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Abstract: Lithium-ion batteries are widely used in modern society as important energy storage
devices due to their high energy density, rechargeable performance, and light weight. However, the
capacity and performance of lithium-ion batteries gradually degrade with the number of charge
or discharge cycles and environmental conditions, which can affect the reliability and lifetime of
the batteries, so it is necessary to accurately evaluate their health. The belief rule base (BRB) model
is an evaluation model constructed based on rules that can handle uncertainties in the operation
of lithium-ion batteries. However, lithium-ion batteries may be affected by disturbances from in-
ternal or external sources during operation, which may affect the evaluation results. To prevent
this problem, this paper proposes a disturbance-considering BRB modeling approach that considers
the possible effects of disturbances on the battery in the operating environment and quantifies the
disturbance-considering capability of the assessment model in combination with expert knowledge.
Second, robustness and interpretability constraints are added in this paper, and an improved opti-
mization algorithm is constructed that maintains or possibly improves the resistance of the model
to disturbance. Finally, using the lithium-ion batteries provided by the National Aeronautics and
Space Administration (NASA) Prediction Centre of Excellence and the University of Maryland as a
case study, this paper verifies that the proposed modeling approach is capable of constructing robust
models and demonstrates the effectiveness of the improved optimization algorithm.

Keywords: lithium-ion battery; belief rule base; robustness; health evaluation

1. Introduction

As an important part of modern power systems, lithium-ion batteries have undergone
rapid development in electric vehicles, renewable energy, and other fields. Currently, there
is a growing demand for lithium batteries in various industries. However, the performance
and remaining life of the battery decrease as its usage time increases. Additionally, environ-
mental factors such as temperature and humidity can harm the components in the battery,
affecting its capacity. Therefore, it is particularly important to conduct in-depth research
and effectively evaluate the health of lithium-ion batteries.

Several evaluation models for health status evaluation have been developed by re-
searchers, and four common types of modeling approaches have been summarized. The
data-driven approach involves the collection of large amounts of data, which are analyzed
and modeled to discover patterns, relationships, and regularities. This approach typically
uses data to guide decisions, predict future events, and optimize systems [1]. The advantage
of data-driven modeling is that the patterns and laws of the system can be learned from the
data to support more accurate predictions and decisions. However, in real systems, models
based on data-driven approaches may be inconsistent or unfair across different datasets due
to external factors, such as data limitations and system complexity. The knowledge-driven
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approach is a modeling methodology based on a priori knowledge and the experience of
domain experts, which is aimed at better understanding and describing the behavior and
relationships of complex systems [2–4]. The knowledge-driven modeling approach aims to
enhance the performance and explanatory power of the model by leveraging the knowl-
edge and experience of domain experts in the modeling process. However, this approach
typically relies on a set of physical assumptions and a priori knowledge that may not hold
in real systems. Model failure or loss of accuracy may be caused by these assumptions.
The model-driven approach focuses on the use of formal models to guide the different
phases of system development. The reliability and consistency of system development are
improved by this approach, errors are reduced, and the system is made easier to maintain
and evolve [5,6]. However, it also requires an investment of time and resources to learn and
use modeling tools and techniques. For the hybrid-driven approach, the different modeling
approaches mentioned above are combined with this modeling approach to overcome the
limitations of a single approach and provide a more comprehensive and flexible solution to
accommodate complex and diverse problems.

A modeling approach based on a hybrid-driven method was proposed by Yang
et al. [7]. The traditional fuzzy rules are extended by integrating the belief rule framework,
resulting in the construction of a belief rule base (BRB) model. This model uses the
transparently interpretable evidential reasoning (ER) approach as its inference engine. BRB
models are widely used in equipment health evaluation due to their strong interpretability.
The health state evaluation of lithium batteries is a challenging field due to the large
amount of uncertainty and ambiguous data that need to be dealt with. The BRB model
can effectively integrate and process complex and inconsistent information, including data
from multiple sensors and expert knowledge, and it can provide more accurate and reliable
evaluation results through its belief assignment mechanism. This not only enhances the
accuracy of the evaluation but also improves the ability to predict the health of the battery.
Finally, the BRB model provides a more flexible and dynamic evaluation framework than
traditional evaluation methods, allowing it to adapt to rapidly changing data environments
and evolving battery technologies.

However, in real operating environments, Li-ion batteries are often affected by a
variety of external disturbances, such as temperature variations, charge/discharge cycles,
and changes in usage conditions. Fluctuations and changes in battery performance and
health can be caused by these disturbances. Without considering the disturbance factors,
the changes and fluctuations in the real environment may not be captured by the evaluation
model, leading to biased evaluation results. In addition, the performance of the battery
may be affected by the condition and operation of other components in the system. For
example, the dynamic characteristics of the vehicle while driving may affect the onboard
battery of an electric vehicle, and the performance of the battery may also be affected by
the operational status of devices such as charge controllers and inverters in a solar energy
storage system. There are certain variations and uncertainties in the manufacturing process
of lithium-ion batteries, such as material selection and process parameters, which may
result in different performance characteristics for the same battery model. In summary, the
consideration of disturbance factors is critical to an accurate evaluation of the state of health
of lithium-ion batteries, as it allows for a more comprehensive consideration of the true
operating conditions of the battery under different environmental conditions, operating
conditions, and system configurations, thus improving the accuracy and reliability of
the evaluation.

Disturbances in lithium-ion batteries are typically small changes in input parameters
or fluctuations caused by uncertainties in the model structure or parameters. Various
BRB models were developed by Han et al. [8,9] to evaluate lithium-ion battery health.
Among the existing models, a complex system evaluation model considering disturbed
ER rules was constructed by Tang et al. [10], a sensor-disturbed complex system based on
the BRB model was constructed by Lian et al. [11], and a new multi-source uncertainty-
informed BRB expert system was constructed by Feng et al. [12] to solve the problem
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of stochastic environmental disturbances. However, in the existing research, there is
little in the literature on the robustness of the model to disturbances, and a model that
is robust to disturbances should maintain a good performance state when disturbances
occur. Therefore, a method is needed to measure the disturbance resistance of the model.
The robustness of the BRB model was defined by Cao et al. [13], and the robustness of the
BRB model was analyzed from four aspects. However, a reasonable method to solve the
problem of weak robustness in the input conversion part was not provided. In this paper,
based on the study by Cao, a modeling approach that takes into account the disturbance
of lithium-ion batteries is proposed, which aims to be able to analyze the decisions made
by the model when it encounters a disturbance and to measure the disturbance-resistant
capability of the model. In addition, since existing optimization approaches do not consider
robust optimization, this paper proposes an improved optimization algorithm that aims to
improve the disturbance resistance of the model. In summary, the modeling approaches
proposed in this paper help to improve battery management systems and provide a new
way of thinking for researchers in battery health evaluation. The specific contributions are
as follows:

(1) The operating environment of lithium-ion batteries is complex, so disturbances are in-
troduced, and the battery health state evaluation model of the BRB model considering
disturbances is established, which is capable of measuring its disturbance-resistant
capability.

(2) An improved optimization algorithm is proposed that embeds robustness and inter-
pretability constraints to effectively improve the robustness of the model and maintain
the interpretability of the BRB model itself.

The problem description of the BRB model is presented in Section 2, the construction
of the disturbance BRB model is presented in Section 3, the optimization algorithm is
presented in Section 4, the case study is presented in Section 5, and, finally, the conclusion
is given in Section 6.

2. Problem Formulation and Basic BRB Construction

The main problem addressed in this paper is described in Section 2.1, and the underly-
ing BRB modeling process is given in Section 2.2.

2.1. Formulation of the Problem

In the BRB process, the reference values of the prior attributes are sampled by the
system, and the sampled data are obtained for rule aggregation and ER reasoning. The
reference values of attributes in the antecedent and posterior of the prior rule of the BRB
model are derived from expert knowledge, which comes from the experience summarized
by experts who analyze the mechanism of lithium-ion batteries and record the data in long-
term practice; therefore, the BRB model itself has strong interpretability. However, heat is
generated by lithium-ion batteries during charging and discharging. Poor heat dissipation
design or high-temperature environments can cause the temperature to become too high,
leading to disturbances in the batteries, which can reduce the reliability of BRB systems
built with expert knowledge. For example, the growth of a solid electrolyte interface (SEI)
layer was found to be a key factor in battery performance in a study by S. Edge et al. [14].
This layer typically forms during the first cycle of the battery and results in a capacity
reduction of approximately 10%. As the battery ages, the thickness of the SEI layer increases
for several reasons, including diffusion of solvent molecules through the existing SEI and
newly exposed electrode surfaces due to cracking and deposition of by-products. These
effects increase the overall impedance of the cell, leading to a reduction in performance.
High temperatures can accelerate the growth of the SEI layer, while high currents can lead
to particle rupture and new SEI formation. Lithium plating is also an issue, particularly
at low temperatures or during fast charging, where lithium metal forms on the surface of
the negative electrode rather than being inserted into it. These factors ultimately affect the
capacity and performance of the battery. The above-described effects inside the battery
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due to environmental changes, can be summarized as disturbances in the battery due to
external or internal causes. In this section, two problems with evaluating the presence of
lithium-ion batteries are described:

1. When a disturbance occurs in a lithium-ion battery, the construction of a disturbance
evaluation model, which combines expert knowledge to analyze the reliability of the
model in the case of a disturbance, can be expressed as follows:

[y, y′] = ξMSE([X1, X′
1], [X2, X′

2], . . . , [XM, X′
M], δ) (1)

where y represents the predicted value of the model, while y′ represents the predicted
value after the disturbance. ξMSE denotes the function of the computational process
of the model, Xi denotes the input vector of the ith input attribute, X′

i denotes the
input after the disturbance, and δ denotes the expert knowledge.

2. Evaluating the Disturbance Resistance of Established Lithium-Ion Battery Evaluation
Models. Lithium-ion battery evaluation models may be affected by disturbances
from internal and external sources, which can impact their reliability. Therefore, it is
necessary to design an effective approach to understand the disturbance resistance of
the model and minimize its effect on reliability.

ϑ = Γ(max(ϑ1, ϑ2, ϑ3, ϑ4)|T(n)) (2)

where ϑ denotes a metric that measures the disturbance resistance of the model, Γ(·)
denotes the function that calculates ϑ, ϑ1 ∼ ϑ4 are the four parts of the disturbance
resistance metric of the model, and T(n) is the lithium-ion battery data collected at the
nth moment.

2.2. Modeling Framework for the Basic BRB Model

The BRB model is a set of expert systems consisting of IF–THEN rules, where each
rule contains a condition part and a conclusion part. Taking the kth rule as an example, the
following can be obtained:

Rk :IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ · · · ∧ xM is Ak
M

THEN
{
(D1, β1,k), (D2, β2,k) · · · (DN , βN,k)

}
(

N

∑
n=1

βN,k ≤ 1),

with rule weight θk(k = 1, 2, . . . , L) and attribute weights δi(i = 1, 2, . . . , M)

(3)

where Ak
i is the referential value of the antecedent attribute X1, . . . , XM. βN,k is the belief

degree of the result DN . θk is the weight of the kth belief rule. δi is the weight of attribute
Xi. L is the number of rules in the belief rule base. The kth rule is said to be complete if
∑N

n=1 βN,k= 1, otherwise it is not complete.
The inference steps of a BRB model a with an ER inference engine are as follows.
Step 1 (Input information transformation): The quantitative and qualitative informa-

tion can be transformed into a belief distribution by a membership function; that is, the
membership degree of each input value corresponding to the reference value is calculated.
In this paper, the triangular membership function is used as the input transformation
function of the BRB model, which is expressed as follows:

αi,j = (Yi,j+1 − xi)·(Yi,j+1 − Yi,j)
−1 Yi,j ≤ xi ≤ Yi,j+1, j = 1, 2, . . . , Ji − 1

αi,j+1 = 1 − αi,j Yi,j ≤ xi ≤ Yi,j+1, j = 1, 2, . . . , Ji − 1
αi,s = 0 s = 1, 2, . . . , Ji, s ̸= j, j + 1

(4)

The final belief distribution is described as follows:

S(xi) =
{
(Ai,j, αi,j), i = 1, . . . , M; j = 1, . . . , Ji

}
(5)
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where Ai,j represents the jth reference value corresponding to the ith input, which is a
semantic value, Yi,j represents the reference value corresponding to Ai,j, and αi,j is the
membership degree of the corresponding reference value.

Step 2 (Rule activation weight): The rule activation weights are calculated as follows:

ωk = θk

M

∏
i=1

(αk
i )

δi /
L

∑
l=1

θl

M

∏
i=1

(αk
i )

δi , δi =
δi

max
i=1,...,M

{δi}
(6)

where θk ∈ [0, 1] is the rule weight of the kth rule, δi is the normalized weight, and αk
i

represents the belief degree of Ak
i,j in the kth rule.

Step 3 (ER iterates over aggregation rules):
Step 3.1: The activation rule belief degree is transformed to the basic probability mass

(bpm), which is expressed as follows:

Fn,k = ωkβn,k, FD,k = 1 − ωk

N

∑
n=1

βn,k, FD,k = 1 − ωk, F̃D,k = ωk(1 −
N

∑
n=1

βn,k) (7)

where Fn,k represents the basic probability setting for the evaluation result Dn, and FD,k
represents the basic probability setting for the set D = {D1, D2, . . . , DN}, that is, the basic
probability FD,k = FD,k + F̃D,k that is not set to any evaluation result Dn.

Step 3.2: After iteratively combining the first k rules using the D-S criterion, the
following formula is obtained:

Fn,I(k+1)
= KI(k+1)

(Fn,I(k) Fn,k+1 + Fn,I(k) FD,k+1 + FD,I(k) Fn,k+1) (8)

F̃D,I(k+1)
= KI(k+1)

(F̃D,I(k) F̃D,k+1 + F̃D,I(k) FD,k+1 + FD,I(k) F̃D,k+1) (9)

KI(k+1)
=

1

[1 −
N
∑

n=1

N
∑

t = 1
t ̸= n

Fn,I(k) Ft,k+1]

(10)

β̂n = Fn,I(L)
/1 − FD,I(L)

, β̂D = F̃D,I(L)
/1 − FD,I(L)

(11)

where β̂n represents the belief degree relative to the evaluation result Dn, β̂D represents the
belief degree that is not set to any evaluation result Dn, and β̂D + ∑N

n=1 β̂n = 1.
Step 4: The final output distribution is generated based on the belief degree of the

evaluation results:
S(x) =

{
(Dn, β̂n), n = 1, . . . , N

}
(12)

The expected utility of S(x) in Equation (12) is determined by the utility of a single
evaluation result Dn, denoted as µ(Dn):

µ(S(x)) =
N

∑
n=1

µ(Dn)βn (13)

3. Modeling of the Disturbance BRB

A robustness analysis of a model is conducted to determine the maximum capacity
of the model to resist disturbances, and the concept of Lipschitz stabilization has been
introduced to the model by many studies to explore its resistance to disturbances [15–19].

Mathematically, Lipschitz stability is a property of continuous functions or mappings
where there exists an upper bound on the difference between the values of the function f (x)
when the inputs to the function are slightly changed. Specifically, a function is Lipschitz-
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stable over its domain of definition if there exists a constant L(L > 0) for which the following
inequality holds for all x1 and x2.

| f (x1)− f (x2)| ≤ L·|x1 − x2| (14)

This means that the difference between the function values is controlled for small
changes in the input, so the Lipschitz stability can be used to describe the smoothness and
robustness of the function. In the BRB model, the training and output of the model can be
regarded as a process of function processing, and the robustness corresponds to the ability
of the model to resist disturbances. Therefore, the Lipschitz stability of a BRB model can be
defined as follows:

For ∀T, N ∈ N, the condition of Lipschitz stability on RT → RN is that there exists a
minimum constant ϑBRB ∈ [0, ∞], such that:

N

∑
j=1

∣∣∣yj − y′ j
∣∣∣ ≤ ϑBRB ×

T

∑
i=1

∣∣xi − x′ i
∣∣ (15)

where, for all (x1, . . . , xT), (x′1, . . . , x′T) ∈ RT , (y1, . . . , yN), (y′1, . . . , y′N) ∈ RN x′i is the input
value xi corresponding to the generated disturbance value. y′j denotes the result produced
by the disturbance value x′i(i = 1, . . . , T; j = 1, . . . , N). |·| is the Manhattan distance.

In lithium batteries, disturbances often involve small changes in the inputs or pa-
rameters of the model, so the disturbance data in this paper are simulated by adding a
disturbance factor to the data. The function for generating the disturbed data is as follows:

x′ = x + ∆ × random(−1, 1) (16)

where ∆ denotes the disturbance factor, and random(−1,1) denotes a random value between
−1 and 1. Since the size of the disturbance factor directly affects the prediction results of
the model, the disturbance factor should be set according to the actual system.

The BRB disturbance analysis process is divided into four specific steps, and the anal-
ysis framework is shown in Figure 1, which includes (1) input transformation, (2) matching
degree calculation, (3) matching degree normalization, and (4) rule aggregation. The Lips-
chitz constants of these parts are denoted by ϑIT , ϑMDC, ϑMDN , ϑER, respectively [13]. The
framework of the disturbance analysis for the whole model is given in Figure 1.
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Step 1: In the actual operation of lithium-ion batteries, the collected data may fluctuate
due to disturbances, and ϑIT represents the maximum fluctuation that can be generated by
the BRB model during input transformation. The ith input message xi and the correspond-
ing disturbance input message x′i , ϑIT is calculated as follows:

ϑIT−i =

 (
∣∣∣Y′

j − γj

∣∣∣+ ∣∣∣Y′
j+1 − Y′

j+1

∣∣∣)·(|x′ i − xi |)−1 Yj ≤ xi , x′ ≤ Yj+1

(
∣∣∣Yj′ − Yj

∣∣∣+ ∣∣∣Y′
j′+1 − Yj+1

∣∣∣)·(∣∣x′i − xi
∣∣)−1 Yj ≤ xi ≤ Yj+1, Yj′ ≤ x′i ≤ Yj′+1(j′ ̸= j)

ϑIT = max{ϑIT−i |i = 1, . . . , M}

(17)

where Yj, Y′
j are the membership degrees of the jth attribute reference value Aj(j = 1, . . . , Ji)

corresponding to x, x′, respectively.
Step 2: The Lipschitz constant is calculated for the individual degree of matching

αk
i . The input data of the lithium-ion battery are transformed to obtain the belief degree,

and the corresponding rule is activated based on the belief degree. The matching degree
between the activation rule and the belief degree is denoted by ϑMDC. Taking the kth rule as
an example, the distance between the belief degree and the corresponding activation rule in
the rule space is measured, and the closer the distance is, the greater the matching degree.

ϑMDC−i =

∣∣∣∣ ∂wk
∂αk

i

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣
δi·(αk

i )
δi−1·

Ji
∏

j = 1
j ̸= i

(αk
j )

δj

∣∣∣∣∣∣∣∣∣∣
ϑMDC = max{ϑMDC−i|i = 1, . . . , M}

(18)

where δi is the normalized weight of the ith attribute, and αk
i is the vector of matching

degrees produced by the reference values in the kth rule.
Step 3: The normalization calculation of the matching degree is conducted next. The

matching degrees are normalized to better measure the match between attributes and rules.

ϑMDNk
i
=

∣∣∣∣ ∂wk
∂αl

i

∣∣∣∣ =



wk
L
∑

h = 1
h ̸= k

whαh
i

(
L
∑

h=1
whαh

i )
2 l ̸= k

−wkwl α
k
i

(
L
∑

h=1
whαh

i )
2 l ̸= k

ϑMDN = max
{

ϑMDNk
i

∣∣∣i = 1, . . . , M, k = 1, . . . , L
}

(19)

Step 4: The Lipschitz constant calculation of the inferred result βn is next conducted
for the activation weight ωk. The relationship between the degree of belief obtained after
the ER inference and the L rule is denoted by βn. The degree of fluctuation of the degree of
belief, calculated by combining the reference value given by the expert, is denoted by ϑER.
The smaller the value of ϑER, the more limited the response to small disturbances in the
belief degree space, resulting in a relatively small change in belief degree.

C1(n) =
L
∏

l = 1
l ̸= k

(ωl(βn,l − 1) + 1), C2(n) =
L
∏
l=1

(ωl(βn,l − 1) + 1);

R1 =
L
∏

l = 1
l ̸= k

(1 − ωl), R2 =
L
∏
l=1

(1 − ωl)
(20)
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ϑERn,k = | ∂βn
∂ωk

| =

[(βn,k − 1)C1(n) + R1]× [
N
∑

n=1
C2(n)− NR2]

−[C1(n)− R2]× [
N
∑

n=1
(βn,k − 1)C1(n) + NR1]

[
N
∑

n=1
C2(n)−NR2]

2

ϑER = max
{

ϑERn,k

∣∣∣n = 1, . . . , N, k, . . . , L
}

(21)

Step 5: The overall resistance to disturbance of the model built based on the health
assessment of lithium-ion batteries is described as follows.

ϑModel = ϑIT × ϑMDC × ϑMDN × ϑER (22)

The overall disturbance resistance of the model is denoted by ϑModel .
To facilitate the understanding of the decision processing made by the disturbance

BRB model when encountering a disturbance in practical applications, this paper simulates
that the lithium-ion battery is disturbed by the data xT collected at the moment of T, where
the disturbed data is denoted as x′T , and the overall operation process of the model is
shown in Figure 2.
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The input data at the Tth moment and the disturbed data are calculated by the mem-
bership degree αT

j , α′Tj′ (j = 1, . . . , Ji) corresponding to the attribute reference value through
the membership degree function, and the model calculates the Lipschitz constant ϑIT for
the input transformation according to Equation (17), and combined with the definition
of Lipschitz stabilization, the membership degree calculated from the input x′T after the
disturbance is limited by ϑIT and thus does not deviate too much.
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The membership degree is calculated from the membership function, which further
activates the corresponding rule and generates the corresponding matching degree, ϑMDC,
is used to limit the matching degree generated from the disturbance data from deviating

excessively, where fMDC(α
T
1 , . . . , αT

M) =
M
∏
i=1

(αT
i )

δi denotes the matching degree calculation.

The calculated degree of matching corresponds to the activation weights of the rules ac-
tivated by the degree of membership after performing the normalization of Equation (6)
on L rules. ϑMDN denotes the maximum value of the activation weights after the distur-
bance that differs from the activation weights generated by the original data at the time of
normalization.

After activating the corresponding rule by the membership degree, the final belief
degree is calculated iteratively using the ER of Equations (7)–(11), and ϑER calculated by
Equations (20)–(21) represents the maximum degree of deviation from the value of the
belief degree obtained from the disturbance data after the ER calculation.

Remark 1. The maximum value of the Lipschitz constants for each part of the model is determined
by the model itself and has no relation to the disturbance itself, and ϑIT , ϑMDC, ϑMDN , ϑERindicate
that in the calculation of each of the four parts, the disturbed data will fluctuate due to the effect
of Lipschitz stabilization and thus be limited to fluctuate within a certain range.ϑBRBdenotes the
Lipschitz constant of the model, i.e., the input disturbed data produce the maximum value of the
final output of the maximum value of the deviation from the belief degree. Therefore, the smaller the
Lipschitz constant, the smaller the range of fluctuations that can be produced by the disturbance
data, and the more resistant the model is to disturbances.

4. Model Optimization Strategy

In this paper, the P-CMA-ES (projection covariance matrix adaptive evolution strat-
egy) [20–23] is used as the global optimization algorithm. Real-time performance is usually
required to evaluate the health of lithium-ion batteries, especially under dynamic operating
conditions. The fast convergence capability of the P-CMA-ES means that a near-optimal
solution can be found in a relatively short period, providing timely information about the
health of the battery and enabling timely action to be taken.

For accurate prediction of battery health by the model, accuracy is chosen as the global
optimization objective of the model in this paper. The effectiveness of the BRB model in
matching the predicted Li-ion battery values to the actual system values is quantified using
the mean square error (MSE). The optimization objectives are described as follows:

min ξMSE(Ω) = 1
T

T
∑

t=1
(y − ŷ)2, Ω = {γ, β, θ, w}

st.
N
∑

n=1
βn,k = 1, k = 1, . . . , L

0 ≤ βn,k ≤ 1, n = 1, . . . , N; k = 1, . . . , L
0 ≤ θk ≤ 1, k = 1, . . . , L
0 ≤ wi ≤ 1, i = 1, . . . , M

(23)

where y is the predicted value of the model output, ŷ is the true value of the system, and Ω
is the set of parameters to be optimized.

According to Equation (18), the Lipschitz constant ϑIT can reach a maximum value
of

∣∣2/(Yj+1 − Yj)
∣∣ when αj = 1, αj+1 = 0, α′j = 1, α′j+1 = 0. This value is not affected

by the disturbance but is determined solely by the reference value of the input attribute,
which is typically derived from the experience accumulated by experts in the field over an
extended period. To address this problem, an improved P-CMA-ES optimization algorithm
is proposed in this paper to construct a constraint that considers the disturbance resistance
of the model. The optimization steps are as follows.

Step 1 (Initialize the optimization target parameters): The specific optimization pa-
rameters are the input attribute reference values, belief degree, rule weight, and attribute
weight. The set of target parameters can be expressed as:
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Ω0 =
{

Y1,1, . . . , YM,JM , β1,1, . . . , βN,L, . . . , θ1, . . . , θL, . . . , w1, . . . , wM
}

(24)

Step 2 (Sampling): The data of each generation are obtained by sampling, denoted
as follows:

ρs+1
i ∼ Ωs + εsN(0, Qs), i = 1, . . . , h (25)

where ρs+1
i is the ith solution in the s + 1th generation optimization. εs is the step size. Ωs

is the mean of the search distribution for generation s. Qs is the covariance matrix. N(·)
denote the normal distribution function, where h is the number of offspring.

Step 3 (Robustness and interpretability constraints): After analyzing the disturbance
of the model, a disturbance metric of the model, denoted as ϑModel , is calculated. Due to
undesirable disturbances in the operation of lithium-ion batteries, the data may fluctuate
when collected by a researcher. Input transformation is considered the most important
process in the calculation of membership degrees within a BRB expert system. It directly
affects the calculated membership degree, which in turn affects the activation of rules and
ER inference. Cao [13] noted that the Lipschitz constant of the input transformation is too
large, resulting in a decrease in the disturbance resistance of the model. Therefore, it is
necessary to design an optimization method to improve the disturbance resistance of the
model during the input transformation process.{

Yi,j−1 ≤ η−
i,j ≤ Yi,j ≤ η+

i,j ≤ Yi,j+1(i = 1, . . . , M, j = 1, . . . , Ji)

η−
i,j ≤ Ỹi,j ≤ η+

i,j(i = 1, . . . , M, j = 1, . . . , Ji)
(26)

where η−
i,j and η+

i,j are the lower and upper limits of Yi,j, respectively, as determined by

experts in connection with the actual operating state of the lithium-ion battery, and Ỹi,j is
the optimization result of the reference value.

In addition, the knowledge and logical relationships in the data or problem domain are
described by the BRB model through a set of rules. Compared to other machine learning
models, BRB models are highly interpretable [24–26]. However, existing research has
shown that the interpretability of the model is disrupted by the optimization process. For
instance, if there are three outcomes with semantic values of poor, medium, and good, the
belief degree obtained by the BRB model after ER parsing may assign belief degrees of 0.45
to good and bad and a belief degree of 0.1 to medium. Assigning a high degree of belief to
two conflicting semantic values is impractical. Therefore, constraints are imposed to ensure
the interpretability of the model, and these are expressed as follows:

βn,k∼ ϖn,k(n = 1, . . . , N, k = 1, . . . , L)

ϖn,k∈
{{

β1,k ≤ β2,k ≤ · · · ≤ βN,k
}

or
{

β1,k ≤ · · · ≤ max(β1,k, β2,k, . . .) ≥ · · · ≥ βN,k
}

or
{

β1,k ≥ β2,k ≥ · · · ≥ βN,k
}
}

(27)

where ϖn,k denotes the belief degree of the nth result in the kth rule under constraints.
Step 4 (Projection operation): The candidate data are projected onto a feasible hyper-

plane as follows:

ρs+1
i (1 + ηe × (τ − 1) : ηe × τ)

= ρs+1
i (1 + ηe × (τ − 1) : ηe × τ)− VT × (V × VT)

−1 × ρs+1
i (1 + ηe × (τ − 1) : ηe × τ)× V

(28)

where V = [1, . . . , 1]1×N is an all-unity N-dimensional row vector, and ηe = 1, . . . , N
denotes the number of constrained variables. τ = 1, . . . , N + 1 is the number of equality
constraints.

Step 5 (Update the mean iteratively):

Ωs+1 =
ϕ

∑
i=1

ωiρ
s+1
i:h (29)
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where ϕ is the offspring population size, and ωi(i = 1, . . . , ϕ) is the weight coefficient. ρs+1
i:h

is the ith solution among the h solutions of generation s + 1.
Step 6 (Update the covariance matrix):

Qs+1 = (1 − e1 − e2)Qs + e1Ps+1
e (Ps+1

e )
T
+ e2

ι

∑
i=1

ωi(
Ks+1

i:h − θs

ξs )× (
Ks+1

i:h − θs

ξs )

T

(30)

where ξs represents the step size of generation s. Ps+1
e is the evolutionary path for the

s + 1th generation. e1, e2 are the learning rates. θs is the number of offspring at generation s.
Ks+1

i:h denotes the ith solution vector among the h solution vectors under generation s + 1.
Finally, the above six-step process is recursively executed until the optimization is

complete.

5. Case Study

In this section, the proposed BRB disturbance model is used to analyze the health of
a lithium-ion battery in a practical study. The validity of the disturbance model and the
reasonableness of the improved optimization algorithm are confirmed.

5.1. Study Background

The case data were obtained from a dataset of aging data for 18650 lithium-ion bat-
teries provided by the NASA Predictive Center of Excellence. This dataset uses battery
model B0006, which is primarily used to measure the SOC (state of health) and the RUL (re-
maining useful life). The battery data were obtained by testing the battery under operating
conditions at a room temperature of 24 ◦C. The battery was first charged in constant-current
(CC) mode at 1.5 A until the battery voltage reached 4.2 V, and it was then charged in a
constant-voltage (CV) mode until the charge current was reduced to 20 mA. After the bat-
tery reached its maximum capacity, the battery was discharged in a constant-current (CC)
mode at 2 A until the battery voltage was reduced to 2.5 V. The charging and discharging
process was then repeated until the battery reached the end of life (EOL) criterion, i.e., a
30% decrease in nominal capacity (from 2 Ah to 1.4 Ah).

Combined with the existing research on Li-ion battery modeling, 167 datasets were
selected for this experiment. The constant-current stage (CC), time-CC, of the voltage
increase and the constant-voltage stage (CV), time-CV, were used as the two prerequisite
reference attributes of the BRB model, and the changes in the two stages with the number
of cycles are shown in Figure 3. The corresponding variation in the battery capacity is
shown in Figure 4.

Batteries 2024, 10, x FOR PEER REVIEW 12 of 22 
 

discharging process was then repeated until the battery reached the end of life (EOL) cri-

terion, i.e., a 30% decrease in nominal capacity (from 2 Ah to 1.4 Ah). 

Combined with the existing research on Li-ion battery modeling, 167 datasets were 

selected for this experiment. The constant-current stage (CC), time-CC, of the voltage in-

crease and the constant-voltage stage (CV), time-CV, were used as the two prerequisite 

reference attributes of the BRB model, and the changes in the two stages with the number 

of cycles are shown in Figure 3. The corresponding variation in the battery capacity is 

shown in Figure 4. 

 

Figure 3. Semantic value reference index for lithium-ion batteries. 

 

Figure 4. Variation in capacity of lithium-ion batteries. 

5.2. BRB Model Construction for Lithium-Ion Battery Health State Evaluation 

Based on relevant research and expert knowledge, each prerequisite attribute was 

categorized into four semantic values, namely, very long (VL), long (L), normal (N), and 

short (S). The reference values and corresponding attribute weights of the four semantic 

values are shown in Table 1. Based on the battery capacity degradation trend shown in 

Figure 4, the experts classified the health status into four levels: completely safe (CS), safe 

(S), little bad (LB), and very bad (VB), and the corresponding reference values are shown 

in Table 2. Based on the definition of expert knowledge, the rules of the BRB model used 

to evaluate the health status of lithium batteries can be expressed as follows: 

Figure 3. Semantic value reference index for lithium-ion batteries.



Batteries 2024, 10, 129 12 of 21

Batteries 2024, 10, x FOR PEER REVIEW 12 of 22 
 

discharging process was then repeated until the battery reached the end of life (EOL) cri-

terion, i.e., a 30% decrease in nominal capacity (from 2 Ah to 1.4 Ah). 

Combined with the existing research on Li-ion battery modeling, 167 datasets were 

selected for this experiment. The constant-current stage (CC), time-CC, of the voltage in-

crease and the constant-voltage stage (CV), time-CV, were used as the two prerequisite 

reference attributes of the BRB model, and the changes in the two stages with the number 

of cycles are shown in Figure 3. The corresponding variation in the battery capacity is 

shown in Figure 4. 

 

Figure 3. Semantic value reference index for lithium-ion batteries. 

 

Figure 4. Variation in capacity of lithium-ion batteries. 

5.2. BRB Model Construction for Lithium-Ion Battery Health State Evaluation 

Based on relevant research and expert knowledge, each prerequisite attribute was 

categorized into four semantic values, namely, very long (VL), long (L), normal (N), and 

short (S). The reference values and corresponding attribute weights of the four semantic 

values are shown in Table 1. Based on the battery capacity degradation trend shown in 

Figure 4, the experts classified the health status into four levels: completely safe (CS), safe 

(S), little bad (LB), and very bad (VB), and the corresponding reference values are shown 

in Table 2. Based on the definition of expert knowledge, the rules of the BRB model used 

to evaluate the health status of lithium batteries can be expressed as follows: 

Figure 4. Variation in capacity of lithium-ion batteries.

5.2. BRB Model Construction for Lithium-Ion Battery Health State Evaluation

Based on relevant research and expert knowledge, each prerequisite attribute was
categorized into four semantic values, namely, very long (VL), long (L), normal (N), and
short (S). The reference values and corresponding attribute weights of the four semantic
values are shown in Table 1. Based on the battery capacity degradation trend shown in
Figure 4, the experts classified the health status into four levels: completely safe (CS), safe
(S), little bad (LB), and very bad (VB), and the corresponding reference values are shown in
Table 2. Based on the definition of expert knowledge, the rules of the BRB model used to
evaluate the health status of lithium batteries can be expressed as follows:

Rk :IF Time − CC is Ak
1 ∧ Time − CV is Ak

2, THEN{(D1, β1k), . . . , (D4, β4k)},

with rule weight θk and attribute weights δi

(i = 1, 2, k = 1, . . . , 16), (
N

∑
n=1

βnk ≤ 1)

(31)

Table 1. Lithium-ion battery input attributes reference values.

Attribute δi VL L N S

Time-CC 1 0.93 0.72 0.48 0.22
Time-CV 1 0.53 0.48 0.42 0.34

Table 2. Lithium-ion battery health status level.

CS S LB VB

Health status 2.05 1.65 1.4 1.1

The initial BRB model constructed from expert knowledge is denoted as BRB0. The
initial rule base is given in Table 3, and these values are the initial judgments of the experts.

Table 3. Expert-knowledge-based BRB rule base.

No. θl Time−CC∧Time−CV Health State Levels

1 1 VL ∧ VL {0.85, 0.15, 0, 0}
2 1 VL ∧ L {0.69, 0.19, 0.12, 0}
3 1 VL ∧ N {0.68, 0.22, 0.12, 0}
4 1 VL ∧ S {0.47, 0.33, 0.2, 0}
5 1 L ∧ VL {0.42, 0.25, 0.2, 0.13}
6 1 L ∧ L {0.33, 0.29, 0.24, 0.14}
7 1 L ∧ N {0.35, 0.3, 0.2, 0.15}
8 1 L ∧ S {0.41, 0.37, 0.11, 0.11}
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Table 3. Cont.

No. θl Time−CC∧Time−CV Health State Levels

9 1 N ∧ VL {0.1, 0.11, 0.39, 0.39}
10 1 N ∧ L {0.12, 0.18, 0.51, 0.19}
11 1 N ∧ N {0.13, 0.21, 0.37, 0.29}
12 1 N ∧ S {0.1, 0.14, 0.38, 0.38}
13 1 S ∧ VL {0.1, 0.1, 0.3, 0.4}
14 1 S ∧ L {0.05, 0.16, 0.29, 0.5}
15 1 S ∧ N {0.01, 0.03, 0.04, 0.92}
16 1 S ∧ S {0, 0.06, 0.15, 0.79}

5.3. Comparative Experiment

In this study, the training set was randomly selected for 70% of the 165 datasets,
and the test set was randomly selected for 30%, for a total of 500 training rounds. To
verify the effectiveness of the disturbance BRB model constructed in this paper, the dis-
turbance BRB model constructed based on expert knowledge and using the improved
optimization algorithm is denoted as BRB-RI. In addition, to illustrate the reasonability
of the improved optimization algorithm, the model constructed with the conventional
optimization algorithm (which only aims at accuracy) is referred to as BRB-M.

5.3.1. Comparative Analysis of Model Accuracy and Interpretability

The interpretability of the BRB model consists of the fact that the structural parameters
of the model should have corresponding meanings, and the initial reference values given by
the experts are the reference values summarized by experts who have been practicing in the
field of lithium-ion batteries for a long time, so the initial reference values themselves have
strong interpretability. The rule distributions of the three models for lithium-ion battery
health evaluation are shown in Figure 5, and it can be seen that the rules of the BRB-RI
model highly approximated the expert knowledge, while a large deviation from the expert
knowledge in the rules was observed in the BRB-M model due to the lack of constraints on
interpretability. That is, a significant loss of interpretability of the rules was experienced
by the BRB-M model during the optimization process, while better interpretability was
maintained by the BRB-RI model.
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The belief degree distributions of the three models are shown in Figure 6, such as
the black circle in the BRB-M model. The belief degree distribution of the model deviated
greatly from the expert knowledge, while a clearer description of the knowledge was
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provided by the BRB-RI model. In addition, the optimized attribute weights of the three
models are shown in Table 4, which shows that the value of expert knowledge was more
closely approximated by the BRB-RI model under the interpretability constraints, while
the expert knowledge somewhat deviated from that of the BRB-M model. The combined
analysis shows that the improved optimization algorithm used for the BRB-RI model has
significantly improved interpretability.
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Table 4. Comparison of attribute weights of models.

Models δ1 δ2

BRB0 1 1
BRB-RI 0.9996 0.9725
BRB-M 0.8383 0.6299

The accuracy of the BRB model describes the difference between the predicted value
of the model output and the actual value of the real system, and in this paper, the MSE was
used as a measure of accuracy. The MSE values of the three models are shown in Table 5,
and the corresponding health evaluation results are shown in Figure 7.
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Table 5. MSE comparisons between models.

Models MSE

BRB0 0.0053
BRB-RI 0.0018
BRB-M 0.0013

The trend of battery capacity change can be roughly predicted by expert knowledge,
indicating the effectiveness of expert knowledge in evaluating the state of health of lithium
batteries. The best predictive performance of the model was attributed to the BRB-M model,
as it is optimized solely for accuracy without being constrained by interpretability and
disturbance resistance. It is worth mentioning that good prediction results was still exhib-
ited by the BRB-RI model under the constraints, indicating that the improved optimization
algorithm did not cause too much of a loss in accuracy.

5.3.2. Comparative Analysis of Model Robustness

In the construction of the disturbance model, Lipschitz stabilization is introduced as
the ability of the BRB model to resist disturbances, and the size of the Lipschitz constant
directly determines the resistance of the model to disturbances. The values of the Lipschitz
constants for the three models of this experiment are shown in Table 6.

Table 6. Values of Lipschitz constants for each stage of the model.

Models ϑIT ϑMDC ϑMDN ϑER ϑBRB

BRB0 40 0.9996 1 0.8474 33.8837
BRB-RI 30.3219 0.9981 1.0543 0.8461 26.9937
BRB-M 40 4.2475 2.3623 0.8070 323.8971

As shown in Table 6, a significant decrease in the ϑBRB value of the BRB-RI model was
observed, indicating that the robustness constraints in the improved optimization algorithm
could effectively limit the range of disturbances to the model during the optimization
process, thereby increasing the robustness of the model to disturbances and resulting in a
decrease in the value of the Lipschitz constant for each part. Since the BRB-M model aims
only at accuracy in the optimization process, there was a loss of disturbance resistance in
terms of matching calculation and normalization, which is one of the reasons for the large
ϑBRB value.

In this paper, disturbance factors of 0.001, 0.0025, 0.005, and 0.0075 were applied to the
input data, and the calculated evaluation results of the models are shown in Figure 8 for
the different disturbance data. As shown in Figure 8a, anomalous fluctuations in the pre-
diction were observed for both the BRB0 model and the BRB-M model in the 0–10 datasets
(red circles), while the fluctuations in the BRB-M model were more pronounced in the
32–55 datasets (Figure 8b). In addition, the BRB-M model fluctuations had a greater impact
on the 32–41 datasets (red circles), during which the accuracy of the model decreased,
indicating that the disturbance resistance of the BRB-M model is poor. No significant
fluctuations were observed in the test of the four sets of disturbance data for the BRB-RI
model, indicating that the BRB-RI model has excellent disturbance resistance. This is
consistent with the data shown in Table 6, i.e., the smaller the value of ϑBRB is, the stronger
the disturbance resistance ability of the model, which verifies the validity of the calculation
of the disturbed BRB evaluation models.

In Table 6, it can be observed that the Lipschitz constants of the input transformation
part of the three models are larger than the values of the other parts, and in the research
of Cao [13], the problem of the Lipschitz constants of the input transformation part being
too large and thus leading to a decrease in the disturbance resistance of the model was
mentioned, while the improved optimization algorithm considers a way of optimizing the
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reference value intervals of the input attribute, and the specific optimization strategy is
shown in Table 7.
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Table 7. Interval optimization range for reference values.

VL L N S

Time-CC [0.93–0.96] [0.7–0.725] [0.46–0.485] [0.195–0.21]
Adopted value 0.94 0.7124 0.485 0.21

Time-CV [0.53–0.56] [0.475–0.482] [0.416–0.42] [0.31–0.33]
Adopted value 0.559 0.482 0.416 0.31

The optimized input attribute reference values were more reasonably divided, effec-
tively reducing the ϑIT value, which is one of the reasons why the BRB-RI model is more
robust than the other models. To further analyze the disturbance resistance of the three
models, the Lipshitz constants of the input transformation part of the models were divided
into ϑIT−1 and ϑIT−2, where ϑIT−1 denotes the Lipshitz constant generated by Time-CC
and ϑIT−2 denotes the Lipshitz constant generated by Time-CV; the specific values are
given in Table 8. The ϑIT−2 values of the three models were larger than ϑIT−1, indicating
that Time-CV is more sensitive than Time-CC. For further analysis, the disturbed data were
applied separately to Time-CC and Time-CV, and the results obtained are shown in Figure 9.
The data changed little after the Time-CC disturbance, while the Time-CV disturbance was
more pronounced.
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Table 8. Lipschitz constant for model input information transformation.

Models ϑIT−1 ϑIT−2

BRB0 9.5238 40
BRB-RI 8.7944 30.3219
BRB-M 9.5238 40

Then, taking the disturbance data of 0.0025 as an example, the ϑBRB values of both the
BRB-RI and BRB0 models were calculated cyclically 300 times each; none of the 300 values
collected exceeded the maximum Lipschitz constant value of the model, and the obtained
data are shown in Figure 10, which shows that the degree of disturbance of attribute of
Time-CV was much larger than that of attribute of Time-CC. The reason is that the Time-CC
attribute is more granular than the Time-CV one, and attributes with small granularity will
preferentially lead to a decrease in the capacity of the model to resist disturbances, and
the Time-CV attribute reference value division area is too small, which is also one of the
reasons why ϑIT−2 is larger than ϑIT−1.
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Therefore, in the practical operation of Li-ion batteries, the suppression of disturbances
caused by voltage should be given priority to ensure that the evaluation model achieves
the best results.

5.3.3. Comparison with Other Models

To further illustrate the performance of the model proposed in this paper, this study is
divided into two parts for comparative analysis with other models. In the first part, this
paper compares the BRB-I model proposed by Han [8], which considers interpretability,
and the WOA-BRB model proposed by Zhao et al. in terms of model performance. Both
the WOA-BRB and BRB-I models use the whale optimization algorithm. In the second part,
this paper compares the model proposed in this study with other machine learning models
such as the BPNN model, RBF model, SVM model, and LSTM model, and the results are
shown in Table 9.

As shown in Table 9, in the first part, the accuracy of the BRB-I and WOA-BRB models
is slightly better than that of the BRB-RI model, but in the study of [9], the WOA-BRB
model uses an initial reference value, which means that the ϑIT value is the same as that of
the BRB0 model and is therefore less resistant to disturbances in the transformation of the
input information. According to the optimized parameters of the BRB-I model given in [8],
the Lipschitz constant of the BRB-I model is calculated as shown in Table 10. Compared
with the BRB-RI model, the disturbance resistance of the BRB-I model is also weaker than
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that of the BRB-RI model. Taken together, the BRB-RI model is superior to all the other
models in terms of robustness and achieves a balance among the three attributes, although
there is a slight loss in accuracy.

Table 9. Performance comparison between different BRBs and other models.

Part Models MSE

Part I

BRB0 0.0053
BRB-RI 0.0018
BRB-M 0.0013
BRB-I 0.0016

WOA-BRB 0.0012

Part II

BPNN 0.0011
RBF 0.0012
SVM 0.0015

LSTM 0.0013

Table 10. Comparison of Lipschitz constants of BRB-I and BRB-RI models.

Models ϑIT ϑMDC ϑMDN ϑER ϑBRB

BRB-RI 30.3219 0.9981 1.0543 0.8461 26.9937
BRB-I 50 1.7065 0.9824 0.8627 72.3150

In the second part, this paper is compared with other machine learning models, where
both the BPNN model and LSTM use the gradient descent optimization algorithm and SVM
uses the SMO optimization algorithm. From Table 9, it can be seen that the accuracy of the
machine learning model is better than the BRB model, but because the four models in Part
II are often black-box models, it is difficult to explain the decision-making process inside
the model; in addition, the four models may not perform stably in the face of noisy data
and missing data, resulting in fluctuations in performance. Therefore, in a comprehensive
view, although the BRB model is slightly lower than the machine learning model in terms
of accuracy, it is better than the other models in terms of interpretability and robustness,
achieving a balance of the three attributes.

5.3.4. Analysis of Different Lithium-Ion Batteries

To illustrate the generalizability of the modeling approach proposed in this paper,
a dataset of different lithium-ion batteries was used for the health evaluation in this
section; specifically, data were used from a CS2-36 battery provided by the University of
Maryland, which was operated at a constant current rate of 0.5C until the voltage reached
4.2 V and then continued at 4.2 V until the charge current dropped to less than 0.05 A,
which was achieved by using an Arbin BT2000 battery test system to perform multiple
charge/discharge tests at room temperature.

The analysis of the performance of the models is shown in Figure 11, and the results of
the prediction accuracy of the different models for CS2-36 batteries are shown in Table 11.
Good accuracy was demonstrated by the BRB0 model, indicating the relative reliability of
the initial expert knowledge. Based on this, a very desirable prediction effect was achieved
by the BRB-M model through optimization, and an excellent performance level was shown
by the BRB-RI model, which is based on the improved optimization algorithm proposed in
this paper.

In addition, in terms of disturbance resistance, Table 11 shows a comparison of the
Lipshitz constants of the three models, in which the Lipshitz constant of the model based
on expert knowledge is relatively low, which indicates that the expert knowledge is more
reliable and has good disturbance resistance, which is the reason why the BRB-RI model
was not significantly improved after optimization, the BRB-M model, because there are
no robustness constraints, so the model loses some of its disturbance resistance. This
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also demonstrates that the improved optimization algorithm proposed in this paper can
effectively improve the robustness of the model.
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Table 11. Comparison of model accuracy and robustness.

Models MSE Lipschitz Constant

BRB0 0.0020 16.5445
BRB-RI 2.3203 × 10−4 16.1432
BRB-M 1.3926 × 10−4 41.1222

The reasonableness of the disturbance BRB modeling approach proposed in this paper
is verified by combining the analysis of the health state assessment of B0006 and CS2-36
batteries, and the comparative analysis with other BRB models and machine learning
models in this study verifies the effectiveness of the improved optimization algorithm
proposed in this paper.

6. Conclusions

Li-ion batteries are sensitive to both internal and external environmental factors, which
may cause disturbances in the data measured by researchers and fluctuations in the health
of the batteries. To address this problem, a disturbance of the BRB evaluation model is
proposed in this paper. This model considers the disturbance resistance of the model.
The model introduces Lipschitz stability as a criterion for the disturbance resistance of
the model and defines the conditions for the Lipschitz stability of the BRB model as well
as the coefficients of the disturbance resistance indices for the four computational parts
of the BRB model. Since the BRB model is highly affected by disturbances in the input
transformations, an improved optimization algorithm is proposed in this paper. This
algorithm preserves the robustness and interpretability of the model. Finally, using the
lithium-ion battery dataset provided by the NASA Predictive Center of Excellence as a case
study, we compared the disturbed BRB model with other models to prove the effectiveness
of the disturbed BRB model in terms of health evaluation and disturbance analysis and
verified the reasonableness of the improved optimization algorithm.

However, the disturbances in lithium-ion batteries are often unknown, and it is dif-
ficult to accurately measure the disturbances in the model proposed in this paper. In
practice, this may require a combination of multiple factors and may require the use of
more advanced mathematical modeling and data analysis techniques to deal with complex
battery behavior. In addition, due to the subjectivity of expert knowledge, the improved
optimization algorithm proposed in this paper is based on the premise that expert knowl-
edge is reliable, and further research is needed on how to optimize the model according
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to unreliable or inaccurate expert knowledge. For instance, probabilistic models or fuzzy
logic techniques can be used to model the uncertainty of expert knowledge in future re-
search. This would enable a better understanding of the scope and likelihood of expert
knowledge, thus allowing the optimization algorithm to be more flexible and adaptable to
different situations.
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