesoo002@fiu.edu (M.E.); vdone001@fiu.edu (A.D.); srafi010@fiu.edu (S.M.S.H.R.)
* Correspondence: mohammed@fiu.edu

Abstract: Batteries have been considered a key element in several applications, ranging from grid-
scale storage systems through electric vehicles to daily-use small-scale electronic devices. However,
excessive charging and discharging will impair their capabilities and could cause their applications
to fail catastrophically. Among several diagnostic indices, state-of-charge estimation is essential for
evaluating a battery’s capabilities. Various approaches have been introduced to reach this target,
including white, gray, and black box or data-driven battery models. The main objective of this
work is to provide an extensive comparison of currently highly utilized machine learning-based
estimation techniques. The paper thoroughly investigates these models’ architectures, computational
burdens, advantages, drawbacks, and robustness validation. The evaluation’s main criteria were
based on measurements recorded under various operating conditions at the Energy Systems Research
Laboratory (ESRL) at FIU for the eFlex 52.8 V/5.4 kWh lithium iron phosphate battery pack. The
primary outcome of this research is that, while the random forest regression (RFR) model emerges
as the most effective tool for SoC estimation in lithium-ion batteries, there is potential to enhance
the performance of simpler models through strategic adjustments and optimizations. Additionally,
the choice of model ultimately depends on the specific requirements of the task at hand, balancing
the need for accuracy with the complexity and computational resources available and how it can be
merged with other SoC estimation approaches to achieve high precision.

Keywords: energy storage systems; electric vehicles; state of charge; data-driven models; LSTM;
random forest regression; autoencoder neural network; artificial neural network; transformer deep
learning model

1. Introduction

Regardless of their types, energy storage systems (ESSs) are considered the backbone
of many applications nowadays. For instance, pursuing sustainable and clean energy
initiates the high penetration of renewable energy systems (RESs), forming what is now
called distributed energy resources (DERs). However, their intermittent nature necessitates
a storage system to store the surplus generated energy while covering the load demands
during periods of scarcity [1,2]. Furthermore, the need to combat the global warming crisis
brought on by the growing consumption of fossil fuels pushes governments and businesses
to switch to electric vehicles (EVs), which may run partially or entirely on batteries. In this
regard, batteries are recognized as the most common energy storage device that can be
efficiently utilized in different sectors due to their unique capacities, durability, efficacy,
and energy and power densities required by various applications. Therefore, over the
last few years, batteries have undergone a revolutionary upgrade in their characteristics,
features, performance, and capacities to align with the high demand in many sectors
for their assistance and to cover a wide range of applications with their dynamics and
variations [3].

Batteries 2024, 10, 89. https://doi.org/10.3390/batteries10030089 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries10030089
https://doi.org/10.3390/batteries10030089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0001-6726-5001
https://orcid.org/0000-0001-5369-6820
https://orcid.org/0000-0002-2586-4046
https://doi.org/10.3390/batteries10030089
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries10030089?type=check_update&version=2

Batteries 2024, 10, 89 2 of 35

Lithium-ion batteries (LIBs) stand out among the many energy storage systems be-
cause of their high power and energy densities, extended lifespan, exceptional efficiency,
and unique sustainability features in contrast to other commercial and industrial bat-
tery types [4]. As a result, maintaining the safety of LIBs is essential for increasing their
longevity, optimizing their functionality, and strengthening the system’s overall operational
capacity. Several indicators are presented to provide a detailed inside view of the batteries
to diagnose their performance, capability, aging, and degradation, including state of health
(SoH), end of life (EoL), and state of charge (SoC). In its fundamental essence, the SoC is the
present capacity status of a battery relative to its maximum charged state, while the SoH
is the battery’s nominal capacity when fully charged, contrasted with its initial capacity,
as shown in Equations (1) and (2). Conventionally, SoC attains 100% when the battery
achieves a full charge and descends to 0% upon depletion. Conversely, SoH initiates at
100% upon the battery’s manufacturing, gradually reducing to 80% at the termination of
its operational life, described as end of life (EoL). It is worth mentioning that any proper
decision during the operation of EVs and microgrids (MGs) is regularly supported by these
criteria, provided by the appropriate BMS [5–7].

SoC =
Qremaining

Q f ull
× 100% (1)

SoH =
Qnominal
Qinitial

× 100% (2)

If the battery is heavily engaged or regarded as the primary source of operation, as
in the case of electric vehicles (EVs), prolonged charging or discharging will undoubtedly
have a detrimental effect on its performance and accelerate its degradation. This might lead
to a catastrophic failure or a total outage. Hence, care should be considered when utilizing
the battery to ensure reliable and continuous performance and an extended lifespan [8].
As a crucial component of the BMS, SoC also serves as an input for several computations
performed by the BMS, including SoH, power calculations, and cell balancing [9]. Although
the SoC definition is conceptually straightforward, accurately estimating it is exception-
ally challenging. The battery’s non-linear electrochemical characteristics, coupled with
inconsistencies in cell performance and operating conditions within each battery pack,
contribute to its complexity. Moreover, these characteristics are not static; they change
with battery aging, varying temperatures, and the intricacies of charge/discharge cycles.
This dynamic nature necessitates a nuanced and continuous understanding of the battery’s
performance parameters, elevating the difficulty level in accurately assessing the available
capacity under diverse internal and external conditions [10,11].

To achieve this target, many models with different approaches have been demonstrated
and classified into three main categories, including white, gray, and black box models,
varying in their complexity, estimation accuracy, and certain knowledge of battery behavior
and performance. Considering at least one or more of the battery’s thermal, chemical,
electrochemical, and/or electrical characteristics is the foundation of white box models.
Nevertheless, these models require a thorough understanding of the non-linear behavior
of batteries to reach satisfactory levels of prediction of these factors with the battery’s
non-linearity. Moreover, the complexity of these models and the need for additional
adaptive algorithms to manipulate the battery’s non-linear characteristics stand against
their widespread use. To cope with these difficulties, gray models that employ data-driven
(DD) or machine learning (ML) techniques besides the battery characteristics have been
presented to minimize the previously mentioned obstacles. However, knowledge about
the battery’s chemistry is still mandatory to meet the requirements. Hence, data-driven,
or black box, models are presented as promising solutions that rely only on measuring
specific parameters, such as voltage, current, and temperature, and do not require delving
into batteries’ chemistry or characteristics.

Batteries 2024, 10, 89 3 of 35

In addition to the advantage of DD models of not requiring deep knowledge of
battery characteristics, they also play a crucial role in modern BMS systems with advanced
technologies such as Digital Twin (DT) [12,13]. These features motivate researchers to
investigate different architectures and models to enhance state estimation results and
improve BMS response. Several DD models have been introduced to provide accurate
SoC estimation. The architecture of these models varies from simple models, such as
linear regression approaches, to more complex models, such as long short-term memory
(LSTM) and transformer NNs, with many others in between. The estimation process can be
performed directly by integrating any of these models solely or by combining two or more
models together as a data manipulation process before the final estimation process [14–17].
The most common models include feedforward neural networks [18], recurrent neural
networks [19], fuzzy logic [20], and support vector machines [21]. However, models such
as random forest regression (RFR) [22], transformer NNs [23], LSTM, and autoencoders are
considered promising models for precise estimation results [24–27].

The main contribution of this paper is to provide a comparative study of the most
common data-driven models used in the LIB’s state-of-charge estimation to enlighten the
way for future deployment of any of these models and provide methods for model selection
and to describe the main points regarding manipulating datasets and how to improve them.
The investigation incorporates well-known models, such as linear regression (LR), neural
networks (NNs), and random forest regression (RFR), along with others that have recently
been presented, such as transformer models and LSTM. With the properties of memorizing
and attention associated with some models, such as long short-term memory (LSTM) and
transformer NNs, and feature extraction in random forest and autoencoder techniques, the
scope of this work is to test and validate these models without incorporating any noise
cancellation filters or adaptation algorithms. To address these issues, the paper is organized
as follows: Section 2 covers the state-of-charge estimation approaches in general; Section 3
delves into the proposed models and their detailed structures, features, and drawbacks;
Section 4 presents the system configurations, detailed models, and data preprocessing; the
results and discussion follow in Section 5; and the conclusions are presented in Section 6.

2. State-of-Charge Estimation Approaches

White box models are considered completely physics-based models that rely on bat-
tery characteristics, even thermal, chemical, or electrochemical, besides a certain level of
mathematical experience to build them. This category includes a variety of models, varying
in their complexity and accuracy, from ampere-hour (AH) and open circuit voltage (OCV)
models to more accurate and complex models such as equivalent circuit models (ECMs),
electrochemical models (EMs), and electrochemical impedance models (EIMs). For instance,
Rint, Thevenin, and Partnership for a New Generation of Vehicles (PNGV) are ECM models
with different structures based on electrical elements, such as resistors and capacitors, as
shown in Figure 1, to precisely emulate a battery’s actual behavior. Single-particle (SP)
and pseudo-two-dimensional (P2D) models are kinds of EM models that describe the
chemical reactions inside the battery [10,28]. To accurately estimate the SoC using any of
these models, the model’s parameters must be determined precisely, which is challenging.
Therefore, these models might be manipulated with adaptive filter algorithms or observers
to enhance their estimation performance [29–31].

The main gauging factors to differentiate among these approaches are complexity,
accuracy, and processing time, as shown in Figure 2. OCV is technically considered one of
the simplest methods of determining a battery’s SoC, and the needed relaxation time for
the battery to be chemically stable after any charging or discharging cycles is somewhat
tricky and might take several hours, which makes it suitable only for providing a general
indication if the battery is full or empty [32,33]. Similarly, an ampere-hour approach can
give acceptable results if accurate sensors are utilized. Similarly, ECM models might
need long relaxation times; however, increasing the model’s complexity, as in the PNGV
and fractional order models, will provide more accuracy in the estimation and reduce

Batteries 2024, 10, 89 4 of 35

the negative impact of OCV error [11]. In the same context, EIMs might be considered
more accurate than others, yet the sophisticated procedures needed to build accurate
models will negatively impact the processing time [34]. Furthermore, the requirement of
knowledge about chemical structure has led to the P2D model’s being considered among
the most sophisticated methods, as with the SP model, though to a lesser extent [28]. In
contrast, the noticeable enhancements in the data-driven approach have increased their
utilization. These enhancements have not only improved the existing DD models but also
the conventional white models, resulting in what are known as gray box models.

Batteries 2024, 10, 89 4 of 36

(a) (b) (c)

Figure 1. Commonly used equivalent circuit models (ECMs) for batteries: (a) Rint; (b) Thevenin; (c)
PNGV.

The main gauging factors to differentiate among these approaches are complexity,
accuracy, and processing time, as shown in Figure 2. OCV is technically considered one
of the simplest methods of determining a battery’s SoC, and the needed relaxation time
for the battery to be chemically stable after any charging or discharging cycles is some-
what tricky and might take several hours, which makes it suitable only for providing a
general indication if the battery is full or empty [32,33]. Similarly, an ampere-hour ap-
proach can give acceptable results if accurate sensors are utilized. Similarly, ECM models
might need long relaxation times; however, increasing the model’s complexity, as in the
PNGV and fractional order models, will provide more accuracy in the estimation and re-
duce the negative impact of OCV error [11]. In the same context, EIMs might be consid-
ered more accurate than others, yet the sophisticated procedures needed to build accurate
models will negatively impact the processing time [34]. Furthermore, the requirement of
knowledge about chemical structure has led to the P2D model’s being considered among
the most sophisticated methods, as with the SP model, though to a lesser extent [28]. In
contrast, the noticeable enhancements in the data-driven approach have increased their
utilization. These enhancements have not only improved the existing DD models but also
the conventional white models, resulting in what are known as gray box models.

Figure 2. Comparison of commonly used SoC estimation models for batteries.

Gray box models can be described in different ways. One of the more specific defini-
tions of their function is identifying unclear patterns of specific laws within a system based
on mathematical equations with machine learning techniques. Part of that is the descrip-
tion of the cell’s non-linearities in the equivalent circuit models (ECMs) and electrochem-
ical-based equivalent circuit models (EECMs) through resistors and capacitors using an
ensemble of NNs or prior empirical knowledge with experimental data [35–38]. Modeling
a system with insufficient or limited data using a mathematical approach defined by the
gray system theory is more general. For instance, a state-space representation can be

Figure 1. Commonly used equivalent circuit models (ECMs) for batteries: (a) Rint; (b) Thevenin;
(c) PNGV.

Batteries 2024, 10, 89 4 of 36

(a) (b) (c)

Figure 1. Commonly used equivalent circuit models (ECMs) for batteries: (a) Rint; (b) Thevenin; (c)
PNGV.

The main gauging factors to differentiate among these approaches are complexity,
accuracy, and processing time, as shown in Figure 2. OCV is technically considered one
of the simplest methods of determining a battery’s SoC, and the needed relaxation time
for the battery to be chemically stable after any charging or discharging cycles is some-
what tricky and might take several hours, which makes it suitable only for providing a
general indication if the battery is full or empty [32,33]. Similarly, an ampere-hour ap-
proach can give acceptable results if accurate sensors are utilized. Similarly, ECM models
might need long relaxation times; however, increasing the model’s complexity, as in the
PNGV and fractional order models, will provide more accuracy in the estimation and re-
duce the negative impact of OCV error [11]. In the same context, EIMs might be consid-
ered more accurate than others, yet the sophisticated procedures needed to build accurate
models will negatively impact the processing time [34]. Furthermore, the requirement of
knowledge about chemical structure has led to the P2D model’s being considered among
the most sophisticated methods, as with the SP model, though to a lesser extent [28]. In
contrast, the noticeable enhancements in the data-driven approach have increased their
utilization. These enhancements have not only improved the existing DD models but also
the conventional white models, resulting in what are known as gray box models.

Figure 2. Comparison of commonly used SoC estimation models for batteries.

Gray box models can be described in different ways. One of the more specific defini-
tions of their function is identifying unclear patterns of specific laws within a system based
on mathematical equations with machine learning techniques. Part of that is the descrip-
tion of the cell’s non-linearities in the equivalent circuit models (ECMs) and electrochem-
ical-based equivalent circuit models (EECMs) through resistors and capacitors using an
ensemble of NNs or prior empirical knowledge with experimental data [35–38]. Modeling
a system with insufficient or limited data using a mathematical approach defined by the
gray system theory is more general. For instance, a state-space representation can be

Figure 2. Comparison of commonly used SoC estimation models for batteries.

Gray box models can be described in different ways. One of the more specific defini-
tions of their function is identifying unclear patterns of specific laws within a system based
on mathematical equations with machine learning techniques. Part of that is the description
of the cell’s non-linearities in the equivalent circuit models (ECMs) and electrochemical-
based equivalent circuit models (EECMs) through resistors and capacitors using an en-
semble of NNs or prior empirical knowledge with experimental data [35–38]. Modeling a
system with insufficient or limited data using a mathematical approach defined by the gray
system theory is more general. For instance, a state-space representation can be introduced
as a gray box model that can define the relationship between the input and output of the
battery through differential equations, as in [39]. Gray Model-GM (1,1), shown in Figure 3,
and the traditional Even Gray Model-EGM (1,1) are considered the most used approaches
of gray relational analysis (GRA), and they can be used in many different applications, not
only with batteries [40–42].

Batteries 2024, 10, 89 5 of 35

Batteries 2024, 10, 89 5 of 36

introduced as a gray box model that can define the relationship between the input and
output of the battery through differential equations, as in [39]. Gray Model-GM (1,1), shown
in Figure 3, and the traditional Even Gray Model-EGM (1,1) are considered the most used
approaches of gray relational analysis (GRA), and they can be used in many different ap-
plications, not only with batteries [40–42].

Figure 3. The gray model GM (1,1) operation process [24].

Because of their versatility in managing many types of data and their ability to ade-
quately capture complicated non-linear phenomena, data-driven methods are presented,
such as fuzzy logic (FL) [43], artificial neural networks (ANNs) [44], genetic algorithms
(GAs) [45], and support vector machines (SVMs) [46]. These data-driven, or black box,
models have gained in popularity in battery modeling. Employing a huge dataset of bat-
tery measurements, these models deploy machine learning techniques to understand the
link between output variables (such as voltage and capacity) and input factors (like tem-
perature, current, and state of charge) [47]. The DD model’s capability to identify and
track a battery’s dynamics and accurately estimate the SoC has led to an increase in their
utilization, since this is considered a significant challenge with the conventional white
models. Further, data-driven algorithms can be adjusted to changing battery behavior
over time by learning from big datasets [13,48,49].

Meanwhile, data quality is crucial for accurate estimations; care should be taken dur-
ing the data collection process to improve a model’s accuracy. Moreover, selecting the
proper machine learning model can enhance decision making by manipulating the data
differently to avoid undesired conditions such as overfitting or underfitting at the training
stage and adjust the needed computational efforts. Despite all these issues, besides the
open-loop estimation technique’s lack of any feedback mechanism to improve estimation,
the continuous improvement in machine learning techniques and construction is making
them a promising tool in the future of battery modeling [50,51].

The evaluation of various SoC estimation techniques can be quantitatively assessed
using metrics such as maximum error (ME), mean average error (MAE), mean square er-
ror (MSE), root mean square error (RMSE), and R-squared (R2) or the coefficient of deter-
mination, as defined in Equations (3)–(7). While ME can be defined as the absolute value

Figure 3. The gray model GM (1,1) operation process [24].

Because of their versatility in managing many types of data and their ability to ade-
quately capture complicated non-linear phenomena, data-driven methods are presented,
such as fuzzy logic (FL) [43], artificial neural networks (ANNs) [44], genetic algorithms
(GAs) [45], and support vector machines (SVMs) [46]. These data-driven, or black box,
models have gained in popularity in battery modeling. Employing a huge dataset of
battery measurements, these models deploy machine learning techniques to understand
the link between output variables (such as voltage and capacity) and input factors (like
temperature, current, and state of charge) [47]. The DD model’s capability to identify and
track a battery’s dynamics and accurately estimate the SoC has led to an increase in their
utilization, since this is considered a significant challenge with the conventional white
models. Further, data-driven algorithms can be adjusted to changing battery behavior over
time by learning from big datasets [13,48,49].

Meanwhile, data quality is crucial for accurate estimations; care should be taken
during the data collection process to improve a model’s accuracy. Moreover, selecting the
proper machine learning model can enhance decision making by manipulating the data
differently to avoid undesired conditions such as overfitting or underfitting at the training
stage and adjust the needed computational efforts. Despite all these issues, besides the
open-loop estimation technique’s lack of any feedback mechanism to improve estimation,
the continuous improvement in machine learning techniques and construction is making
them a promising tool in the future of battery modeling [50,51].

The evaluation of various SoC estimation techniques can be quantitatively assessed
using metrics such as maximum error (ME), mean average error (MAE), mean square
error (MSE), root mean square error (RMSE), and R-squared (R2) or the coefficient of
determination, as defined in Equations (3)–(7). While ME can be defined as the absolute
value of the most significant difference between the actual value (y i) and the predicted
value (ŷ) for one sample, MAE determines the average error between the true and predicted
values over all samples. MSE is another metric that squares the error value before taking
the average. However, it cannot accurately replicate the model’s accuracy. Therefore, RMSE
calculates the square root of the MSE value to provide an in-depth indication of how bad

Batteries 2024, 10, 89 6 of 35

the model is. Finally, the percentage of variance in a dependent variable’s actual values
that can be accounted for by the projected values of a regression model is expressed as the
R-squared (R2) value, as shown in Equation (7), where (y) represents the mean value of the
predicted state of charge and is defined between 0 and 1. The mathematical representation
of all the previously mentioned metrics is presented in the following equations [52,53]:

ME = MAX|yi − ŷ| (3)

MAE =
1
n

n

∑
i=1

|yi − ŷ | (4)

MSE =
1
n

n

∑
i=1

(yi − ŷ)2 (5)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ)2 (6)

R2 = 1 − ∑(yi − ŷ)2

∑(yi − y)2 (7)

Based on what we stated earlier, data-driven models are gaining more popularity
in battery management systems for their diagnosis and management and for providing
detailed indices of their condition and capacity. The following section will delve more into
the details of the proposed models, including their architectures, pros and cons, and their
utilization for battery SoC estimation.

3. Proposed Data-Driven Approaches

Several data-driven models are presented to enhance the data manipulation process
and better map the provided data to the targeted output. In this section, we will cover
some of these developments, starting with one of the simplest models: the linear regression
approach through the basic NN model, autoencoders, LSTM neural networks, and the most
recent approaches with transformer neural networks.

3.1. Linear Regression (LR) Models

A prevalent methodology within statistical modeling and machine learning involves
utilizing the linear regression model. This statistical technique seeks to model the linear
association between a dependent variable denoted as (Y) and one or more independent
variables (X), as illustrated in Figure 4a. The fundamental premise of the linear regression
model posits that the dependent variable can be expressed as the sum of the independent
variables, each multiplied by respective weights, as in Figure 4b, and further augmented
by an associated error term as follows [54–56]:

Yi = β0 + β1Xi1 + . . . + β j Xij + εi (8)

where β0 stands for the Y intercept of the regression surface, while each βj signifies the
slope of the regression surface concerning variable X, which represents the impact of each
independent variable, and ε represents the random error component at a specific instance.
The least squares approach is employed for estimating the coefficients, which determines
the optimal coefficients by minimizing the sum of squared residuals, representing the
disparities between the actual and predicted values of the dependent variable, y [57,58].

Batteries 2024, 10, 89 7 of 35

Batteries 2024, 10, 89 7 of 36

determines the optimal coefficients by minimizing the sum of squared residuals, repre-
senting the disparities between the actual and predicted values of the dependent variable,
y [57,58].

(a) (b)

Figure 4. Linear regression (LR) model: (a) linearizing the correlation between dependent and inde-
pendent variables; (b) LR model structure.

Utilizing its historical data, the LR model can estimate the coefficients (β) that reduce
the difference between the estimated and actual SoC of the battery. To check if the model
appropriately reflects the relationships in the data, its performance can be evaluated using
measures like R-squared, mean squared error, or other pertinent indications. It is impera-
tive to acknowledge that, although linear regression is a clear and understandable meth-
odology, the association between SOC and influential parameters within a battery system
may not consistently adhere to a strictly linear pattern. In instances where the relationship
exhibits non-linearity, more sophisticated machine learning methodologies, including but
not limited to dual linear regression, random forest regression, support vector machines,
and deep learning techniques such as ANNs, could be contemplated to effectively capture
the intricate non-linear associations present in the dataset [59–65].

3.2. Random Forest Regression (RFR)
The random forest regressor constitutes an ensemble learning technique designed for

regression tasks, wherein it generates an assembly of decision trees during the training
process and provides the mean prediction of individual trees for a given input. During
training, multiple decision trees are constructed on randomly chosen subsets of the train-
ing data, utilizing a randomized subset of features for each tree split. This injection of
randomness mitigates overfitting, a concern more pronounced in a singular decision tree
model. The construction of a random forest model encompasses several pivotal phases, as
illustrated in Figure 5. Decision nodes and leaf nodes make up each decision tree. The
decision nodes use a test function to assess each fed-in sample and then forward it to var-
ious branches according to the sample’s characteristics. To be specific, for each input vec-
tor, X, including m features with X = {X1, X2,…, Xm} and a scalar value output, Y, the train-
ing set with n samples can be described as follows [66–68]: 𝑆௡ = ሼ(𝑋ଵ, 𝑌ଵ), (𝑋ଶ, 𝑌ଶ), … . . , (𝑋௡, 𝑌௡)}, 𝑋 ∈ ℝ௠, 𝑌 ∈ ℝ (9)

Figure 4. Linear regression (LR) model: (a) linearizing the correlation between dependent and
independent variables; (b) LR model structure.

Utilizing its historical data, the LR model can estimate the coefficients (β) that reduce
the difference between the estimated and actual SoC of the battery. To check if the model
appropriately reflects the relationships in the data, its performance can be evaluated using
measures like R-squared, mean squared error, or other pertinent indications. It is imperative
to acknowledge that, although linear regression is a clear and understandable methodology,
the association between SOC and influential parameters within a battery system may
not consistently adhere to a strictly linear pattern. In instances where the relationship
exhibits non-linearity, more sophisticated machine learning methodologies, including but
not limited to dual linear regression, random forest regression, support vector machines,
and deep learning techniques such as ANNs, could be contemplated to effectively capture
the intricate non-linear associations present in the dataset [59–65].

3.2. Random Forest Regression (RFR)

The random forest regressor constitutes an ensemble learning technique designed for
regression tasks, wherein it generates an assembly of decision trees during the training pro-
cess and provides the mean prediction of individual trees for a given input. During training,
multiple decision trees are constructed on randomly chosen subsets of the training data,
utilizing a randomized subset of features for each tree split. This injection of randomness
mitigates overfitting, a concern more pronounced in a singular decision tree model. The
construction of a random forest model encompasses several pivotal phases, as illustrated
in Figure 5. Decision nodes and leaf nodes make up each decision tree. The decision nodes
use a test function to assess each fed-in sample and then forward it to various branches
according to the sample’s characteristics. To be specific, for each input vector, X, including
m features with X = {X1, X2,. . ., Xm} and a scalar value output, Y, the training set with n
samples can be described as follows [66–68]:

Sn = {(X1, Y1), (X2, Y2), , (Xn, Yn)}, X ∈ Rm, Y ∈ R (9)

Commencing the process involves the random selection, potentially with duplication,
of a subset from the training data, with this subset serving as the training set for each tree
within the forest. Subsequently, a random subset comprising m characteristics is scrutinized
for potential splits at each node across all trees. The feature that best segregates the data,
determined by a specified objective function, often grounded in metrics such as mean
squared error reduction or information gain, is then chosen as the criterion for splitting.
After selecting the feature, the node undergoes division into subsidiary nodes, and this
iterative process persists until a predefined stopping condition is met, such as reaching a
maximum depth or having a minimum number of data points in a node [69–71]. Different

Batteries 2024, 10, 89 8 of 35

trees (q) are created inside the random forest because of the repeated processes of feature
selection, recursive node division, and record sampling. Each tree in the ensemble learns
from a slightly different subset of data and features, introducing diversity to the overall
forest. Upon the completion of the tree-building process, the random forest model becomes
prepared for making predictions. It consolidates the predictions derived from each tree to
yield more robust and accurate results, establishing itself as a formidable tool in machine
learning applications, particularly in areas such as regression and classification. Once the
model has completed all the previously mentioned steps, the outputs of each tree are then
aggregated and averaged, where they can be calculated as follows [66,72–74]:

Ŷ =
1
q ∑q

i=1 Ŷi =
1
q ∑q

i=1 ĥ
(

X, Sθi
n

)
(10)

where Ŷi is the output of ith tree, ĥ
(

X, Sθt
n

)
is the prediction function for each tree, and θ

is a family independent of identical distributed random vectors.

Batteries 2024, 10, 89 8 of 36

Figure 5. Random forest regression (RFR) model structure.

Commencing the process involves the random selection, potentially with duplica-
tion, of a subset from the training data, with this subset serving as the training set for each
tree within the forest. Subsequently, a random subset comprising m characteristics is scru-
tinized for potential splits at each node across all trees. The feature that best segregates
the data, determined by a specified objective function, often grounded in metrics such as
mean squared error reduction or information gain, is then chosen as the criterion for split-
ting. After selecting the feature, the node undergoes division into subsidiary nodes, and
this iterative process persists until a predefined stopping condition is met, such as reach-
ing a maximum depth or having a minimum number of data points in a node [69–71].
Different trees (q) are created inside the random forest because of the repeated processes
of feature selection, recursive node division, and record sampling. Each tree in the ensem-
ble learns from a slightly different subset of data and features, introducing diversity to the
overall forest. Upon the completion of the tree-building process, the random forest model
becomes prepared for making predictions. It consolidates the predictions derived from
each tree to yield more robust and accurate results, establishing itself as a formidable tool
in machine learning applications, particularly in areas such as regression and classifica-
tion. Once the model has completed all the previously mentioned steps, the outputs of
each tree are then aggregated and averaged, where they can be calculated as follows [66,72–
74]: 𝑌෠ = ଵ௤ ∑ 𝑌ప෡௤௜ୀଵ = ଵ௤ ∑ ℎ෠ (𝑋, 𝑆௡ఏ೔)௤௜ୀଵ (10)

where 𝑌ప෡ is the output of ith tree, ℎ෠ (𝑋, 𝑆௡ఏ೟) is the prediction function for each tree, and 𝜃 is a family independent of identical distributed random vectors.
With just two parameters to adjust, the number of trees (qtree) and the number of ran-

dom characteristics considered for each split (Mtry) in the forest construction, the RFR ap-
proach is known for its ease of use. This simplicity renders the fine-tuning of parameters
largely unnecessary to attain commendable performance. Generally, augmenting the
number of trees within the forest enhances the robustness and precision of predictions,
although it does introduce a heightened computational load. The generalization error
tends to stabilize as the number of trees increases, signifying that the estimation accuracy
plateaus beyond a certain threshold. Consequently, a sufficiently high number of trees,

Figure 5. Random forest regression (RFR) model structure.

With just two parameters to adjust, the number of trees (qtree) and the number of
random characteristics considered for each split (Mtry) in the forest construction, the RFR
approach is known for its ease of use. This simplicity renders the fine-tuning of parameters
largely unnecessary to attain commendable performance. Generally, augmenting the
number of trees within the forest enhances the robustness and precision of predictions,
although it does introduce a heightened computational load. The generalization error
tends to stabilize as the number of trees increases, signifying that the estimation accuracy
plateaus beyond a certain threshold. Consequently, a sufficiently high number of trees,
often defaulting to 500 trees (qtree), is commonly employed for prediction purposes. The
parameter Mtry, influencing model strength and individual tree characteristics, also dictates
the inter-tree correlation within the forest. While elevating Mtry can fortify each tree’s
potency, it concurrently intensifies inter-tree correlations. The augmentation of tree strength
contributes positively to overall model performance, although the rise in correlations
among trees may have a diminishing effect. Notably, it has been observed that a default
value of Mtry, set at one-third of the total number of predictive variables, is frequently an
effective choice [75,76].

Batteries 2024, 10, 89 9 of 35

For estimation applications, RFR offers the advantage of handling complex datasets
and capturing non-linear relationships between input variables such as voltage and currents
and the state of charge [75]. Besides its simple structure, its unique features of manipulating
fewer data facilitate its broad utilization in different applications [77]. Additionally, despite
the lack of features, the RF is still capable of achieving promising performance for the degra-
dation and classification tasks [78]. Furthermore, the unnecessity of the data preprocessing
step, besides the quick training and estimation process, makes it an affordable option
when compared to other models, such as linear regression and K-nearest neighbors [79,80].
Moreover, its ability to handle high-dimensional data and mitigate overfitting makes it
well-suited for EVs and energy applications [70].

3.3. Neural Networks (NNs)

NNs represent a class of deep learning algorithms designed to mimic the structure and
functionality of the human brain. These networks, composed of linked layers of artificial
neurons, exchange information through numerical weights attributed to the connections, as
shown in Figure 6. These weights, subject to modification based on experience, endow NNs
with adaptability and learning capacity. The training phase exposes the neural network
to labeled input/output pairs, wherein the network processes inputs through its layered
neurons, culminating in generating output values. These outputs are then compared against
the correct labels, and a loss function quantifies the error. The backpropagation process then
spreads this mistake across the network, making it possible to optimize gradient descent
and modify the weights between neurons. The iterative training process, characterized by
the continual refinement of weights, iterates numerous times to systematically reduce the
loss and enhance prediction accuracy, ultimately reaching the output layer, as calculated in
the following equations [81–83]:

Hj = Sj

(
∑m

i=0 ωij Xj + θij

)
(11)

Yk = Sk

(
∑j ωjk Hj + θjk

)
(12)

where Xj is the input variable; Yk is the output variable; Hj is the output of the hidden layer;
ωij and ωjk are the weights between the input layer to the hidden layer and the hidden
layer to the output layer, respectively; and, finally, θij and θjk represent the deviation from
the input layer to the hidden layer and the hidden to the output layer, respectively.

Batteries 2024, 10, 89 9 of 36

often defaulting to 500 trees (qtree), is commonly employed for prediction purposes. The
parameter Mtry, influencing model strength and individual tree characteristics, also dic-
tates the inter-tree correlation within the forest. While elevating Mtry can fortify each tree’s
potency, it concurrently intensifies inter-tree correlations. The augmentation of tree
strength contributes positively to overall model performance, although the rise in corre-
lations among trees may have a diminishing effect. Notably, it has been observed that a
default value of Mtry, set at one-third of the total number of predictive variables, is fre-
quently an effective choice [75,76].

For estimation applications, RFR offers the advantage of handling complex datasets
and capturing non-linear relationships between input variables such as voltage and cur-
rents and the state of charge [75]. Besides its simple structure, its unique features of ma-
nipulating fewer data facilitate its broad utilization in different applications [77]. Addi-
tionally, despite the lack of features, the RF is still capable of achieving promising perfor-
mance for the degradation and classification tasks [78]. Furthermore, the unnecessity of
the data preprocessing step, besides the quick training and estimation process, makes it
an affordable option when compared to other models, such as linear regression and K-
nearest neighbors [79,80]. Moreover, its ability to handle high-dimensional data and mit-
igate overfitting makes it well-suited for EVs and energy applications [70].

3.3. Neural Networks (NNs)
NNs represent a class of deep learning algorithms designed to mimic the structure

and functionality of the human brain. These networks, composed of linked layers of arti-
ficial neurons, exchange information through numerical weights attributed to the connec-
tions, as shown in Figure 6. These weights, subject to modification based on experience,
endow NNs with adaptability and learning capacity. The training phase exposes the neu-
ral network to labeled input/output pairs, wherein the network processes inputs through
its layered neurons, culminating in generating output values. These outputs are then com-
pared against the correct labels, and a loss function quantifies the error. The backpropa-
gation process then spreads this mistake across the network, making it possible to opti-
mize gradient descent and modify the weights between neurons. The iterative training
process, characterized by the continual refinement of weights, iterates numerous times to
systematically reduce the loss and enhance prediction accuracy, ultimately reaching the
output layer, as calculated in the following equations [81–83]:

Figure 6. Neural network (NN) structure. Figure 6. Neural network (NN) structure.

Batteries 2024, 10, 89 10 of 35

NNs exhibit diverse architectures, encompassing variations like feedforward neural
networks, recurrent neural networks, and Elman neural networks. Throughout history,
NNs have demonstrated exceptional efficacy as a class of machine learning algorithms,
attributed to their proficiency in modeling intricate functions and discerning patterns within
datasets. Add to this that their continuous adaptability allows them to capture intricate
patterns and non-linear dependencies within battery data, making them well-suited for
SoC estimation. However, notable limitations include their dependency on substantial
training datasets for optimal performance, computational intensity, and susceptibility to
overfitting. Therefore, the effectiveness of an NN is contingent on appropriate training
data, architecture selection, and parameter tuning [13,84,85].

3.4. Autoencoders (AEs)

Within the dynamic field of deep learning, where NNs constantly evolve to discover
complex patterns and representations, AEs constitute a robust and versatile family of
architectures [86]. AEs have historically been employed for feature extraction or dimen-
sionality reduction. However, autoencoders have been the front-runners in generative
modeling due to the popularity of many deep learning models, particularly the models
of generative adversarial networks [87]. AEs represent a distinct category of algorithms
adept at acquiring the skill of compressing and proficiently portraying input data, even
in the absence of explicit labels. This proficiency is achieved through a dual-component
framework comprising an encoder, a decoder, and a bottleneck layer, as shown in Figure 7.
The encoder converts input data into a condensed representation, commonly denoted as
latent space, code, or encoding. Subsequently, the decoder reconstructs the original input
from this representation. The interplay between encoding and decoding processes is pivotal
for the network to discern meaningful patterns within the data, contributing to delineating
crucial features [86,88]. These unsupervised learning models have drawn much attention
due to their capacity to acquire efficient data representations and their applicability to
various tasks, such as anomaly detection, forecasting, and image processing [89].

Batteries 2024, 10, 89 11 of 36

Figure 7. Autoencoder (AE) basic idea and architecture.

As we stated earlier, AEs are a compression or dimensional reduction algorithm of
the input data for representation learning. For better understanding, assume we have a
training set of 𝐴 = ሼ𝑥௜ | 𝑥௜ ∈ 𝑅ௗ}, where 1 ≤ 𝑖 ≤ 𝑛, then the encoder and decoder func-
tions, 𝑓 (.) and 𝑔 (.), respectively, will be modeled as follows [87]: ൜ 𝐸 = 𝑓(𝑤௘, 𝑏௘; 𝑥)𝐷 = 𝑔(𝑤ௗ, 𝑏ௗ; 𝑧) (13)

where 𝑤௘ and 𝑏௘ are the encoder parameters, while 𝑤ௗ and 𝑏ௗ are the parameters for
the decoder. If the algorithm implementation is performed through an NN, 𝑤 and 𝑏 for
both will be the weight matrices and bias vectors concerning encoder and decoder neural
networks [87]. It is worth mentioning that the architectural configuration of autoencoders
may exhibit diversity, ranging from elementary feedforward networks to long short-term
memory (LSTM) networks or convolutional neural networks (CNNs), contingent upon
the specific application requirements. Since evaluating the whole process is essential to
determining its accuracy, the reconstruction loss function (ℒ (𝑥, 𝑥ො)) measures the differ-
ence between the input (𝑥) and output (𝑥ො) data similarly to the MSE [90]. Additionally,
discouragement or regularization terms can be added to penalize the model when captur-
ing noises in the training data instead of the features. This will enhance the autoencoder’s
learning performance, minimize the risk of overfitting memorization, and avoid overly
complex models. These two terms, which define the total loss, can be determined as fol-
lows: ℒ (𝑥, 𝑥ො) = ଵ௡ ∑ (𝑥 − 𝑥ො)ଶ௡௜ୀଵ (14) 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 = 𝜆 ∑ |𝑊௝|ெ௝ୀଵ (15) 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = ℒ (𝑥, 𝑥ො) + 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 (16)

where 𝜆 is the regularization parameter, M is the total number of wights and biases in
the network, and 𝑊௝ represents the j-th parameter. The term that discourages can be ei-
ther L1 regularization, which promotes sparsity, or L2 regularization, which promotes tiny
weight values [90–92].

Deploying autoencoders in the battery state-of-charge estimation field is growing
due to their unique features and continuous developments. One of the most straightfor-
ward architectures is the under-complete AE, which varies the reconstruction loss func-
tion to limit or constrain the number of hidden layer nodes or the copying task that will,

Figure 7. Autoencoder (AE) basic idea and architecture.

As we stated earlier, AEs are a compression or dimensional reduction algorithm of
the input data for representation learning. For better understanding, assume we have a
training set of A = {xi|xi ∈ Rd

}
, where 1 ≤ i ≤ n, then the encoder and decoder functions,

f (.) and g(.), respectively, will be modeled as follows [87]:{
E = f (we, be; x)
D = g(wd, bd; z)

(13)

Batteries 2024, 10, 89 11 of 35

where we and be are the encoder parameters, while wd and bd are the parameters for the
decoder. If the algorithm implementation is performed through an NN, w and b for both
will be the weight matrices and bias vectors concerning encoder and decoder neural net-
works [87]. It is worth mentioning that the architectural configuration of autoencoders
may exhibit diversity, ranging from elementary feedforward networks to long short-term
memory (LSTM) networks or convolutional neural networks (CNNs), contingent upon
the specific application requirements. Since evaluating the whole process is essential to
determining its accuracy, the reconstruction loss function (L(x, x̂)) measures the difference
between the input (x) and output (x̂) data similarly to the MSE [90]. Additionally, discour-
agement or regularization terms can be added to penalize the model when capturing noises
in the training data instead of the features. This will enhance the autoencoder’s learning
performance, minimize the risk of overfitting memorization, and avoid overly complex
models. These two terms, which define the total loss, can be determined as follows:

L(x, x̂) =
1
n ∑n

i=1(x − x̂)2 (14)

Regularizer = λ∑M
j=1

∣∣Wj
∣∣ (15)

Total Loss = L(x, x̂) + Regularizer (16)

where λ is the regularization parameter, M is the total number of wights and biases in the
network, and Wj represents the j-th parameter. The term that discourages can be either L1
regularization, which promotes sparsity, or L2 regularization, which promotes tiny weight
values [90–92].

Deploying autoencoders in the battery state-of-charge estimation field is growing due
to their unique features and continuous developments. One of the most straightforward
architectures is the under-complete AE, which varies the reconstruction loss function
to limit or constrain the number of hidden layer nodes or the copying task that will,
in the end, reduce the amount of flowing information through the network. However,
this oversimplification might lead to copying the data without extracting any features
when the input capacity is too large [93,94]. Hence, sparse autoencoders (SAEs) solve
this issue without reducing the hidden layer’s nodes by adding the penalization factor
“regularizer”, as mentioned in Equation (3), to enhance the network sensitivity regarding
a specific property within the input data. However, the performance of the autoencoder
hinges on the careful choice of hyperparameters, which influences how different inputs
activate specific nodes. While enforcing sparsity enhances feature discernment, it also
increases computational complexity, underscoring the need for a balanced approach to
hyperparameter tuning for optimal efficiency [95–97]. Denoising autoencoders (DAEs)
are another set of popular AE models that use partially damaged input and training to
recover the original, undistorted image. DAEs can efficiently extract crucial features while
diminishing noise or extraneous elements, which can serve as a valuable tool for data
augmentation, utilizing the restored images to generate additional training samples and
enhance the model’s robustness. The denoising process, while effective, may lead to the
loss of certain critical information required from the original input. This loss can potentially
impact the accuracy of the resulting output [98–100].

In battery SoC estimation, autoencoders have proven their unique performance, out-
performing many other DD models, such as support vector regression and Bayesian
regression techniques [101]. Their abilities to compress data, reduce noise, and dimin-
ish dimensionality boost their wide implementation for SoC estimation [99], battery
modeling [102], and SoH predictions [103]. Often, AEs have been used in combination with
several estimation approaches, such as LSTM neural networks [104], look-up tables [105],
particle filters [106], and deep neural networks [107]. They have mainly been used as feature
extraction techniques, in addition to providing a better description of the capacity pattern
concerning inputs like voltage and currents. Nevertheless, despite their remarkable accu-
racy, these networks frequently incur substantial computational expenses for prediction

Batteries 2024, 10, 89 12 of 35

during deployment. Additionally, the majority of techniques prioritize capacity prediction
for particular cell chemistries, thereby lacking the universal capability for onboard battery
management system (BMS) state-of-health (SoH) predictions [101].

3.5. Long Short-Term Memory (LSTM)

NNs with LSTM are recurrent neural networks (RNNs) capable of recognizing long-
term relationships between sequence data and timesteps. Because regular RNNs have
trouble learning long-term temporal relationships, Hochreiter and Schmidhuber (1997)
proposed LSTMs to solve some problems [108]. Because it permeates every link in the
NN, the cell state is essential to LSTMs. LSTMs can retain information throughout
lengthy sequences because information can flow freely along this cell state for as long as
necessary [109]. Gradient-based learning becomes more challenging over extended lags
due to the vanishing gradient problem that vanilla RNNs struggle with [110]. Informa-
tion flowing into and out of the cell state is controlled by unique units in LSTMs called
gates [108,111]. Forget, input, and output gates are the three different kinds of gates. The
forget gate determines what information in the cell state can be ignored or forgotten. The
input gate decides what new data are stored in the cell state. Lastly, the output gate controls
the output flow of the cell state contents [112].

These gates have sigmoid and tanh activation units, which enable them to control,
restrict, or permit information flow [108]. The sigmoid units, for instance, provide numbers
between 0 and 1 that indicate how much of each component should pass through. To control
flow, the tanh units compress values between −1 and 1. These gates determine which
sequence data to retain and which to discard during LSTM training [113]. Because of this,
long time lags between pertinent events enable LSTMs to establish a connection between
causes and effects. After training, LSTM models perform well in anomaly detection, speech
recognition [114], and other temporal sequence issues. Several LSTM layers are stacked in
common LSTM architectures to allow for greater complexity [115]. To provide more context,
bidirectional LSTMs pass sequence data in both directions [116]. There have also been other
LSTM variations, such as GRU layers [117], peephole connections [112], and forget gate
initialization [118]. Lastly, the ability to process sequential data, connect distant events in
time series, and remember longer patterns has made LSTMs indispensable. LSTMs will
probably become more important as research on this topic continues to use AI to analyze
longitudinal data.

Figure 8 shows the architecture of the LSTM, where it can be observed that the LSTM
architecture, a variant of RNNs, is structured around three gates—the input gate controlling
input information, the forget gate managing the retention or deletion of past information,
and the output gate regulating the information to be used for predictions. Alongside these
gates, the LSTM maintains a cell state to store and propagate information across sequences,
mitigating the vanishing gradient problem and enabling the model to effectively capture
and retain long-term dependencies in sequential data. Moreover, the inputs and outputs of
an LSTM for a single timestep are illustrated in Figure 8. These are one timestep input and
output and the equations for a time unrolled representation. The LSTM has an input, xt,
which can directly be the output of a CNN or the input sequence. Moreover, ht−1 and ct−1
are the inputs from the previous timestep LSTM.

Then, it is the output of the LSTM for this timestep. Furthermore, the LSTM generates
ct and ht to consume the next timestep LSTM. Moreover, the LSTM produces ft, it, and c′t
for internal calculations. The equations are as follows [119]:

ft = σg(W f × xt+U f × ht−1+b f) (17)

it = σg(W i × xt+Ui × ht−1+bi
)

(18)

ot = σg(W o × xt+Uo × ht−1+bo
)

(19)

c′t = σc(W c × xt+Uc × ht−1+bc
)

(20)

Batteries 2024, 10, 89 13 of 35

ct = ft· ct−1 + it· c′t (21)

ht = σt·σc(ct) (22)

where ft and it are the forget gate and the input gate, respectively, and ct and ht are the cell state
and hidden state, respectively. The dot operators (.) used in Equations (21) and (22) denote
the Hadamard product or element-wise product. Furthermore, Wf, Wi, Wo, Wc, Uf, Ui, Uo, and
Uc are the Wright matrices, and bf, bi, bo, and bc are biases that are time-independent variables.
Finally, σg, and σc are sigmoid and tanh functions, respectively [119].

Batteries 2024, 10, 89 13 of 36

provide more context, bidirectional LSTMs pass sequence data in both directions [116].
There have also been other LSTM variations, such as GRU layers [117], peephole connec-
tions [112], and forget gate initialization [118]. Lastly, the ability to process sequential
data, connect distant events in time series, and remember longer patterns has made
LSTMs indispensable. LSTMs will probably become more important as research on this
topic continues to use AI to analyze longitudinal data.

Figure 8 shows the architecture of the LSTM, where it can be observed that the LSTM
architecture, a variant of RNNs, is structured around three gates—the input gate control-
ling input information, the forget gate managing the retention or deletion of past infor-
mation, and the output gate regulating the information to be used for predictions. Along-
side these gates, the LSTM maintains a cell state to store and propagate information across
sequences, mitigating the vanishing gradient problem and enabling the model to effec-
tively capture and retain long-term dependencies in sequential data. Moreover, the inputs
and outputs of an LSTM for a single timestep are illustrated in Figure 8. These are one
timestep input and output and the equations for a time unrolled representation. The
LSTM has an input, xt, which can directly be the output of a CNN or the input sequence.
Moreover, ht−1 and ct−1 are the inputs from the previous timestep LSTM.

Figure 8. Long short-term memory (LSTM) architecture.

Then, 𝑖௧ is the output of the LSTM for this timestep. Furthermore, the LSTM gener-
ates ct and ht to consume the next timestep LSTM. Moreover, the LSTM produces ft, it, and
c’t for internal calculations. The equations are as follows [119]: 𝑓௧ = 𝜎௚(𝑊௙ × 𝑥௧+𝑈௙ × ℎ௧ିଵ+𝑏௙) (17)𝑖௧ = 𝜎௚(𝑊௜ × 𝑥௧+𝑈௜ × ℎ௧ିଵ+𝑏௜) (18)𝑜௧ = 𝜎௚(𝑊௢ × 𝑥௧+𝑈௢ × ℎ௧ିଵ+𝑏௢) (19)

Figure 8. Long short-term memory (LSTM) architecture.

Battery management systems rely on accurately forecasting and controlling the SoC
to ensure efficient operation across various industries. Long short-term memory (LSTM)
networks have emerged as powerful tools for this task due to their ability to capture
temporal dependencies from multidimensional time-series data [108]. This is due to their
specialized architecture, which can learn long-term temporal dependencies from sequence
data like charging/discharging cycles. Unlike regular recurrent neural networks, LSTMs
overcome issues like vanishing gradients and can effectively model the non-linear response
of batteries. In one study, a multilayer LSTM network for SoC estimation was created and
trained using data from simulated lithium-ion batteries [28]. Across a range of operating
conditions, the LSTM demonstrated over 95% SoC estimation accuracy, outperforming
previous RNN and DNN models. The trained LSTM network was also implemented on
a physical battery management system to confirm its real-time applicability. Moreover,
LSTMs automatically extract features from sensor data, enabling real-time SoC estimation
and control, which is crucial for maximizing driving range and battery life. Additionally,
LSTM networks facilitate prompt identification of malfunctions or deteriorations in battery
systems, enhancing overall dependability and durability [108]. LSTMs can optimize driving
range, lifespan, and safety by tracking SoC when applied to battery management systems.

The input layer of the LSTM architecture begins by gathering unprocessed temperature,
voltage, and current data from battery sensors. After processing the time-series data and

Batteries 2024, 10, 89 14 of 35

identifying temporal relationships, this data flows into stacked LSTM layers. Real-time
decision making in the battery management system is facilitated by the output layer of the
LSTM network, which generates predictions and classifications based on the state of charge.
An integrated training procedure that optimizes accuracy under various circumstances is
performed in the central LSTM layers. Before the LSTM layers, separate data preprocessing
and fusion stages normalize raw signals and concatenate sensor data. The main issues are
future-focused, improving the network’s capacity to deliver reliable estimations across a
range of operating scenarios and simplifying complexities for embedded systems. The
overall goal of the synergistic elements is to precisely track the state of charge by utilizing
LSTM’s strengths in temporal dependency analysis.

Several specialized LSTM architectures have been developed to address specific chal-
lenges in SoC estimation. An example of a hierarchically processed charge/discharge
curve structure is a stacked LSTM structure, where the higher layers concentrate more
on long-term history and the initial layers extract short-term patterns [120]. Compared to
single-layer LSTM designs, such multiscale modeling increases accuracy across battery
chemistries while reducing model complexity. Moreover, attention-based LSTM archi-
tectures have been developed, emphasizing more dynamic representative cycles using
attention mechanisms [121]. Acquiring large-scale battery profile datasets that general-
ize across usages, ages, temperatures, and other factors is expensive to achieve robust
model performance. Techniques such as transfer learning from less expensive surrogate
batteries show the potential to lower the amount of data required by LSTM-based SoC
estimators [122]. Furthermore, robust adaptive SoC tracking is provided by LSTM architec-
tures. Additional studies on transfer learning techniques and constrained attention-based
LSTM variants may address data availability bottlenecks.

Additionally, improvements like attention mechanisms, stacked bidirectional LSTMs,
and hybrid models combined with physics-based components have all been tested in re-
search [123]. When compared to standalone models, these extensions increase the accuracy
of LSTM’s SoC estimation and fault diagnostic capabilities. As battery chemistry changes,
paying particular attention enables the network to dynamically emphasize more pertinent
charge/discharge parameters [124]. Furthermore, there is great potential for high-accuracy
battery SoC tracking with LSTM neural networks. The temporal dynamics of battery cell
chemistry are well suited to their sequence learning strengths. Smarter real-time battery
management in electric vehicles, consumer electronics, and grid storage systems may
eventually be made possible by technological advancements like lower-power machine
learning chips and long short-term memory (LSTM).

Moreover, ConvLSTM methods use convolutional neural networks in tandem to find
informative spatial patterns in the multivariate input signals that represent temperature,
voltage, and current. Together, these LSTM developments capture the temporal and spatial
dynamics present in battery data streams, learning to highlight significant correlations
and pivotal moments throughout the series of measurements. The refined multimodal
awareness via convolutional fusion, bidirectional passaging, attentional reweighting, and
stacked representations eventually improves battery management and SoC forecasting.
The integrated architecture highlights the importance of considering various angles when
analyzing battery operating conditions.

3.6. Transformer (TR)

The Transformer architecture, a novel deep-learning method for sequence modeling
that is entirely based on attention mechanisms, was first presented in [125]. Modern out-
comes have been attained by transformers in critical tasks such as speech recognition [126],
language modeling [127], and machine translation [128], outperforming recurrent and
convolutional neural networks. Transformers use self-attention to infer global dependen-
cies between inputs and outputs in a sequence, rather than recursion or convolution. The
central transformer module makes long-range context modeling possible, determining the
attention weights between each element pair. Since the self-attention layers lack intrinsic

Batteries 2024, 10, 89 15 of 35

order sensitivity, positional encodings can capture ordering information. During training,
gradient flow is aided by residual connections and layer normalization [125].

Some of the optimization and computational limitations of the original transformers
are overcome by refinements like the use of deep residual learning frameworks [129],
augmented memory [130], sparse factorizations [131], and bifurcated attention [132]. Vari-
ants tailored for graphs, images, and reinforcement learning tasks show how versatile the
model family is [133]. Furthermore, various sequence learning problems have seen record-
breaking performance thanks to the transformer architecture and its attention-focused
methodology. Current research indicates that transformer interpretability, efficiency, and
capability will continue to improve, enhancing numerous downstream artificial intelli-
gence applications.

Transformer architectures have shown promise in sequential data tasks such as SoC
estimation; they were first widely used in natural language processing. These models use
self-attention mechanisms, which allow the network to analyze various input sequence
segments and identify important information pertinent to SoC prediction. Instead of LSTMs,
transformers process the entire sequence at once, making it more effective to compute
dependencies throughout the sequence. Transformer-based ANNs’ attention mechanisms
are critical in concentrating on pertinent sensor data, which vary in significance for precise
SoC estimation. The self-attention mechanism enables the model to predict SoC levels by
giving different sensor measurements to weights, highlighting important information. This
flexibility regarding sensor inputs enhances the transformer’s capacity to manage various
data types and recognize intricate patterns.

Transformer-based architectures are also excellent at processing multidimensional
sensor data because of their high parallelizability. Transformers are excellent at capturing
long-range dependencies and contextual information by processing the entire sequence
simultaneously. This is important because it helps to understand the dynamics of battery
behavior across a range of temporal scales. By adeptly capturing the complex patterns
and dependencies in sequential battery data, transformer-based ANNs use their capacity
for parallel processing, contextual understanding, and attention mechanisms to accurately
predict battery SoC levels. These architectures provide an alternative method to LSTM-
based models, demonstrating advantages in managing heterogeneous datasets and long-
range dependencies and improving SoC forecast precision and flexibility.

Figure 9 illustrates the transformer model architecture, which consists of input embed-
dings that encode tokens and positional encodings to retain sequence order. Multi-head
self-attention layers weigh different input parts, enabling the model to learn relationships
between parts. Stacks of encoders process input sequences, while decoders generate out-
puts in translation tasks. Feedforward neural networks and normalization layers enhance
transformations and stabilize training. Finally, output layers predict the successive parts or
generate outputs. This architecture’s innovation lies in its ability to capture intricate depen-
dencies within sequences, making it highly effective across diverse language tasks [125].
To describe the model in mathematical terms, the architecture may be divided into sev-
eral segments, namely, self-attention, multi-head attention, feedforward networks, and
layer normalization:

Attention (Q, K, V) = so f tmax
(

QKT
√

dk

)
V (23)

where Q, K, and V denote the query, key, and value matrices, respectively. Moreover, dk
represents the dimensionality of the key.

MultiHead (Q, K, V) = Concat(head1, . . . , headh)W0 (24)

where headi = Attention (QWi
Q, KWi

K, VWi
V), Wi

Q, Wi
K, and Wi

V are linear transformation
matrices and W0 is the output linear transformation matrix.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (25)

Batteries 2024, 10, 89 16 of 35

where W1 and W2 are weight matrices. Moreover, b1, and b2 are bias vectors, and ReLU
represents the rectified linear unit activation function.

LayerNorm(x) = γ
x − µ√
σ2 + ϵ

+ β (26)

where γ and β are learnable parameters, µ and σ are the mean and standard deviation, and
ϵ is a small constant for numerical stability.

Batteries 2024, 10, 89 17 of 36

Figure 9. Transformer model architecture [125].

As previously noted, sequence modeling issues, such as battery SoC estimation, have

gained attention due to the transformer architecture that was suggested in [126]. Unlike

recurrent networks, transformers only use self-attention to identify global dependencies

between inputs. This allows implicit learning of complex cell dynamics over long

charge/discharge profiles for battery SoC modeling [134]. Compared to RNN alternatives,

research has developed transformer structures to capture long-range SoC correlations

with fewer training samples [135]. SoC Transformers extract temporal features using si-

nusoidal positional encodings applied to battery operating measurements. After the trans-

former encoder and decoder stacks, linear layers are added to calculate the SoC values

[136].

Compared to baseline models, improvements such as adding auxiliary losses are

found to improve convergence and SoC accuracy [137]. SoC transformers have also been

paired with physically based inductive biases, which constrain them to follow thermody-

namic properties during training [138]. These hybrid methods show a reduction in SoC

root mean square error of up to 2% for various lithium-ion battery chemistries [138].

Transformer networks generally exhibit a promising degree of adaptability when manag-

ing intricate temporal phenomena in battery systems. Enhancements like enhanced inter-

pretability via attention heads may improve fault diagnostics and model transparency.

Reducing the computational demands of SoC transformers could facilitate their imple-

mentation in battery management systems and electric vehicle applications with limited

resources.

Figure 9. Transformer model architecture [125].

As previously noted, sequence modeling issues, such as battery SoC estimation, have
gained attention due to the transformer architecture that was suggested in [126]. Unlike
recurrent networks, transformers only use self-attention to identify global dependen-
cies between inputs. This allows implicit learning of complex cell dynamics over long
charge/discharge profiles for battery SoC modeling [134]. Compared to RNN alternatives,
research has developed transformer structures to capture long-range SoC correlations with
fewer training samples [135]. SoC Transformers extract temporal features using sinusoidal
positional encodings applied to battery operating measurements. After the transformer
encoder and decoder stacks, linear layers are added to calculate the SoC values [136].

Compared to baseline models, improvements such as adding auxiliary losses are found
to improve convergence and SoC accuracy [137]. SoC transformers have also been paired
with physically based inductive biases, which constrain them to follow thermodynamic
properties during training [138]. These hybrid methods show a reduction in SoC root mean
square error of up to 2% for various lithium-ion battery chemistries [138]. Transformer
networks generally exhibit a promising degree of adaptability when managing intricate

Batteries 2024, 10, 89 17 of 35

temporal phenomena in battery systems. Enhancements like enhanced interpretability
via attention heads may improve fault diagnostics and model transparency. Reducing
the computational demands of SoC transformers could facilitate their implementation in
battery management systems and electric vehicle applications with limited resources.

Raw time-series battery data measurements, including voltage, current, temperature,
and so forth, are sent to the input layer. This input then goes through an input encoding
layer to assign positional embeddings and prepare the data for the transformer model.
There are encoders and decoders inside the transformer itself. The encoder uses multi-
headed self-attention to extract long-range dependencies and patterns from the battery
data sequences. To arrive at the final SoC predictions, the decoder combines these repre-
sentations. Additional components could be incorporated to aid training and improve
accuracy. After some postprocessing, the output layer finally yields the SoC estimates
from the transformer architecture. Plotting or comparing the actual SoC values gives the
estimation error.

Several essential elements comprise the transformer-based artificial neural network
architecture for battery state-of-charge estimation. The input layer receives raw data signals
from voltage, current, and temperature sensors that are fixed on the battery. A sequence
of stacked transformer layers receive this sensor data and use attention mechanisms to
identify intricate relationships between the input variables and the battery state of charge.
The output from the subsequent transformer layers functions as state-of-charge predictions
and classifications to provide the larger battery management system with crucial inputs for
real-time decision making and control. An integrated training process that uses optimiza-
tion techniques to raise prediction accuracy under various operating conditions envelops
these core layers. Before the transformer layers, the architecture includes specific data
preprocessing and fusion stages that normalize the unprocessed sensor data and combine
various input signals into cohesive representations. Moreover, two noteworthy obstacles
are improving the network’s capacity to yield precise approximations under widely dis-
parate circumstances and minimizing the computational complexity of embedded system
applications. The transformer-based approach has the potential to significantly improve
battery state awareness and charge optimization capabilities by bringing these essential
components into harmony.

4. System Configuration

The examined system, as illustrated in Figure 10, comprises a 52.8 V/5.4 kWh lithium
iron phosphate battery interfaced with a personal computer via a controller area network
(CAN) bus to monitor battery status and facilitate data collection. A strategic data collection
was executed under diverse testing conditions to furnish an expansive array of datasets
and operational scenarios, thereby enhancing precision in the estimation process. The data
acquisition process involved a series of pulsed charging and discharging tests with rate
of 0.1C, each constituting 10% increments of the actual SoC, interspersed with a two-hour
relaxation period between successive segments to attain chemical stability in the battery. In
addition to the pulsed tests, several continuous charging and discharging assessments with
rates of 0.1C and 0.05C for both modes were conducted to emulate prevalent operational
scenarios. Further, the continuous charging and discharging processes were performed
at different SoC levels to provide more data during each step. For instance, we started to
charge the battery fully from 70%; in other cases, we started the continuous full charging
from 30%, which would have subjected the cells and battery to more chemical stress and
increased the internal temperature as well. Similar conditions were imposed through
the continuous discharging process with different SoC%s. This multifaceted approach
to data collection contributes to the breadth of datasets and ensures a comprehensive
representation of diverse operating conditions, thereby augmenting the accuracy of the
subsequent estimation processes. Additionally, these different and repeated testing patterns
provide a wide range of temperatures to fully reflect the different operating conditions for
battery utilization in different applications.

Batteries 2024, 10, 89 18 of 35Batteries 2024, 10, 89 19 of 36

Figure 10. Overall system structure, execution, and validation process.

4.1. Data Preprocessing
The dataset incorporates 94,955 entries of battery system measurements that encap-

sulate 14 distinct parameters associated with battery SoC. The dataset encompasses infor-
mation regarding the battery unit, such as voltages, charging and discharging currents,
SoC, unit pre-voltage, insulation resistance, and energy levels. Moreover, it includes other
details regarding the unit cells, such as minimum and maximum cell voltage and temper-
ature. A Python code was generated to handle the whole process, starting from prepro-
cessing until the results of each model. The heatmap shown in Figure 11 presents the cor-
relation coefficients between each pair of the collected data; however, it only provides the
linear correlation between the data: non-linear relationships or dependencies are not cap-
tured in this measurement.

The dataset includes information regarding the 16 cells forming the battery pack or
unit, such as maximum and minimum cell voltages and temperatures, named max cell
volt, min cell volt, max temp, and min temp, respectively. Moreover, unit SoC, unit cur-
rent, and unit voltage measurements replicate the total SoC, current, and voltage of the
battery pack; these values are calculated on an average basis for all 16 cells of the battery.
Further, charging and is Charging, are binary numbers categorizing the data into ‘charg-
ing’ or ‘discharging’ states. Additionally, insulation resistance is the parallel equivalent
resistance of the insulation resistances of the positive and negative terminals with respect
to the ground reference. Furthermore, avgcells is an added feature calculated based on the
voltage measurement of the 16 cells in the battery pack.

The data preprocessing was created through several steps, as shown in Figure 12, to
transform and standardize the raw input data, facilitate subsequent analyses, and ensure
that the information was presented in a format conducive to accurate and efficient

Figure 10. Overall system structure, execution, and validation process.

4.1. Data Preprocessing

The dataset incorporates 94,955 entries of battery system measurements that encapsu-
late 14 distinct parameters associated with battery SoC. The dataset encompasses informa-
tion regarding the battery unit, such as voltages, charging and discharging currents, SoC,
unit pre-voltage, insulation resistance, and energy levels. Moreover, it includes other details
regarding the unit cells, such as minimum and maximum cell voltage and temperature.
A Python code was generated to handle the whole process, starting from preprocessing
until the results of each model. The heatmap shown in Figure 11 presents the correlation
coefficients between each pair of the collected data; however, it only provides the linear
correlation between the data: non-linear relationships or dependencies are not captured in
this measurement.

The dataset includes information regarding the 16 cells forming the battery pack or
unit, such as maximum and minimum cell voltages and temperatures, named max cell
volt, min cell volt, max temp, and min temp, respectively. Moreover, unit SoC, unit current,
and unit voltage measurements replicate the total SoC, current, and voltage of the battery
pack; these values are calculated on an average basis for all 16 cells of the battery. Further,
charging and is Charging, are binary numbers categorizing the data into ‘charging’ or
‘discharging’ states. Additionally, insulation resistance is the parallel equivalent resistance
of the insulation resistances of the positive and negative terminals with respect to the
ground reference. Furthermore, avgcells is an added feature calculated based on the
voltage measurement of the 16 cells in the battery pack.

Batteries 2024, 10, 89 19 of 35

Batteries 2024, 10, 89 20 of 36

processing. To make the data cohesive with a continuous index, the preprocessing work-
flow starts by creating a new feature called combined_datetime, formed by concate-
nating the day and time columns and converting them into datetime objects, streamlin-
ing analysis by consolidating date and time information into a single timestamp. We
dropped the redundant columns from the DataFrame during the second step to declutter
the dataset and minimize usage memory. The combined_datetime column is then re-
positioned in the third step to be established as a primary index of temporal reference.
Through the fourth step, we created a new feature named time_difference, which is
generated by subtracting the minimum datetime value in the combined_datetime col-
umn from all the datetime entries within the same column, then converting them to total
seconds and combining them into a single cohesive DataFrame at the fifth step. This pro-
cess provides a continuous, numeric measure of the time elapsed since the beginning of
data collection, facilitates time-series modeling, and assists in identifying trends and pat-
terns over time. Further, it emphasizes the dataset’s chronological sequence, which is cru-
cial for any form of temporal analysis, including forecasting and regression modeling.

Figure 11. Pearson correlation heatmap for the collected data.

Outlier detection and imputation are critical steps in the data preprocessing for sta-
tistical analysis and predictive modeling. Outliers can significantly impact the results and
interpretations of analyses, often skewing the distribution and influencing parameter es-
timates. During the sixth step, the data were comprehensively analyzed through statistical
metrics, including means, standard deviations, minimums, 25th percentiles, medians,
75th percentiles, and maximums. Boxplots serve as an exploratory tool for identifying
such outliers in this step. Once outliers of 0.007% are identified, the strategy for imputa-
tion involves replacing these values with the nearest calculated boundary, which in our
study was defined as the mean േ three times the standard deviation. This ensures that
the data’s integrity is maintained, avoiding the introduction of arbitrary values. Only the
upper boundary replacement is employed in contexts where negative values are not fea-
sible, such as in certain physical measurements. Post-imputation, the dataset is character-
ized by the alignment of extreme values with the established thresholds, thus mitigating
their skewing effect. Finally, we normalized the data using min–max scaling, which re-
scales the data without distorting differences in the ranges or values. This ensures that the
scale of the features does not bias the performance of the learning algorithms. By system-
atically addressing temporal data, eliminating superfluous features, and standardizing

Figure 11. Pearson correlation heatmap for the collected data.

The data preprocessing was created through several steps, as shown in Figure 12,
to transform and standardize the raw input data, facilitate subsequent analyses, and
ensure that the information was presented in a format conducive to accurate and efficient
processing. To make the data cohesive with a continuous index, the preprocessing workflow
starts by creating a new feature called combined_datetime, formed by concatenating the
day and time columns and converting them into datetime objects, streamlining analysis
by consolidating date and time information into a single timestamp. We dropped the
redundant columns from the DataFrame during the second step to declutter the dataset
and minimize usage memory. The combined_datetime column is then repositioned in the
third step to be established as a primary index of temporal reference. Through the fourth
step, we created a new feature named time_difference, which is generated by subtracting
the minimum datetime value in the combined_datetime column from all the datetime entries
within the same column, then converting them to total seconds and combining them into a
single cohesive DataFrame at the fifth step. This process provides a continuous, numeric
measure of the time elapsed since the beginning of data collection, facilitates time-series
modeling, and assists in identifying trends and patterns over time. Further, it emphasizes
the dataset’s chronological sequence, which is crucial for any form of temporal analysis,
including forecasting and regression modeling.

Batteries 2024, 10, 89 21 of 36

the dataset structure, the preprocessing steps performed laid the groundwork for rigorous
data-driven exploration and modeling of battery performance characteristics.

Figure 12. Data preprocessing workflow.

To facilitate a nuanced assessment of the proposed model’s efficacy and generaliza-
tion capabilities, the dataset underwent partitioning into two distinct subsets, employing
the widely endorsed 80/20 ratio. There are several data-split approaches that were used,
such as the 80/20 or k-fold methodologies. In fact, k-fold cross-validation might reduce
the variance of the model performance estimate by using different subsets of the data for
training and validation. However, training models like LSTM, transformers, and deep au-
toencoders will be computationally expensive. In this study, we utilized the 80/20 split
strategy to split the data randomly. This procedural approach entails allocating 80% of the
data to the training set for model training while reserving the remaining 20% for the test
set. In addition, we used the random seed concept to always use the same data in each
iteration, irrespective of the randomness of the data. The 80/20 train–test split helped us
provide a reliable estimate of model performance, considering our dataset was large
enough. Given the diverse set of models, we prioritized ensuring that complex models
like deep neural networks did not overfit a smaller training set, which could be a risk with
repeated training on slightly different data subsets in k-fold cross-validation.

4.2. Linear Regression Model
The architecture of a linear regression model is straightforward, consisting of a single

layer that represents the linear equation y = wx + b, where w represents the weights or
coefficients, x represents the input features, and b represents the bias or intercept. The
input to the model is the feature vector, which includes all the independent variables used
for prediction. Meanwhile, the output is a single value representing the model’s prediction
for the dependent variable. This value is calculated by applying the linear equation to the
input features. During the compilation of a linear regression model, a loss function such
as mean squared error (MSE) is used to measure how well the model predicts the depend-
ent variable. The model is trained using an optimization algorithm like gradient descent
to minimize this loss function by adjusting the weights and bias. Using the scikit-learn
library, Python code was written to implement our linear regression model. Further, the
model was trained using the .fit() method, and predictions were made with the .pre-
dict() method.

4.3. Random Forest Regression Model
In this study, the random forest regressor was chosen, a toolkit from Scikit-learn, to

plant our forest of 100 trees. Firstly, a bootstrapped sample of the training data is gener-
ated. This sample is the same size as the original training set but is drawn with replace-
ment, meaning some observations may be repeated while others are left out (known as
out-of-bag instances). We observed in this study that raising the number of trees beyond
the 100 threshold yields diminishing improvements in prediction accuracy and increases
runtime. In the following step, each tree is grown on its bootstrapped sample. At each
node, a random subset of features is chosen from the full feature set. The algorithm then
starts to identify the best split from this subset based on the criterion of minimizing vari-
ance within the nodes created by the split. In the next step, the trees are grown to their
maximum length unless other stopping criteria are met, such as a minimum number of
samples required to split a node further or a minimum number of samples required to be

Figure 12. Data preprocessing workflow.

Outlier detection and imputation are critical steps in the data preprocessing for statis-
tical analysis and predictive modeling. Outliers can significantly impact the results and
interpretations of analyses, often skewing the distribution and influencing parameter esti-
mates. During the sixth step, the data were comprehensively analyzed through statistical
metrics, including means, standard deviations, minimums, 25th percentiles, medians, 75th
percentiles, and maximums. Boxplots serve as an exploratory tool for identifying such
outliers in this step. Once outliers of 0.007% are identified, the strategy for imputation

Batteries 2024, 10, 89 20 of 35

involves replacing these values with the nearest calculated boundary, which in our study
was defined as the mean ± three times the standard deviation. This ensures that the data’s
integrity is maintained, avoiding the introduction of arbitrary values. Only the upper
boundary replacement is employed in contexts where negative values are not feasible,
such as in certain physical measurements. Post-imputation, the dataset is characterized
by the alignment of extreme values with the established thresholds, thus mitigating their
skewing effect. Finally, we normalized the data using min–max scaling, which rescales the
data without distorting differences in the ranges or values. This ensures that the scale of
the features does not bias the performance of the learning algorithms. By systematically
addressing temporal data, eliminating superfluous features, and standardizing the dataset
structure, the preprocessing steps performed laid the groundwork for rigorous data-driven
exploration and modeling of battery performance characteristics.

To facilitate a nuanced assessment of the proposed model’s efficacy and generalization
capabilities, the dataset underwent partitioning into two distinct subsets, employing the
widely endorsed 80/20 ratio. There are several data-split approaches that were used, such
as the 80/20 or k-fold methodologies. In fact, k-fold cross-validation might reduce the
variance of the model performance estimate by using different subsets of the data for
training and validation. However, training models like LSTM, transformers, and deep
autoencoders will be computationally expensive. In this study, we utilized the 80/20 split
strategy to split the data randomly. This procedural approach entails allocating 80% of the
data to the training set for model training while reserving the remaining 20% for the test set.
In addition, we used the random seed concept to always use the same data in each iteration,
irrespective of the randomness of the data. The 80/20 train–test split helped us provide a
reliable estimate of model performance, considering our dataset was large enough. Given
the diverse set of models, we prioritized ensuring that complex models like deep neural
networks did not overfit a smaller training set, which could be a risk with repeated training
on slightly different data subsets in k-fold cross-validation.

4.2. Linear Regression Model

The architecture of a linear regression model is straightforward, consisting of a single
layer that represents the linear equation y = wx + b, where w represents the weights or
coefficients, x represents the input features, and b represents the bias or intercept. The input
to the model is the feature vector, which includes all the independent variables used for
prediction. Meanwhile, the output is a single value representing the model’s prediction for
the dependent variable. This value is calculated by applying the linear equation to the input
features. During the compilation of a linear regression model, a loss function such as mean
squared error (MSE) is used to measure how well the model predicts the dependent variable.
The model is trained using an optimization algorithm like gradient descent to minimize this
loss function by adjusting the weights and bias. Using the scikit-learn library, Python code
was written to implement our linear regression model. Further, the model was trained using
the .fit() method, and predictions were made with the .predict() method.

4.3. Random Forest Regression Model

In this study, the random forest regressor was chosen, a toolkit from Scikit-learn,
to plant our forest of 100 trees. Firstly, a bootstrapped sample of the training data is
generated. This sample is the same size as the original training set but is drawn with
replacement, meaning some observations may be repeated while others are left out (known
as out-of-bag instances). We observed in this study that raising the number of trees beyond
the 100 threshold yields diminishing improvements in prediction accuracy and increases
runtime. In the following step, each tree is grown on its bootstrapped sample. At each node,
a random subset of features is chosen from the full feature set. The algorithm then starts to
identify the best split from this subset based on the criterion of minimizing variance within
the nodes created by the split. In the next step, the trees are grown to their maximum length
unless other stopping criteria are met, such as a minimum number of samples required to

Batteries 2024, 10, 89 21 of 35

split a node further or a minimum number of samples required to be at a leaf node. Once
the training process is complete, the model makes predictions by averaging the predictions
of 100 trees. For a regression task, each tree predicts a numerical value for the given input,
and the forest’s output is the average of these values, which tends to be more accurate and
robust than individual tree predictions.

4.4. Neural Network Model

The proposed neural network model architecture for the SoC application is character-
ized by an input layer that accepts a 12-dimensional feature vector, followed by two hidden
layers, each with 32 neurons, and a final output layer that generates a single continuous
output value. The information on the structure and process flow is illustrated in Figure 13.
The input layer is implicitly defined by the first dense layer of the model, which specifies
the input shape to match the 12 features of the input data. This layer is essential for adapt-
ing the model to the specific structure of the dataset. The proposed network incorporates
two hidden dense layers with 32 neurons each. These layers employ the rectified linear
unit (ReLU) activation function, which introduces non-linearity into the model, allowing it
to learn complex patterns and interactions between the input features. The output layer
consists of a single neuron with a linear activation function. This setup is chosen to produce
a single scalar value as the output, fitting the requirements of a regression task.

Batteries 2024, 10, 89 22 of 36

at a leaf node. Once the training process is complete, the model makes predictions by av-
eraging the predictions of 100 trees. For a regression task, each tree predicts a numerical
value for the given input, and the forest’s output is the average of these values, which
tends to be more accurate and robust than individual tree predictions.

4.4. Neural Network Model
The proposed neural network model architecture for the SoC application is charac-

terized by an input layer that accepts a 12-dimensional feature vector, followed by two
hidden layers, each with 32 neurons, and a final output layer that generates a single con-
tinuous output value. The information on the structure and process flow is illustrated in
Figure 13. The input layer is implicitly defined by the first dense layer of the model, which
specifies the input shape to match the 12 features of the input data. This layer is essential
for adapting the model to the specific structure of the dataset. The proposed network in-
corporates two hidden dense layers with 32 neurons each. These layers employ the recti-
fied linear unit (ReLU) activation function, which introduces non-linearity into the model,
allowing it to learn complex patterns and interactions between the input features. The
output layer consists of a single neuron with a linear activation function. This setup is
chosen to produce a single scalar value as the output, fitting the requirements of a regres-
sion task.

Figure 13. Neural network structure used in this paper for the SoC application.

The input layer is implicitly defined by the first dense layer of the model, which spec-
ifies the input shape to match the 12 features of the input data. This layer is essential for
adapting the model to the specific structure of the dataset. The ‘none’ dimension is a place-
holder for any batch size, which allows us to feed the network any number of samples at
once during training or prediction. This flexibility in the number of samples allows us to
experiment with many different training combinations. The 12 indicates that each sample
in our dataset has 12 features. This is the dimensionality of the input data that the network
expects. This term has the same function for the following models as well. The proposed
network incorporates two hidden dense layers with 32 neurons each. These layers employ
the rectified linear unit (ReLU) activation function, which introduces non-linearity into
the model, allowing it to learn complex patterns and interactions between the input fea-
tures. The output layer consists of a single neuron with a linear activation function. This

Figure 13. Neural network structure used in this paper for the SoC application.

The input layer is implicitly defined by the first dense layer of the model, which
specifies the input shape to match the 12 features of the input data. This layer is essential
for adapting the model to the specific structure of the dataset. The ‘none’ dimension is a
placeholder for any batch size, which allows us to feed the network any number of samples
at once during training or prediction. This flexibility in the number of samples allows
us to experiment with many different training combinations. The 12 indicates that each
sample in our dataset has 12 features. This is the dimensionality of the input data that the
network expects. This term has the same function for the following models as well. The
proposed network incorporates two hidden dense layers with 32 neurons each. These layers
employ the rectified linear unit (ReLU) activation function, which introduces non-linearity
into the model, allowing it to learn complex patterns and interactions between the input
features. The output layer consists of a single neuron with a linear activation function. This

Batteries 2024, 10, 89 22 of 35

setup is chosen to produce a single scalar value as the output, fitting the requirements of a
regression task.

The model is compiled with the Adam optimizer, an algorithm for first-order gradient-
based optimization of stochastic objective functions. The loss function is set to mean
squared error, aligning with the regression objective to minimize the average of the squares
of the differences between the predicted and actual values. An epoch represents a single
pass through the entire training dataset, while the batch size dictates the number of samples
processed before the model is updated. We fit and train the model on the training data
over 100 epochs with a batch size of 32. The Keras library’s sequential model is utilized to
establish the architecture, ensuring an intuitive and flexible environment for building and
training the neural network. TensorFlow’s robust back end facilitates efficient training and
model evaluation, rendering the neural network a potent tool for regression analysis.

4.5. Autoencoder Model

The proposed model leverages an autoencoder structure for feature extraction, fol-
lowed by a regression layer for prediction. This approach combines the strengths of
deep representation learning with the specificity of regression analysis. The autoencoder
comprises symmetrical encoding and decoding pathways, interspersed with batch normal-
ization and dropout layers, and culminates in a regression output. Figure 14 illustrates the
structure of the AE used in the SOC application in this paper.

Batteries 2024, 10, 89 24 of 36

Figure 14. Autoencoder structure used in this paper for the SoC application.

The model is compiled with the Adam optimizer, selected for its adaptive learning
rate capabilities, which adjust the learning rate for each network weight based on the gra-
dients’ first and second moments. The loss function is set to MSE, quantifying the average
of the errors’ squares between the predicted and actual values, with MAE providing an
additional interpretive metric of average absolute errors. The constructed deep autoen-
coder demonstrates a sophisticated dimensionality reduction and predictive modeling
synthesis. The architecture’s deliberate layering and regularization techniques, optimized
with a robust learning algorithm, equip the model to learn efficient data representations
and perform regression analysis effectively.

4.6. LSTM Model
The proposed LSTM-based model employs a deep architecture to process sequences

and predict continuous outcomes. The LSTM model is fine-tuned using a specific config-
uration of hyperparameters and evaluated for its performance using mean squared error
(MSE) as a loss function, under the optimization of the Adam algorithm. This study details
the architecture of a sequential LSTM model tailored for regression in time-series forecast-
ing, focusing on its parameterization and the empirical rationale for hyperparameter
choices. The structure of the LSTM model used in this paper focusing on SOC applications
is illustrated in Figure 15.

The sequential LSTM model commences with an LSTM layer containing 300 neurons.
This layer is characterized by parameters that control the gates responsible for regulating
the flow of information, including cell states and hidden states. The ReLU activation func-
tion introduces non-linearity, aiding the model in capturing complex relationships. To
curtail overfitting and encourage robust learning, a dropout of 0.25 is applied, randomly
turning off a proportion of neurons during training, along with a recurrent dropout of the
same rate to regularize the internal connections of the LSTM. Following the LSTM layer

Figure 14. Autoencoder structure used in this paper for the SoC application.

The encoder begins with an input layer designed to receive a feature vector of dimen-
sions. It is followed by a fully connected layer with 128 neurons employing the rectified

Batteries 2024, 10, 89 23 of 35

linear unit (ReLU) activation function, promoting non-linearity in the learned representa-
tions. To stabilize the learning process and accelerate convergence, a batch normalization
layer follows, normalizing the activations from the previous layer. A subsequent dropout
layer with a rate of 0.3 is employed to enhance generalization by randomly omitting a
subset of the features during training, thus preventing overfitting. The encoding process
continues by dimensionally compressing the data through another dense layer, this time
reducing the feature space to 64 dimensions, again followed by batch normalization and
dropout layers for regularization. At the heart of the autoencoder lies the bottleneck layer.
This dense layer, comprising 32 neurons, represents the most compressed form of the input
data. The bottleneck serves as a critical juncture where the model is forced to learn the
most salient features of the data.

Mirroring the encoder, the decoding pathway begins with a dense layer of 64 neurons
with ReLU activation to initiate the reconstruction of the original input from its compressed
form. Batch normalization and dropout layers are again utilized to maintain the model’s
robustness and mitigate overfitting. The reconstruction continues by expanding the feature
representation back to 128 dimensions through another dense layer, similarly, followed
by batch normalization and dropout for consistency in regularization. The model tran-
sitions from the unsupervised architecture of the autoencoder to supervised learning at
the output layer. A final dense layer with a single neuron employs a linear activation
function to produce the predicted continuous value, aligning the model’s output with the
regression task.

The model is compiled with the Adam optimizer, selected for its adaptive learning rate
capabilities, which adjust the learning rate for each network weight based on the gradients’
first and second moments. The loss function is set to MSE, quantifying the average of
the errors’ squares between the predicted and actual values, with MAE providing an
additional interpretive metric of average absolute errors. The constructed deep autoencoder
demonstrates a sophisticated dimensionality reduction and predictive modeling synthesis.
The architecture’s deliberate layering and regularization techniques, optimized with a
robust learning algorithm, equip the model to learn efficient data representations and
perform regression analysis effectively.

4.6. LSTM Model

The proposed LSTM-based model employs a deep architecture to process sequences
and predict continuous outcomes. The LSTM model is fine-tuned using a specific configu-
ration of hyperparameters and evaluated for its performance using mean squared error
(MSE) as a loss function, under the optimization of the Adam algorithm. This study details
the architecture of a sequential LSTM model tailored for regression in time-series fore-
casting, focusing on its parameterization and the empirical rationale for hyperparameter
choices. The structure of the LSTM model used in this paper focusing on SOC applications
is illustrated in Figure 15.

The sequential LSTM model commences with an LSTM layer containing 300 neurons.
This layer is characterized by parameters that control the gates responsible for regulating
the flow of information, including cell states and hidden states. The ReLU activation
function introduces non-linearity, aiding the model in capturing complex relationships. To
curtail overfitting and encourage robust learning, a dropout of 0.25 is applied, randomly
turning off a proportion of neurons during training, along with a recurrent dropout of the
same rate to regularize the internal connections of the LSTM. Following the LSTM layer
is a cascade of dense layers with descending neuron counts: 300, 200, 100, and 50. These
layers progressively refine the features extracted by the LSTM layer, each undergoing a
ReLU transformation. The culmination of this series is a single-neuron output layer with a
linear activation, yielding the final regression output.

The hyperparameters, including the number of neurons in the LSTM and dense layers,
dropout rates, and a batch size of 64, were meticulously selected to balance the model’s
capacity to learn from the data without overfitting. The batch size, in particular, was chosen

Batteries 2024, 10, 89 24 of 35

to optimize the trade-off between the stability of the gradient estimation and computational
efficiency. Adam was utilized as the optimizer, renowned for its adaptive learning rate
capabilities that adjust based on the gradients’ moving averages. This choice ensures that
the learning process is efficient and dynamic, adapting to the topology of the error surface.

Batteries 2024, 10, 89 25 of 36

is a cascade of dense layers with descending neuron counts: 300, 200, 100, and 50. These
layers progressively refine the features extracted by the LSTM layer, each undergoing a
ReLU transformation. The culmination of this series is a single-neuron output layer with
a linear activation, yielding the final regression output.

Figure 15. LSTM structure used in this paper for the SOC application.

The hyperparameters, including the number of neurons in the LSTM and dense lay-
ers, dropout rates, and a batch size of 64, were meticulously selected to balance the
model’s capacity to learn from the data without overfitting. The batch size, in particular,
was chosen to optimize the trade-off between the stability of the gradient estimation and
computational efficiency. Adam was utilized as the optimizer, renowned for its adaptive
learning rate capabilities that adjust based on the gradients’ moving averages. This choice
ensures that the learning process is efficient and dynamic, adapting to the topology of the
error surface.

4.7. Transformer Model
The structure of the transformer model used in this paper focusing on SOC applica-

tions is illustrated in Figure 16. The model’s architecture was established to process an
input layer matching the feature vector’s dimensionality. A subsequent dense layer ele-
vates the data into a higher-dimensional attribute space, a process governed by a set of
parameters, including weights and biases. In this model, the hyperparameters include:
• Number of Attention Heads: This dictates how many different parts of the input se-

quence are attended to simultaneously. Set at 32, this allows the model to simultane-
ously attend to various segments of the input sequence, providing a rich and diverse
representation of the input space.

• Embedding Dimensionality (d_model): This determines the size of the input projec-
tion space, impacting the model’s capacity to capture information. With a value of 64,
it provides a balance between model complexity and computational efficiency, en-
suring sufficient representation capacity without incurring prohibitive computa-
tional costs.

Figure 15. LSTM structure used in this paper for the SOC application.

4.7. Transformer Model

The structure of the transformer model used in this paper focusing on SOC applications
is illustrated in Figure 16. The model’s architecture was established to process an input
layer matching the feature vector’s dimensionality. A subsequent dense layer elevates the
data into a higher-dimensional attribute space, a process governed by a set of parameters,
including weights and biases. In this model, the hyperparameters include:

• Number of Attention Heads: This dictates how many different parts of the input
sequence are attended to simultaneously. Set at 32, this allows the model to simultane-
ously attend to various segments of the input sequence, providing a rich and diverse
representation of the input space.

• Embedding Dimensionality (d_model): This determines the size of the input projection
space, impacting the model’s capacity to capture information. With a value of 64, it
provides a balance between model complexity and computational efficiency, ensuring
sufficient representation capacity without incurring prohibitive computational costs.

• Feedforward Network Dimensionality (dff): This influences the complexity of trans-
formations within the feedforward network.

• Dropout Rate: This controls the dropout regularization technique to prevent overfitting.
The dimensionality of 32 allows the network to perform a series of transformations
that are complex enough to capture non-linear relationships but not so complex as to
overfit the training data.

• Learning Rate: This affects the rate at which the model updates its parameters during
training. A dropout rate of 0.1 helps in regularizing the model, encouraging the
development of more robust features that are not reliant on any small subset of
the neurons.

Batteries 2024, 10, 89 25 of 35

• Batch Size: This specifies the number of samples that are propagated through the
network before the model’s parameters are updated. We use a smaller batch size of
32 because it is less demanding on memory resources and makes it feasible to train a
complex model such as a transformer.

• Epochs: This defines the number of complete passes through the entire training dataset.
We use 10 epochs as it is less demanding on memory resources and makes it feasible
to train a complex model such as a transformer.

Batteries 2024, 10, 89 26 of 36

• Feedforward Network Dimensionality (dff): This influences the complexity of trans-
formations within the feedforward network.

• Dropout Rate: This controls the dropout regularization technique to prevent overfit-
ting. The dimensionality of 32 allows the network to perform a series of transfor-
mations that are complex enough to capture non-linear relationships but not so com-
plex as to overfit the training data.

• Learning Rate: This affects the rate at which the model updates its parameters during
training. A dropout rate of 0.1 helps in regularizing the model, encouraging the de-
velopment of more robust features that are not reliant on any small subset of the
neurons.

• Batch Size: This specifies the number of samples that are propagated through the
network before the model’s parameters are updated. We use a smaller batch size of
32 because it is less demanding on memory resources and makes it feasible to train a
complex model such as a transformer.

• Epochs: This defines the number of complete passes through the entire training da-
taset. We use 10 epochs as it is less demanding on memory resources and makes it
feasible to train a complex model such as a transformer.
Due to its adaptive learning rate properties, the model is compiled with an Adam

optimizer, a hyperparameter. The loss function, mean squared error, is selected to quan-
tify the discrepancy between the predicted and actual values. Training proceeds across
multiple epochs, with the model’s parameters being iteratively refined to minimize the
loss function. Adam’s adaptive learning rates and efficient navigation of parameter
spaces, combined with MSE’s direct correspondence with the regression objective, result
in a synergistic effect that promotes accurate and reliable predictive modeling.

Figure 16. Transformer structure used in this paper for the SOC application. Figure 16. Transformer structure used in this paper for the SOC application.

Due to its adaptive learning rate properties, the model is compiled with an Adam
optimizer, a hyperparameter. The loss function, mean squared error, is selected to quantify
the discrepancy between the predicted and actual values. Training proceeds across multiple
epochs, with the model’s parameters being iteratively refined to minimize the loss function.
Adam’s adaptive learning rates and efficient navigation of parameter spaces, combined
with MSE’s direct correspondence with the regression objective, result in a synergistic effect
that promotes accurate and reliable predictive modeling.

5. Results and Discussion

Before explaining the results, we must highlight the major differences between the
proposed models in terms of their tunability, model or memory size, core parameters,
number of layers, and type, as presented in Table 1. Typically, all deep learning models
will have hidden layers, and the correlation between these layers is determined based on
predefined mathematical equations; however, the situation is different with regression
models. For instance, NNs and autoencoders have dense layers, while the LSTM has
its own LSTM unit, and transformers are known for their multi-head attention units. In
contrast, linear regression has no layers at all, while random forest regression is built
based on trees, and the decision aggregated through these trees is based on the degree of
certainty. In this regard, the details of these layers, such as their numbers, do not apply to
the regression models.

Batteries 2024, 10, 89 26 of 35

Table 1. Detailed structure of the proposed data-driven models.

LR RFR NN AE LSTM TR

Layer types N/A Decision trees Dense Dense, input, dropout,
batch normalization LSTM MultiHeadAttention

Number of layers N/A N/A 2 dense layers
Multiple (encoder,
decoder, dropout,

normalization)

Multiple with sequential
model

Custom layers in
transformer

Neurons per layer N/A N/A 32 neurons each Varies per layer Varies per layer -

Core parameters - N estimation = 100 Dense layers with
32 neurons each

Input, dense, dropout,
batch normalization

layers
LSTM layer D_model. Num_heads

in MultiHeadAttention

Activation functions - - ReLU ReLU Sigmoid Not used

Regularization - - - Dropout, batch
normalization - -

Learning rate optimizer - - Adam rmsprop -

Loss function - - MSE MSE MSE MSE

Dropout/batch
normalization N/A N/A Both used N/A N/A

Hyperparameter
tunability

Limited
(mostly data

preprocessing)

High (number of trees,
depth, etc.)

High (layer types,
number of neurons,

activations)

High (layer types,
encoding, decoding,

activations)

High (number of units,
return sequences, etc.)

High (attention heads,
model size, etc.)

Model size (memory) Amall Large (due to multiple
trees)

Varies (depends on the
number of layers and

neurons)

Varies (complex
architecture)

Varies (depends on
sequence length and

complexity)

Large (due to complex
architecture)

Batteries 2024, 10, 89 27 of 35

Another critical aspect to differentiate between these models is their memory size and
their ability to tune their hyperparameters. Since all the models, except the linear regression
one, include many layers, the possibility of tuning more parameters can exist. For instance,
the total number of layers, neurons per layer, and activation functions are the parameters
for the NN and AE, while the total number of trees, their depth, and estimation cycles
are associated with RFR models. Further, the number of attention heads and the return
sequences are related to the transformer and LSTM models, respectively. An additional
important aspect of the comparison is the size of the model and its complexity. As the
LR typically has no layers, it is considered the least complex model, while reducing the
number of layers and neurons can significantly reduce the complexity of the NN and LSTM
models. On the other hand, the complex architectures of the AE, RER, and transformer
models are inevitable, although they are known for their high precision. Other additional
details for each model are illustrated in Table 1.

We assessed the performance of our models by plotting the models’ anticipated SOC
values against the actual measurements on the dataset, as depicted in Figure 17. The
resultant scatter plots enable visual evaluation of the agreement between predictions and
observed values. The proximity of scattered data points to the diagonal 45-degree red line
indicates each model’s efficacy. Furthermore, we computed essential regression metrics,
summarized in Table 2, including mean squared error (MSE), mean absolute error (MAE),
and R-squared values, to provide a detailed comparison of the models and their efficiency
with a common baseline. From a closer look at Figure 17, besides Table 2, we can see clearly
that the six models are able, in general, to capture the SoC pattern within the provided
dataset. However, in an in-depth assessment, we can notice the remarkable performance of
the RFR model, while the LR model is the worst. In between, the LSTM and transformer
models can provide precise estimation, followed by AE and NN, respectively.

Batteries 2024, 10, 89 30 of 36

We assessed the performance of our models by plotting the models’ anticipated SOC
values against the actual measurements on the dataset, as depicted in Figure 17. The re-
sultant scatter plots enable visual evaluation of the agreement between predictions and
observed values. The proximity of scattered data points to the diagonal 45-degree red line
indicates each model’s efficacy. Furthermore, we computed essential regression metrics,
summarized in Table 2, including mean squared error (MSE), mean absolute error (MAE),
and R-squared values, to provide a detailed comparison of the models and their efficiency
with a common baseline. From a closer look at Figure 17, besides Table 2, we can see
clearly that the six models are able, in general, to capture the SoC pattern within the pro-
vided dataset. However, in an in-depth assessment, we can notice the remarkable perfor-
mance of the RFR model, while the LR model is the worst. In between, the LSTM and
transformer models can provide precise estimation, followed by AE and NN, respectively.

Figure 17. SoC estimation results for the proposed models: (a) LR; (b) NN; (c) AE; (d) transformer;
(e) LSTM; (f) RFR.

Table 2. Performance comparison.

 LR NN AE TR LSTM RFR
MSE 33.7637442 19.1336108 13.328750 4.4526869 3.5021456 0.0002765
MAE 4.5823155 2.63253629 2.1715623 1.1486983 0.0139719 0.0007379

R-squared 0.9491749 0.97119789 0.9833935 0.9931919 0.9989747 0.9999996

While the LR model, shown in Figure 17a, basically linearizes the input dataset to
estimate the SoC, the non-linearity characteristics of the battery cannot be captured easily
with this model. This is clear from its having the lowest R2 value of 0.949 among the six
models. However, LR can serve as a baseline for other models with a faster training time.
An augmentation in SoC prediction accuracy becomes evident upon transitioning to a
non-linear NN model. The scatter plot in Figure 17b illustrates a closer alignment between
forecasted and observed values when contrasting neural network predictions with

Figure 17. SoC estimation results for the proposed models: (a) LR; (b) NN; (c) AE; (d) transformer;
(e) LSTM; (f) RFR.

Batteries 2024, 10, 89 28 of 35

Table 2. Performance comparison.

LR NN AE TR LSTM RFR

MSE 33.7637442 19.1336108 13.328750 4.4526869 3.5021456 0.0002765

MAE 4.5823155 2.63253629 2.1715623 1.1486983 0.0139719 0.0007379

R-squared 0.9491749 0.97119789 0.9833935 0.9931919 0.9989747 0.9999996

While the LR model, shown in Figure 17a, basically linearizes the input dataset to
estimate the SoC, the non-linearity characteristics of the battery cannot be captured easily
with this model. This is clear from its having the lowest R2 value of 0.949 among the
six models. However, LR can serve as a baseline for other models with a faster training
time. An augmentation in SoC prediction accuracy becomes evident upon transitioning
to a non-linear NN model. The scatter plot in Figure 17b illustrates a closer alignment
between forecasted and observed values when contrasting neural network predictions with
authentic SoC values. This improvement is corroborated by reduced regression metrics,
with an MSE of 19.13 and an MAE of 2.63 compared to the LR model. The heightened
R-squared value of 0.97 indicates that the neural network model can elucidate a more
significant proportion of the variance in actual SoC predicated on the input factors. The
intricate layered architecture of the neural network facilitates the modeling of higher-order
interactions and the discernment of patterns.

The AE model is typically used for unsupervised learning tasks like dimensionality
reduction. In our study, we adapted it for the regression task of SoC estimation. Batch
normalization in each layer promotes quick and stable learning, and the dropout at 0.3 aids
in generalizing the model. However, its performance, as shown in Figure 17c, resulted in a
lower R2 value of 0.983, indicating less accuracy in SoC estimation than the transformer
model. Generally, transformer models are used for natural language processing tasks. Still,
they perform better than expected when used for regression tasks due to being inherently
good at handling sequential data, which is common in many regression tasks. The attention
mechanism, a part of the transformer model, allows us to focus on different parts of the
input sequence, which can be beneficial in identifying complex relationships in the data.
The transformer model results, as shown in Figure 17d, demonstrated a high R-squared
value of 0.993, suggesting a better fit to the data than the AE model.

The LSTM architecture is specifically designed to capture long-term dependencies
in sequential data, an essential feature for accurately predicting SoC, which depends
significantly on past and current battery states. The LSTM model utilizes its inherent
strengths in processing time-series data, which are proven by its promising results. With
its ability to effectively address the vanishing gradient problem common in traditional
RNNs, the LSTM model performance, as illustrated in Figure 17e, achieved a high R-
squared value of 0.9989, indicating higher efficiency when compared to the transformer
model. In contrast to previously discussed models, the random forest regression model
stands among the most effective tools. Its superiority lies in its ability to accurately pre-
dict SoCs with high precision, as evidenced by its outstandingly low mean square error
(MSE) of less than 0.01%. This high level of accuracy can be attributed to the model’s
ability to handle complex, non-linear data relationships, which are common in battery
charge estimations.

This paper focuses on comparing different models for estimating the SoC in lithium-
ion batteries. This comparison, as shown in Table 2, essentially revolves around evaluating
which model performs the best and understanding the complexity levels of these models in
achieving similar results. To enhance the performance of simpler models like LR, one could
investigate feature extraction to identify more relevant predictors or create interaction
terms that better capture the relationships in the data. For models like NNs, improvements
could involve fine-tuning the network architecture, experimenting with different activation
functions, and employing regularization techniques to avoid overfitting. Regarding the

Batteries 2024, 10, 89 29 of 35

AE models, adapting the bottleneck layer to capturing essential data features is crucial. Its
compilation with the proper optimizer can ensure robust and effective training toward a
more precise SoC. Meanwhile, the transformer’s attention mechanism and the NN’s flexible
architecture are well-suited for modeling complicated systems, but they may require more
careful tuning to reduce the prediction spread and outliers. In our way to enhance the
LSTM model, we used one LSTM layer as input and subsequently kept adding more dense
layers until we hit a point where the errors started increasing. Also, when we implement
just LSTM layers, the results are worse than just utilizing dense layers.

6. Conclusions

The assessment of a battery’s capabilities crucially involves the estimation of state
of charge, with various methodologies, such as white, gray, and black box models and
data-driven approaches, being employed. This study aims to comprehensively compare six
widely utilized machine learning-based estimation techniques. The paper critically evalu-
ates these models’ architectural aspects, computational complexity, advantages, drawbacks,
and robustness validation. Utilizing actual measurements from diverse operating condi-
tions at the Energy Systems Research Laboratory (ESRL) at Florida International University,
the analysis is centered explicitly on the eFlex 52.8 V/5.4 kWh lithium iron phosphate
battery pack. This research contributes to a nuanced understanding of the efficacy and
suitability of these state-of-charge estimation techniques. The random forest regression
model is the most effective tool for estimating lithium-ion batteries’ SoC followed by the
LSTM neural network. While simpler models have the potential for improvement through
strategic adjustments, the choice of model hinges on task-specific requirements, balancing
accuracy with available computational resources. Despite the transformer model’s advan-
tages for time-series data, it was outperformed by the LSTM in this application, providing
a more accurate SoC estimation. Additionally, the autoencoder, not inherently designed for
regression tasks, exhibited reasonable performance similar to the transformer model. This
analysis underscores the importance of selecting a model tailored to data characteristics,
especially in the dynamic realm of lithium-ion battery SoC estimation.

Moving forward, this research will refine the validation methodology by adopting a
formal k-fold cross-validation approach with k = 5, ensuring a more robust evaluation of
the models’ performance. Moreover, the future research scope includes but is not limited to
the exploration of integrating hybrid models, advanced feature engineering techniques,
and transfer–domain adaptation methods, which will be undertaken to further improve the
accuracy and generalization capabilities of battery state-of-charge estimation. Furthermore,
investigation of the practical aspects of real-time implementation and deployment will
address challenges related to computational efficiency and scalability for seamless inte-
gration into battery management systems. Pursuing these avenues will advance the field
of battery management and contribute to the development of more reliable and efficient
energy storage solutions for diverse applications.

Author Contributions: Conceptualization, H.M.H. and S.M.S.H.R.; Data curation, H.M.H.; Formal
analysis, H.M.H., M.E. and A.D.; Investigation, H.M.H., M.E., A.D. and S.M.S.H.R.; Methodology,
H.M.H., M.E., A.D. and S.M.S.H.R.; Project administration, O.M.; Resources, H.M.H.; Software,
M.E. and A.D.; Supervision, O.M.; Validation, M.E. and A.D.; Visualization, H.M.H. and S.M.S.H.R.;
Writing—original draft, H.M.H. and S.M.S.H.R.; Writing—review and editing, H.M.H. and O.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Batteries 2024, 10, 89 30 of 35

References
1. Hussein, H.; Aghmadi, A.; Mohammed, O.A. Design and Analysis of Voltage Control for Islanded DC Microgrids Based on a

Fuzzy-PI Controller. In Proceedings of the 2023 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 19–21 April
2023; pp. 229–233.

2. Hussein, H.; Aghmadi, A.; Nguyen, T.L.; Mohammed, O. Hardware-in-the-Loop Implementation of a Battery System Charg-
ing/Discharging in Islanded DC Micro-Grid. In Proceedings of the SoutheastCon 2022, Mobile, AL, USA, 26 March–3 April 2022;
IEEE: Mobile, AL, USA, 2022; pp. 496–500.

3. Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and
estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [CrossRef]

4. Hu, X.; Zou, C.; Zhang, C.; Li, Y. Technological developments in batteries: A survey of principal roles, types, and management
needs. IEEE Power Energy Mag. 2017, 15, 20–31. [CrossRef]

5. Ng, M.-F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data-driven
machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [CrossRef]

6. Aghmadi, A.; Hussein, H.; Mohammed, O.A. Enhancing Energy Management System for a Hybrid Wind Solar Battery Based
Standalone Microgrid. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and
2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 6–9 June 2023; pp. 1–6.

7. Abdelrahman, M.S.; Hussein, H.; Mohammed, O.A. Rule-Based Power and Energy Management System for Shipboard Microgrid
with HESS To Mitigate Propulsion and Pulsed Load Fluctuations. In Proceedings of the 2023 IEEE Green Technologies Conference
(GreenTech), Denver, CO, USA, 19–21 April 2023; pp. 224–228.

8. Yang, R.; Xiong, R.; He, H.; Mu, H.; Wang, C. A novel method on estimating the degradation and state of charge of lithium-ion
batteries used for electrical vehicles. Appl. Energy 2017, 207, 336–345. [CrossRef]

9. Ali, M.U.; Zafar, A.; Nengroo, S.H.; Hussain, S.; Alvi, M.J.; Kim, H.-J. Towards a smarter battery management system for electric
vehicle applications: A critical review of lithium-ion battery state of charge estimation. Energies 2019, 12, 446. [CrossRef]

10. Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the art of lithium-ion battery SOC estimation for
electrical vehicles. Energies 2018, 11, 1820. [CrossRef]

11. Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC estimation for lithium-ion batteries: Review and future
challenges. Electronics 2017, 6, 102. [CrossRef]

12. Wu, B.; Widanage, W.D.; Yang, S.; Liu, X. Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence
for smart battery management systems. Energy AI 2020, 1, 100016. [CrossRef]

13. Hussein, H.; Aghmadi, A.; Abdelrahman, M.S.; Rafin, S.M.S.H.; Mohammed, O. A review of battery state of charge estimation
and management systems: Models and future prospective. WIREs Energy Environ. 2024, 13, e507. [CrossRef]

14. Vidal, C.; Malysz, P.; Kollmeyer, P.; Emadi, A. Machine learning applied to electrified vehicle battery state of charge and state of
health estimation: State-of-the-art. IEEE Access 2020, 8, 52796–52814. [CrossRef]

15. Lipu, M.H.; Hannan, M.A.; Hussain, A.; Ayob, A.; Saad, M.H.; Karim, T.F.; How, D.N. Data-driven state of charge estimation
of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 2020, 277, 124110.
[CrossRef]

16. How, D.N.T.; Hannan, M.A.; Hossain Lipu, M.S.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based
and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [CrossRef]

17. Ren, L.; Dong, J.; Wang, X.; Meng, Z.; Zhao, L.; Deen, M.J. A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion
Battery Remaining Useful Life. IEEE Trans. Ind. Inform. 2021, 17, 3478–3487. [CrossRef]

18. Vidal, C.; Kollmeyer, P.; Naguib, M.; Malysz, P.; Gross, O.; Emadi, A. Robust xev battery state-of-charge estimator design using a
feedforward deep neural network. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 2, 2872–2880. [CrossRef]

19. Jiao, M.; Wang, D.; Qiu, J. A GRU-RNN based momentum optimized algorithm for SOC estimation. J. Power Sources 2020,
459, 228051. [CrossRef]

20. Xu, C.; Zhang, E.; Jiang, K.; Wang, K. Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid
metal battery. Appl. Energy 2022, 327, 120091. [CrossRef]

21. Tan, X.; Zhan, D.; Lyu, P.; Rao, J.; Fan, Y. Online state-of-health estimation of lithium-ion battery based on dynamic parameter
identification at multi timescale and support vector regression. J. Power Sources 2021, 484, 229233. [CrossRef]

22. Liu, K.; Hu, X.; Zhou, H.; Tong, L.; Widanalage, D.; Marco, J. Feature analyses and modeling of lithium-ion battery manufacturing
based on random forest classification. IEEE/ASME Trans. Mechatron. 2021, 26, 2944–2955. [CrossRef]

23. Shen, H.; Zhou, X.; Wang, Z.; Wang, J. State of charge estimation for lithium-ion battery using Transformer with immersion and
invariance adaptive observer. J. Energy Storage 2022, 45, 103768. [CrossRef]

24. Bosello, M.; Falcomer, C.; Rossi, C.; Pau, G. To Charge or to Sell? EV Pack Useful Life Estimation via LSTMs, CNNs, and
Autoencoders. Energies 2023, 16, 2837. [CrossRef]

25. Audin, P.; Jorge, I.; Mesbahi, T.; Samet, A.; Beuvron, F.D.B.D.; Bone, R. Auto-encoder LSTM for Li-ion SOH prediction: A
comparative study on various benchmark datasets. In Proceedings of the 20th IEEE International Conference on Machine
Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021; pp. 1529–1536.

https://doi.org/10.1016/j.jpowsour.2013.05.040
https://doi.org/10.1109/MPE.2017.2708812
https://doi.org/10.1038/s42256-020-0156-7
https://doi.org/10.1016/j.apenergy.2017.05.183
https://doi.org/10.3390/en12030446
https://doi.org/10.3390/en11071820
https://doi.org/10.3390/electronics6040102
https://doi.org/10.1016/j.egyai.2020.100016
https://doi.org/10.1002/wene.507
https://doi.org/10.1109/ACCESS.2020.2980961
https://doi.org/10.1016/j.jclepro.2020.124110
https://doi.org/10.1109/ACCESS.2019.2942213
https://doi.org/10.1109/TII.2020.3008223
https://doi.org/10.4271/2020-01-1181
https://doi.org/10.1016/j.jpowsour.2020.228051
https://doi.org/10.1016/j.apenergy.2022.120091
https://doi.org/10.1016/j.jpowsour.2020.229233
https://doi.org/10.1109/TMECH.2020.3049046
https://doi.org/10.1016/j.est.2021.103768
https://doi.org/10.3390/en16062837

Batteries 2024, 10, 89 31 of 35

26. Hossain Lipu, M.S.; Karim, T.F.; Ansari, S.; Miah, M.S.; Rahman, M.S.; Meraj, S.T.; Vijayaraghavan, R.R. Intelligent SOX estimation
for automotive battery management systems: State-of-the-art deep learning approaches, open issues, and future research
opportunities. Energies 2022, 16, 23. [CrossRef]

27. Yang, K.; Tang, Y.; Zhang, S.; Zhang, Z. A deep learning approach to state of charge estimation of lithium-ion batteries based on
dual-stage attention mechanism. Energy 2022, 244, 123233. [CrossRef]

28. Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical review on the battery state of charge estimation methods for electric vehicles.
IEEE Access 2017, 6, 1832–1843. [CrossRef]

29. Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid
vehicles. J. Power Sources 2014, 258, 321–339. [CrossRef]

30. Amir, U.; Tao, L.; Zhang, X.; Saeed, M.; Hussain, M. A novel SOC estimation method for lithium ion battery based on improved
adaptive PI observer. In Proceedings of the 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship
Propulsion and Road Vehicles & International Transportation Electrification Conference, Nottingham, UK, 7–9 November 2018;
pp. 1–5.

31. Ghaeminezhad, N.; Ouyang, Q.; Wei, J.; Xue, Y.; Wang, Z. Review on state of charge estimation techniques of lithium-ion batteries:
A control-oriented approach. J. Energy Storage 2023, 72, 108707. [CrossRef]

32. Barai, A.; Chouchelamane, G.H.; Guo, Y.; McGordon, A.; Jennings, P. A study on the impact of lithium-ion cell relaxation on
electrochemical impedance spectroscopy. J. Power Sources 2015, 280, 74–80. [CrossRef]

33. Wu, L.; Lyu, Z.; Huang, Z.; Zhang, C.; Wei, C. Physics-based battery SOC estimation methods: Recent advances and future
perspectives. J. Energy Chem. 2023, 89, 27–40. [CrossRef]

34. Waag, W.; Kabitz, S.; Sauer, D.U. Experimental investigation of the lithium-ion battery impedance characteristic at various
conditions and aging states and its influence on the application. Appl. Energy 2013, 102, 885–897. [CrossRef]

35. Xu, Z.; Wang, J.; Lund, P.D.; Zhang, Y. Co-estimating the state of charge and health of lithium batteries through combining a
minimalist electrochemical model and an equivalent circuit model. Energy 2022, 240, 122815. [CrossRef]

36. Yang, C.; Wang, X.; Fang, Q.; Dai, H.; Cao, Y.; Wei, X. An online SOC and capacity estimation method for aged lithium-ion battery
pack considering cell inconsistency. J. Energy Storage 2020, 29, 101250. [CrossRef]

37. Luzi, M.; Mascioli, F.M.F.; Paschero, M.; Rizzi, A. A white-box equivalent neural network circuit model for SoC estimation of
electrochemical cells. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 371–382. [CrossRef] [PubMed]

38. Peng, J.; Luo, J.; He, H.; Lu, B. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion
batteries. Appl. Energy 2019, 253, 113520. [CrossRef]

39. Fleischer, C.; Waag, W.; Heyn, H.M.; Sauer, D.U. On-line adaptive battery impedance parameter and state estimation considering
physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation. J. Power Sources
2014, 262, 457–482. [CrossRef]

40. Chen, L.; Tian, B.; Lin, W.; Ji, B.; Li, J.; Pan, H. Analysis and prediction of the discharge characteristics of the lithium–ion battery
based on the Grey system theory. IET Power Electron. 2015, 8, 2361–2369. [CrossRef]

41. Sun, Q.; Wang, S.; Gao, S.; Lv, H.; Liu, J.; Wang, L.; Du, J.; Wei, K. A State of Charge Estimation Approach for Lithium-Ion Batteries
Based on the Optimized Metabolic EGM (1, 1) Algorithm. Batteries 2022, 8, 260. [CrossRef]

42. Wang, C.-N.; Dang, T.-T.; Nguyen, N.-A.; Le, T.-T. Supporting better decision-making: A combined grey model and data
envelopment analysis for efficiency evaluation in e-commerce marketplaces. Sustainability 2020, 12, 10385. [CrossRef]

43. Kumar, A.S.; Aher, P.K.; Patil, S.L. SOC Estimation using Coulomb Counting and Fuzzy Logic in Lithium Battery. In Proceedings
of the 2022 International Conference on Industry 4.0 Technology (I4Tech), Pune, India, 23–24 September 2022; pp. 1–5.

44. Manoharan, A.; Sooriamoorthy, D.; Begam, K.; Aparow, V.R. Electric vehicle battery pack state of charge estimation using parallel
artificial neural networks. J. Energy Storage 2023, 72, 108333. [CrossRef]

45. Liu, B.; Wang, H.; Tseng, M.-L.; Li, Z. State of charge estimation for lithium-ion batteries based on improved barnacle mating
optimizer and support vector machine. J. Energy Storage 2022, 55, 105830. [CrossRef]

46. Chen, L.; Wang, Z.; Lü, Z.; Li, J.; Ji, B.; Wei, H.; Pan, H. A novel state-of-charge estimation method of lithium-ion batteries
combining the grey model and genetic algorithms. IEEE Trans. Power Electron. 2017, 33, 8797–8807. [CrossRef]

47. Lucaferri, V.; Quercio, M.; Laudani, A.; Riganti Fulginei, F. A Review on Battery Model-Based and Data-Driven Methods for
Battery Management Systems. Energies 2023, 16, 7807. [CrossRef]

48. Zhu, J.; Wang, Y.; Huang, Y.; Bhushan Gopaluni, R.; Cao, Y.; Heere, M.; Mühlbauer, M.J.; Ehrenberg, H. Data-driven capacity
estimation of commercial lithium-ion batteries from voltage relaxation. Nat. Commun. 2022, 13, 2261. [CrossRef]

49. Sesidhar, D.V.S.R.; Badachi, C.; Green, R.C., II. A review on data-driven SOC estimation with Li-Ion batteries: Implementation
methods & future aspirations. J. Energy Storage 2023, 72, 108420.

50. Chen, J.; Zhang, Y.; Wu, J.; Cheng, W.; Zhu, Q. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input
and constrained output. Energy 2023, 262, 125375. [CrossRef]

51. Guo, Y.; Yang, Z.; Liu, K.; Zhang, Y.; Feng, W. A compact and optimized neural network approach for battery state-of-charge
estimation of energy storage system. Energy 2021, 219, 119529. [CrossRef]

52. Chandran, V.; Patil, C.K.; Karthick, A.; Ganeshaperumal, D.; Rahim, R.; Ghosh, A. State of Charge Estimation of Lithium-Ion
Battery for Electric Vehicles Using Machine Learning Algorithms. World Electr. Veh. J. 2021, 12, 38. [CrossRef]

https://doi.org/10.3390/en16010023
https://doi.org/10.1016/j.energy.2022.123233
https://doi.org/10.1109/ACCESS.2017.2780258
https://doi.org/10.1016/j.jpowsour.2014.02.064
https://doi.org/10.1016/j.est.2023.108707
https://doi.org/10.1016/j.jpowsour.2015.01.097
https://doi.org/10.1016/j.jechem.2023.09.045
https://doi.org/10.1016/j.apenergy.2012.09.030
https://doi.org/10.1016/j.energy.2021.122815
https://doi.org/10.1016/j.est.2020.101250
https://doi.org/10.1109/TNNLS.2019.2901062
https://www.ncbi.nlm.nih.gov/pubmed/30908246
https://doi.org/10.1016/j.apenergy.2019.113520
https://doi.org/10.1016/j.jpowsour.2014.03.046
https://doi.org/10.1049/iet-pel.2015.0182
https://doi.org/10.3390/batteries8120260
https://doi.org/10.3390/su122410385
https://doi.org/10.1016/j.est.2023.108333
https://doi.org/10.1016/j.est.2022.105830
https://doi.org/10.1109/TPEL.2017.2782721
https://doi.org/10.3390/en16237807
https://doi.org/10.1038/s41467-022-29837-w
https://doi.org/10.1016/j.energy.2022.125375
https://doi.org/10.1016/j.energy.2020.119529
https://doi.org/10.3390/wevj12010038

Batteries 2024, 10, 89 32 of 35

53. Sahinoglu, G.O.; Pajovic, M.; Sahinoglu, Z.; Wang, Y.; Orlik, P.V.; Wada, T. Battery state-of-charge estimation based on regu-
lar/recurrent Gaussian process regression. IEEE Trans. Ind. Electron. 2017, 65, 4311–4321. [CrossRef]

54. Hasan, A.S.M.J.; Yusuf, J.; Faruque, R.B. Performance comparison of machine learning methods with distinct features to estimate
battery SOC. In Proceedings of the 2019 IEEE Green Energy and Smart Systems Conference (IGESSC), Long Beach, CA, USA,
4–5 November 2019; pp. 1–5.

55. Babaeiyazdi, I.; Rezaei-Zare, A.; Shokrzadeh, S. State of charge prediction of EV Li-ion batteries using EIS: A machine learning
approach. Energy 2021, 223, 120116. [CrossRef]

56. Çelik, M.; Tanağardıgil, İ.; Soydemir, M.U.; Şahin, S. Battery Charge and Health Evaluation for Defective UPS Batteries via
Machine Learning Methods. In The International Conference on Artificial Intelligence and Applied Mathematics in Engineering; Springer
International Publishing: Cham, Switzerland, 2022; pp. 298–308.

57. Hong, J.; Wang, Z.; Chen, W.; Wang, L.-Y.; Qu, C. Online joint-prediction of multi-forward-step battery SOC using LSTM neural
networks and multiple linear regression for real-world electric vehicles. J. Energy Storage 2020, 30, 101459. [CrossRef]

58. Vilsen, S.B.; Stroe, D.-I. Battery state-of-health modelling by multiple linear regression. J. Clean. Prod. 2021, 290, 125700. [CrossRef]
59. Wu, T.; Wu, Q.; Zhuang, Q.; Li, Y.; Yao, Y.; Zhang, L.; Xing, S. Optimal Sample Size for SOC Content Prediction for Mapping

Using the Random Forest in Cropland in Northern Jiangsu, China. Eurasian Soil Sci. 2022, 55, 1689–1699. [CrossRef]
60. Yang, N.; Song, Z.; Hofmann, H.; Sun, J. Robust State of Health estimation of lithium-ion batteries using convolutional neural

network and random forest. J. Energy Storage 2022, 48, 103857. [CrossRef]
61. Castanho, D.; Guerreiro, M.; Silva, L.; Eckert, J.; Alves, T.A.; Tadano, Y.d.S.; Stevan, S.L., Jr.; Siqueira, H.V.; Corrêa, F.C. Method

for SoC estimation in lithium-ion batteries based on multiple linear regression and particle swarm optimization. Energies 2022,
15, 6881. [CrossRef]

62. Manriquez-Padilla, C.G.; Cueva-Perez, I.; Dominguez-Gonzalez, A.; Elvira-Ortiz, D.A.; Perez-Cruz, A.; Saucedo-Dorantes, J.J.
State of Charge Estimation Model Based on Genetic Algorithms and Multivariate Linear Regression with Applications in Electric
Vehicles. Sensors 2023, 23, 2924. [CrossRef] [PubMed]

63. Manoharan, A.; Begam, K.M.; Aparow, V.R.; Sooriamoorthy, D. Artificial Neural Networks, Gradient Boosting and Support Vector
Machines for electric vehicle battery state estimation: A review. J. Energy Storage 2022, 55, 105384. [CrossRef]

64. Guo, Y.; Huang, K.; Yu, X.; Wang, Y. State-of-health estimation for lithium-ion batteries based on historical dependency of
charging data and ensemble SVR. Electrochim. Acta 2022, 428, 140940. [CrossRef]

65. Zhi, Y.; Wang, H.; Wang, L. A state of health estimation method for electric vehicle Li-ion batteries using GA-PSO-SVR. Complex
Intell. Syst. 2022, 8, 2167–2182. [CrossRef]

66. Li, Y.; Zou, C.; Berecibar, M.; Nanini-Maury, E.; Chan, J.C.-W.; van den Bossche, P.; Van Mierlo, J.; Omar, N. Random forest
regression for online capacity estimation of lithium-ion batteries. Appl. Energy 2018, 232, 197–210. [CrossRef]

67. Li, C.; Chen, Z.; Cui, J.; Wang, Y.; Zou, F. The lithium-ion battery state-of-charge estimation using random forest regression.
In Proceedings of the 2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), Zhangjiajie, China,
24–27 August 2014; pp. 336–339.

68. Lipu, M.S.H.; Hannan, M.A.; Hussaion, A.; Ansari, S.S.; Rahman, S.A.; Saad, M.H.; Muttaqi, K. Real-time state of charge
estimation of lithium-ion batteries using optimized random forest regression algorithm. IEEE Trans. Intell. Veh. 2022, 8, 639–648.
[CrossRef]

69. Lamprecht, A.; Riesterer, M.; Steinhorst, S. Random forest regression of charge balancing data: A state of health estimation
method for electric vehicle batteries. In Proceedings of the 2020 International Conference on Omni-layer Intelligent Systems
(coins), Barcelona, Spain, 31 August–2 September 2020; pp. 1–6.

70. Sidhu, M.S.; Ronanki, D.; Williamson, S. State of charge estimation of lithium-ion batteries using hybrid machine learning
technique. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal,
14–17 October 2019; Volume 1, pp. 2732–2737.

71. Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Ansari, S.; Ayob, A.; Saad, M.H.; Muttaqi, K.M. Differential search optimized random
forest regression algorithm for state of charge estimation in electric vehicle batteries. In Proceedings of the 2021 IEEE Industry
Applications Society Annual Meeting (IAS), Vancouver, BC, Canada, 10–14 October 2021; pp. 1–8.

72. Chen, Z.; Sun, M.; Shu, X.; Shen, J.; Xiao, R. On-board state of health estimation for lithium-ion batteries based on random forest.
In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018;
pp. 1754–1759.

73. Khawaja, Y.; Shankar, N.; Qiqieh, I.; Alzubi, J.; Alzubi, O.; Nallakaruppan, M.; Padmanaban, S. Battery management solutions for
li-ion batteries based on artificial intelligence. Ain Shams Eng. J. 2023, 14, 102213. [CrossRef]

74. Lipu, M.H.; Ayob, A.; Saad, M.H.M.; Hussain, A.; Hannan, M.A.; Faisal, M. State of charge estimation for lithium-ion battery
based on random forests technique with gravitational search algorithm. In Proceedings of the 2018 IEEE PES Asia-Pacific Power
and Energy Engineering Conference (APPEEC), Sabah, Malaysia, 7–10 October 2018; pp. 45–50.

75. Hussein, H.; Donekal, A.; Aghmadi, A.; Rafin, S.M.S.H.; Mohammed, O.A. State of Charge Estimation Using Data-Driven
Models for Inverter-Based Systems. In Proceedings of the 2023 IEEE Design Methodologies Conference (DMC), Miami, FL, USA,
24–26 September 2023; pp. 1–5. [CrossRef]

76. Mawonou, K.S.; Eddahech, A.; Dumur, D.; Beauvois, D.; Godoy, E. State-of-health estimators coupled to a random forest approach
for lithium-ion battery aging factor ranking. J. Power Sources 2021, 484, 229154. [CrossRef]

https://doi.org/10.1109/TIE.2017.2764869
https://doi.org/10.1016/j.energy.2021.120116
https://doi.org/10.1016/j.est.2020.101459
https://doi.org/10.1016/j.jclepro.2020.125700
https://doi.org/10.1134/S1064229322600816
https://doi.org/10.1016/j.est.2021.103857
https://doi.org/10.3390/en15196881
https://doi.org/10.3390/s23062924
https://www.ncbi.nlm.nih.gov/pubmed/36991633
https://doi.org/10.1016/j.est.2022.105384
https://doi.org/10.1016/j.electacta.2022.140940
https://doi.org/10.1007/s40747-021-00639-9
https://doi.org/10.1016/j.apenergy.2018.09.182
https://doi.org/10.1109/TIV.2022.3161301
https://doi.org/10.1016/j.asej.2023.102213
https://doi.org/10.1109/DMC58182.2023.10412460
https://doi.org/10.1016/j.jpowsour.2020.229154

Batteries 2024, 10, 89 33 of 35

77. Deb, S.; Goswami, A.K.; Chetri, R.L.; Roy, R. Prediction of plug-in electric vehicle’s state-of-charge using gradient boosting
method and random forest method. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and
energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6.

78. MayilvahaMayilvahanan, K.S.; Takeuchi, K.J.; Takeuchi, E.S.; Marschilok, A.C.; West, A.C. Supervised learning of synthetic big
data for Li-ion battery degradation diagnosis. Batter. Supercaps 2022, 5, e202100166. [CrossRef]

79. Lin, C.; Xu, J.; Shi, M.; Mei, X. Constant current charging time based fast state-of-health estimation for lithium-ion batteries.
Energy 2022, 247, 123556. [CrossRef]

80. Tran, M.K.; Panchal, S.; Chauhan, V.; Brahmbhatt, N.; Mevawalla, A.; Fraser, R.; Fowler, M. Python-based scikit-learn machine
learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery. Int. J. Energy Res. 2022, 46,
786–794. [CrossRef]

81. Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on
neural network. Int. J. Energy Res. 2022, 46, 5423–5440. [CrossRef]

82. How, D.N.T.; Hannan, M.A.; Lipu, M.S.H.; Sahari, K.S.M.; Ker, P.J.; Muttaqi, K.M. State-of-charge estimation of li-ion battery in
electric vehicles: A deep neural network approach. IEEE Trans. Ind. Appl. 2020, 56, 5565–5574. [CrossRef]

83. Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Ayob, A.; Saad, M.H.M.; Muttaqi, K.M. State of charge estimation in lithium-ion
batteries: A neural network optimization approach. Electronics 2020, 9, 1546. [CrossRef]

84. Chen, C.; Xiong, R.; Yang, R.; Shen, W.; Sun, F. State-of-charge estimation of lithium-ion battery using an improved neural network
model and extended Kalman filter. J. Clean. Prod. 2019, 234, 1153–1164. [CrossRef]

85. Sun, W.; Qiu, Y.; Sun, L.; Hua, Q. Neural network-based learning and estimation of battery state-of-charge: A comparison study
between direct and indirect methodology. Int. J. Energy Res. 2020, 44, 10307–10319. [CrossRef]

86. Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of the ICML Workshop on Unsupervised
and Transfer Learning, Irvine, CA, USA, 27 June 2012; JMLR Workshop and Conference Proceedings. pp. 37–49.

87. Zhai, J.; Zhang, S.; Chen, J.; He, Q. Autoencoder and its various variants. In Proceedings of the 2018 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 415–419.

88. Dor, B.; Koenigstein, N.; Giryes, R. Autoencoders. In Machine Learning for Data Science Handbook: Data Mining and Knowledge
Discovery Handbook; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 353–374.

89. Cheng, Z.; Wang, S.; Zhang, P.; Wang, S.; Liu, X.; Zhu, E. Improved autoencoder for unsupervised anomaly detection. Int. J. Intell.
Syst. 2021, 36, 7103–7125. [CrossRef]

90. Jeng, S.-L.; Chieng, W.-H. Evaluation of Cell Inconsistency in Lithium-Ion Battery Pack Using the Autoencoder Network Model.
IEEE Trans. Ind. Inform. 2022, 19, 6337–6348. [CrossRef]

91. Ahmed, I.; Galoppo, T.; Hu, X.; Ding, Y. Graph Regularized Autoencoder and its Application in Unsupervised Anomaly Detection.
Trans. Pattern Anal. Mach. Intell. 2022, 44, 4110–4124. [CrossRef] [PubMed]

92. Rhodes, T.; Lee, D. Local Disentanglement in Variational Auto-Encoders Using Jacobian L1 Regularization. Adv. Neural Inf.
Process. Syst. 2021, 34, 22708–22719.

93. Savargaonkar, M.; Oyewole, I.; Chehade, A.; Hussein, A.A. Uncorrelated Sparse Autoencoder With Long Short-Term Memory for
State-of-Charge Estimations in Lithium-Ion Battery Cells. IEEE Trans. Autom. Sci. Eng. 2022, 21, 15–26. [CrossRef]

94. Pinaya; Lopez, W.H.; Vieira, S.; Garcia-Dias, R.; Mechelli, A. Autoencoders. In Machine Learning; Academic Press: Cambridge,
MA, USA, 2020; pp. 193–208.

95. Sun, Y.; Zhang, J.; Zhang, K.; Qi, H.; Zhang, C. Battery state of health estimation method based on sparse auto-encoder and
backward propagation fading diversity among battery cells. Int. J. Energy Res. 2021, 45, 7651–7662. [CrossRef]

96. Zhang, H.; Bai, Y.; Yang, S.; Li, C. State-of-Charge Prediction of Lithium-Ion Batteries Based on Sparse Autoencoder and Gated
Recurrent Unit Neural Network. Energy Technol. 2023, 11, 2201510. [CrossRef]

97. Sun, G.; Wang, X.; Zhang, X.; Wang, J.; Li, Z. Autoencoder-Enhanced Regularized Prototypical Network for New Energy Vehicle
battery fault detection. Control Eng. Pract. 2023, 141, 105738. [CrossRef]

98. Hong, S.; Kang, M.; Kim, J.; Baek, J. Investigation of denoising autoencoder-based deep learning model in noise-riding experi-
mental data for reliable state-of-charge estimation. J. Energy Storage 2023, 72, 108421. [CrossRef]

99. Chen, J.; Feng, X.; Jiang, L.; Zhu, Q. State of charge estimation of lithium-ion battery using denoising autoencoder and gated
recurrent unit recurrent neural network. Energy 2021, 227, 120451. [CrossRef]

100. Xu, F.; Yang, F.; Fei, Z.; Huang, Z.; Tsui, K.-L. Life prediction of lithium-ion batteries based on stacked denoising autoencoders.
Reliab. Eng. Syst. Saf. 2021, 208, 107396. [CrossRef]

101. Sudarshan, M.; Serov, A.; Jones, C.; Ayalasomayajula, S.M.; García, R.E.; Tomar, V. Data-driven autoencoder neural network for
onboard BMS Lithium-ion battery degradation prediction. J. Energy Storage 2024, 82, 110575. [CrossRef]

102. Valant, C.J.; Wheaton, J.D.; Thurston, M.G.; McConky, S.P.; Nenadic, N.G. Evaluation of 1D CNN autoencoders for lithium-ion
battery condition assessment using synthetic data. In Proceedings of the Annual Conference of the Prognostics and Health
Management Society 2019, 11th PHM Conference, Scottsdale, AZ, USA, 21–26 September 2019; Volume 11, pp. 1–11.

103. Wu, J.; Chen, J.; Feng, X.; Xiang, H.; Zhu, Q. State of health estimation of lithium-ion batteries using Autoencoders and Ensemble
Learning. J. Energy Storage 2022, 55, 105708. [CrossRef]

104. Fasahat, M.; Manthouri, M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term
Memory neural networks. J. Power Sources 2020, 469, 228375. [CrossRef]

https://doi.org/10.1002/batt.202100166
https://doi.org/10.1016/j.energy.2022.123556
https://doi.org/10.1002/er.7202
https://doi.org/10.1002/er.7545
https://doi.org/10.1109/TIA.2020.3004294
https://doi.org/10.3390/electronics9091546
https://doi.org/10.1016/j.jclepro.2019.06.273
https://doi.org/10.1002/er.5654
https://doi.org/10.1002/int.22582
https://doi.org/10.1109/TII.2022.3188361
https://doi.org/10.1109/TPAMI.2021.3066111
https://www.ncbi.nlm.nih.gov/pubmed/33729925
https://doi.org/10.1109/TASE.2022.3222759
https://doi.org/10.1002/er.6346
https://doi.org/10.1002/ente.202201510
https://doi.org/10.1016/j.conengprac.2023.105738
https://doi.org/10.1016/j.est.2023.108421
https://doi.org/10.1016/j.energy.2021.120451
https://doi.org/10.1016/j.ress.2020.107396
https://doi.org/10.1016/j.est.2024.110575
https://doi.org/10.1016/j.est.2022.105708
https://doi.org/10.1016/j.jpowsour.2020.228375

Batteries 2024, 10, 89 34 of 35

105. Zhou, Z.; Liu, Y.; Zhang, C.; Shen, W.; Xiong, R. Deep neural network-enabled battery open-circuit voltage estimation based on
partial charging data. J. Energy Chem. 2024, 90, 120–132. [CrossRef]

106. Jiao, R.; Peng, K.; Dong, J. Remaining useful life prediction of lithium-ion batteries based on conditional variational autoencoders-
particle filter. IEEE Trans. Instrum. Meas. 2020, 69, 8831–8843. [CrossRef]

107. Ren, L.; Zhao, L.; Hong, S.; Zhao, S.; Wang, H.; Zhang, L. Remaining useful life prediction for lithium-ion battery: A deep learning
approach. IEEE Access 2018, 6, 50587–50598. [CrossRef]

108. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural. Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
109. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural. Comput. 2000, 12,

2451–2471. [CrossRef] [PubMed]
110. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef] [PubMed]
111. Landi, F.; Baraldi, L.; Cornia, M.; Cucchiara, R. Working memory connections for LSTM. Neural Networks. 2021, 144, 334–341.

[CrossRef]
112. Gers, F.; Schmidhuber, J. Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint

Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium,
Como, Italy, 27 July 2000; Volume 3, pp. 189–194. [CrossRef]

113. Olah, C. Understanding LSTM Networks. GitHub Repository. 2015. Available online: https://github.com/colah/LSTM (accessed
on 27 August 2015).

114. Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.
[CrossRef]

115. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef]

116. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
117. Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the

32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37,
pp. 2342–2350.

118. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

119. Zhou, D.; Zuo, X.; Zhao, Z. Constructing a large-scale urban land subsidence prediction method based on neural network
algorithm from the perspective of multiple factors. Remote Sens. 2022, 14, 1803. [CrossRef]

120. Ren, X.; Liu, S.; Yu, X.; Dong, X. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy
2021, 234, 121236. [CrossRef]

121. Wu, L.; Zhang, Y. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery. Energy 2023,
268, 126665. [CrossRef]

122. Almaita, E.; Alshkoor, S.; Abdelsalam, E.; Almomani, F. State of charge estimation for a group of lithium-ion batteries using long
short-term memory neural network. J. Energy Storage 2022, 52, 104761. [CrossRef]

123. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life
Prediction of Lithium-Ion Batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

124. Tang, A.; Huang, Y.; Liu, S.; Yu, Q.; Shen, W.; Xiong, R. A novel lithium-ion battery state of charge estimation method based on
the fusion of neural network and equivalent circuit models. Appl. Energy 2023, 348, 121578. [CrossRef]

125. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017; Volume 30.

126. Dong, L.; Xu, S.; Xu, B. Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech Recognition. In
Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 5884–5888. [CrossRef]

127. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.G.; Le, Q.V.; Salakhutdinov, R. Transformer-XL: Attentive language models beyond a
fixed-length context. arXiv 2019, arXiv:1901.02860.

128. Ott, M.; Edunov, S.; Grangier, D.; Auli, M. Scaling neural machine translation. arXiv 2018, arXiv:1806.00187.
129. Chi, L.; Yuan, Z.; Mu, Y.; Wang, C. Non-local neural networks with grouped bilinear attentional transforms. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11804–11813.
130. Weston, J.; Chopra, S.; Bordes, A. Memory networks. arXiv 2014, arXiv:1410.3916.
131. Child, R.; Gray, S.; Radford, A.; Sutskever, I. Generating long sequences with sparse transformers. arXiv 2019, arXiv:1904.10509.
132. Ke, G.; He, D.; Liu, T. Rethinking the Position Encoding in Vision Transformer. arXiv 2021, arXiv:2107.14222.
133. Salman, K.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. 2022,

54, 1–41.
134. Shi, D.; Zhao, J.; Wang, Z.; Zhao, H.; Wang, J.; Lian, Y.; Burke, A.F. Spatial-Temporal Self-Attention Transformer Networks for

Battery State of Charge Estimation. Electronics 2023, 12, 2598. [CrossRef]

https://doi.org/10.1016/j.jechem.2023.11.009
https://doi.org/10.1109/TIM.2020.2996004
https://doi.org/10.1109/ACCESS.2018.2858856
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1162/089976600300015015
https://www.ncbi.nlm.nih.gov/pubmed/11032042
https://doi.org/10.1109/72.279181
https://www.ncbi.nlm.nih.gov/pubmed/18267787
https://doi.org/10.1016/j.neunet.2021.08.030
https://doi.org/10.1109/IJCNN.2000.861302
https://github.com/colah/LSTM
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/78.650093
https://doi.org/10.3390/rs14081803
https://doi.org/10.1016/j.energy.2021.121236
https://doi.org/10.1016/j.energy.2023.126665
https://doi.org/10.1016/j.est.2022.104761
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1016/j.apenergy.2023.121578
https://doi.org/10.1109/ICASSP.2018.8462506
https://doi.org/10.3390/electronics12122598

Batteries 2024, 10, 89 35 of 35

135. Karita, S.; Chen, N.; Hayashi, T.; Hori, T.; Inaguma, H.; Jiang, Z.; Someki, M.; Zhang, W. A comparative study on transformer
vs. rnn in speech applications. In Proceedings of the 2019 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), Singapore, 14–18 December 2019; pp. 449–456.

136. Ahn, H.; Shen, H.; Zhou, X.; Kung, Y.-C.; Wang, J. State of Charge Estimation of Lithium-Ion Batteries Using Physics-Informed
Transformer for Limited Data Scenarios. ASME Lett. Dyn. Syst. Control 2023, 3, 041002. [CrossRef]

137. Almarzooqi, A.H.; Alhusin, M.O.; Nikolakakos, I.P.; Husnain, A.; Albeshr, H.M. Improved NaS Battery State of Charge Estimation
by Means of Temporal Fusion Transformer. In Proceedings of the 2023 IEEE Texas Power and Energy Conference (TPEC), College
Station, TX, USA, 13–14 February 2023; pp. 1–6.

138. Stensson, J.; Svantesson, K. Physics Informed Neural Network for Thermal Modeling of an Electric Motor. 2023. Available online:
https://odr.chalmers.se/items/03b63aad-812d-4ec3-9679-1aa65981eff6 (accessed on 27 August 2015).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1115/1.4063995
https://odr.chalmers.se/items/03b63aad-812d-4ec3-9679-1aa65981eff6

	Introduction
	State-of-Charge Estimation Approaches
	Proposed Data-Driven Approaches
	Linear Regression (LR) Models
	Random Forest Regression (RFR)
	Neural Networks (NNs)
	Autoencoders (AEs)
	Long Short-Term Memory (LSTM)
	Transformer (TR)

	System Configuration
	Data Preprocessing
	Linear Regression Model
	Random Forest Regression Model
	Neural Network Model
	Autoencoder Model
	LSTM Model
	Transformer Model

	Results and Discussion
	Conclusions
	References

