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Abstract: The consistency in capacity degradation in a multi-cell pack (>100 cells) is critical for
ensuring long service life for propulsion applications. As the first step of optimizing a battery system
design, academic publications regarding the capacity degradation mechanisms and possible solutions
for cycled nickel/metal hydride (Ni/MH) rechargeable batteries under various usage conditions are
reviewed. The commonly used analytic methods for determining the failure mode are also presented
here. The most common failure mode of a Ni/MH battery is an increase in the cell impedance due to
electrolyte dry-out that occurs from venting and active electrode material degradation/disintegration.
This work provides a summary of effective methods to extend Ni/MH cell cycle life through negative
electrode formula optimizations and binder selection, positive electrode additives and coatings,
electrolyte optimization, cell design, and others. Methods of reviving and recycling used/spent
batteries are also reviewed.

Keywords: nickel/metal hydride (Ni/MH) battery; failure analysis; electrochemistry; hydrogen
storage alloys; self discharge; capacity degradation

1. Introduction

Nickel/metal hydride (Ni/MH) batteries are widely used in many energy storage applications.
Cycle stability is one of the key criteria in judging the performance of rechargeable battery technology.
The general observations regarding failed Ni/MH cells are summarized in Figure 1. In order to further
investigate the mechanisms of capacity degradation and their relevant solutions to extend cycling
under normal and abuse conditions, we have chosen to begin with a review of the significance of the
Ni/MH battery in the overall battery market, its basic structure and chemistry, and the analytical tools
used to study and characterize its performance, and to mainly focus on academic publications and
reports. Patents detailing solutions for extending cycle life are reviewed in two separate articles [1,2].

1.1. Significance of Nickel/Metal Hydride Batteries

Ni/MH batteries using an alkaline KOH electrolyte have been commercialized for more than
25 years [3]. Because of its durability, abuse tolerance, compact size, and environmental friendliness,
Ni/MH battery applications have steadily expanded from the traditional consumer market to include
propulsion and telecommunications. However, due to its relatively low gravimetric energy density
compared to the rival Li-ion battery, the Ni/MH battery lost part of its market share in portable electronic
devices, such as notebook computers, cell phones, and digital cameras. In the meantime, Ni/MH battery
technology also invaded the primary alkaline battery market because of its voltage compatibility and
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low self-discharge [4–6], as well as the NiCd power tool market for its non-toxicity [7,8]. The success
of Ni/MH in powering hybrid electric vehicles (HEV) developed by a handful of automobile
manufacturers stems from its wide temperature range, abuse tolerance, superb cycle stability, high
charge and discharge rate capabilities, and environmental friendliness [9]. One analyst even predicted
a fourfold increase in Ni/MH battery sales for HEV and EV markets from 2014 to 2020 [10]. Although
the current industries making pure battery-powered electric vehicles embrace Li-ion battery technology,
a Ni/MH pouch cell developed under a five million dollar Advanced Research Projects Agency-Energy
(ARPA-E) program has demonstrated a specific energy of 127 Wh¨kg´1 at the cell level with an estimated
target of 148 Wh¨kg´1 [11]. With the recent breakthrough of high-energy Si-negative electrodes capable
of storing 3635 mAh¨g´1 (about ten times the current A2B7 alloy) [12], the future of Ni/MH in the EV
application appears very bright. From the beginning of their competition, Ni/MH batteries have had
higher volumetric energy density than Li-ion batteries, due to the high density active materials (rare
earth metal (RE) and transition metal versus carbon-based products in the anode and nickel hydroxide
versus lithiated transition metal oxides in the cathode). With the improvements in specific energy,
a resurgence in Ni/MH batteries for applications that place a premium on space rather than weight,
such as portable displays, wearable electronic devices, and medical devices, can be expected. As for
large-scale high-power temporary energy storage applications, the GIGACELL, made by Kawasaki
Heavy Industries, demonstrates superior performance using the Ni/MH chemistry [13,14]. In stationary
applications, its excellent cycle stability and wide operating temperatures, combined with the low cost
and easy manufacturability, have made Ni/MH the best choice [15]. The overall outlook for Ni/MH
battery technology shows that it has tremendous potential in various energy storage applications
following these new scientific discoveries and process improvements—a far cry from being the 25-year
obsolete veteran in the battery business.
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Figure 1. Schematic diagram of three key factors leading to the major failure mode of nickel/metal
hydride (Ni/MH) cells—electrolyte dry-out.

1.2. Basic Structure of Nickel/Metal Hydride Battery

There are basically seven different types of Ni/MH batteries: cylindrical with metal cases, stick
(bubble gum shape), prismatic with metal cases, prismatic with plastic cases, button cell, pouch cell [16],
and flooded cell [17] (Figure 2). All but button cell and pouch cell have a safety valve installed to
prevent explosions from gas build-up. A simple comparison between various construction types is
shown in Table 1. They all share some common parts: positive electrode, negative electrode, separator,
electrolyte, case, and safety valve (except button and pouch cells). The basic electrochemistry reactions
for the positive electrode, negative electrode, and full cell are:

NipOHq2 ` OH´ Ô NiOOH ` H2O ` e´ pforward : charge, reverse : dischargeq (1)

M ` H2O ` e´ Ô MH ` OH´ pforward : charge, reverse : dischargeq (2)

NipOHq2 ` M Ô NiOOH ` MH pforward : charge, reverse : dischargeq (3)
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where M is the hydrogen storage metal/alloy and MH is the hydride of metal M. During the charge
process, bi-valent Ni is oxidized into the tri-valent state while metal M is reduced by the absorbed
hydrogen atom. The most commonly used positive electrode in the current Ni/MH battery technology
consists of active materials made of co-precipitated spherical hydroxides from Ni, Co, and Zn and some
binders, pasted onto Ni-foam via a wet method. Recently, a dry application of spherical powder onto
Ni-foam with no binder followed by immediate compaction has also been used to increase the energy
and power density of the cell. In some high-temperature/high-rate applications, old sintered-type
positive electrodes, based on fibrous Ni on stainless steel plate, are still in commission. Co-coating
of the spherical particles and additives such as metallic Co and/or CoO and rare earth element (RE)
oxides in the positive electrode paste are also popular. A review of the synthesis and properties of
Ni(OH)2 was recently reported [18].
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Figure 2. Ni/MH batteries in: (a) cylindrical; (b) stick; (c) metallic prismatic; (d) plastic prismatic;
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Table 1. Comparison of different types of Ni/MH battery packaging.

Shape Case material Sealed Manufacturability Cost Energy
density

Heat
dissipation

Abuse
tolerance

Cylindrical Metal Yes Easy Low High Easy High
Stick Metal Yes Medium Low High Easy High
Prismatic Metal Yes Medium High Low Easy Med
Prismatic Plastic Yes Medium High Low Hard Med
Button Metal Yes Easy Low Low Easy Low

Pouch Al foil Yes Easy Low Very
high Easy Low

Cylindrical/prismatic Plastic/flooded No Easy Low Low Hard High

The most common metal hydride (MH) alloy used in the negative electrode is a RE-based AB5 alloy.
A typical atomic composition is La10.5Ce4.3Pr0.5Nd1.4Ni60.0Co12.7Mn5.9Al4.7. Recently, RE- based A2B7 MH
alloys have gained popularity in high-energy and low self-discharge consumer type applications [4–6].
A typical atomic composition of this type is La6.7Pr6.3Nd6.3Ni72.8Al4.0. Recent progress in MH alloys for
Ni/MH battery applications can be found in the following review article [19]. The negative electrode can
be prepared by dry-compacting the MH powder directly onto a Ni-mesh, Cu-mesh, expanded Ni, Ni
foam, or expanded Cu substrates without the use of a binder, or by wet-pasting a slurry with MH alloy,
binder, and/or additives onto nickel plated perforated stainless steel (NPPS).

A 30% KOH solution is widely used as the electrolyte for Ni/MH batteries due to the balance of
conductivity and freezing point temperature. Performance comparisons for other concentrations [20]
and alkaline metal hydroxides [21] are available. A small amount of LiOH (1.5 g¨L´1), which has
higher chemical reactivity, is added to boost low-temperature performance, while in high-temperature
applications, part or all of the KOH is replaced by the less reactive (corrosive) NaOH to reduce corrosion. In
the current standard mass production of Ni/MH cells, no other specific additive is added to the electrolyte.

Grafted polypropylene (PP)/polyethylene (PE) non-woven fabric is today’s standard separator
material, and an overview has been published by Kritzer and Cook [22]. While the regular separator is
white in color, the sulfonated separator is brownish and offers benefits to low self-discharge due to its
ability to trap redox shuttle substances, especially the nitrogen-containing compounds [23]. Both types
of separators can be found in current NiMH batteries.
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1.3. Experimental Methods Used in Failure Analysis

A few analytic tools are frequently used to identify the failure mode of a cycled Ni/MH
battery [24–26]. Scanning electron microscope (SEM) with X-ray energy dispersive spectroscopy (EDS)
capability is commonly used to examine the degree of pulverization, phase segregation, degree of
oxidation, physical size changes, and trapping of particulates. The different features found between the
secondary electron image and the backscattering electron image can be extrapolated into the changes
in the average atomic weight of the area of interest. EDS mapping is especially useful in studying
elemental distribution (for example, oxygen) in a relatively large area (10–100 µm scale). While gas
chromatography (GC) is used to identify the gas composition in the cell, inductively coupled plasma
(ICP) is used to examine the metallic composition of any solid (electrode, separator, tap, etc.) or liquid
(remaining electrolyte and solution attained through Soxhlet extraction) content from the autopsy of
a cycled cell. Titration is another method to determine the content of a specific element [27]. X-ray
diffraction (XRD) is an important tool to study oxide formation, phase changes, and microstructure
changes in both negative [25,26,28,29] and positive [30] electrodes.

Other tools are used less frequently in failure analysis. For example, transmission electron
microscope (TEM) is sometimes used to study the microstructure and composition of the surface
oxide from a cycled cell [31–33]. Magnetic susceptibility (MS) measurements can be used to monitor
the evolution of the count and size of metallic Ni-clusters embedded in the surface oxide [26,34,35].
Both X-ray photoelectron spectroscopy (XPS) [36–40] and Auger electron spectroscopy (AES) [41]
have been used to study the surface composition, with the former being able to identify the oxidation
state. The acoustic emission (AE) technique has also been used to study the volume change and
pulverization of the MH alloy [42,43]. Fourier transform infrared spectroscopy (FTIR) has been used to
study the OH´ ligand in Ni(OH)2 [44–47]. Raman spectroscopy (RS) is another optical measurement
used to characterize the changes in the separator and positive electrode [37,46–48]. Electrochemical
impedance spectroscopy (EIS) or AC impedance measurements are usually used to isolate components
with different degrees of degradation [49–52]. Polarization curves [53–56] and cyclic voltammetry
(CV) [57–60] are other electrochemical tools that can be used to study the evolution of electrode surface
changes. Besides experiments with real batteries, empirical capacity degradation models have also
been previously developed [61–63].

2. Capacity Degradation

Battery failure can be separated into two categories: accidental and long-term degradation.
The former includes fire, electrical short-circuit, and physical damage. In Table 2, we have listed a few
common symptoms and possible causes that originated the failure of the batteries. Long-term capacity
loss under various test conditions is discussed in the remainder of this section.

Table 2. Common Ni/MH battery failure symptoms and possible causes.

Symptom Reasons Possible causes

Battery short-circuit
Direct conducting path
between two electrodes
developed

‚ Separator punch-through
‚ Conducting debris from Cu-impurities
‚ Deformation of electrode causing direct contact between taps

Battery open-circuit Breakage of inside
connection

‚ Electrode breakage due to expansion/distortion
‚ Broken tap connection
‚ Complete electrolyte dry-out

Battery abuse Over-discharge and
overcharge

‚ Unbalanced capacity in positive and negative electrode
‚ Mismatched charger

Capacity decrease Electrode degradation

‚ Pulverization/oxidation of MH alloys in negative electrode
‚ Pulverization in spherical particle due to formation of γ-NiOOH phase
‚ Decrease in the Co-conductive network in the positive electrode
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Table 2. Cont.

Symptom Reasons Possible causes

Power decrease and
impedance increase

Electrolyte dry-out
‚ Venting from improper cell-balance
‚ Consumption due to oxidation

Electrode degradation

‚ Reduction in electrode active materials
‚ Increase of the surface oxide of negative electrode
‚ Loss of co-conductive network in positive electrode

Separator degradation

‚ Increase in fiber diameter
‚ Reduction in pore volume
‚ Impurity trapped internally
‚ Decomposition

Overheat during
charge Micro-shorting ‚ Conductive debris accumulation in separator

White deposits Electrolyte leak from
venting

‚ Improper closing of the cell
‚ Off-balance in the remaining electrode capacity
‚ Deterioration of gas recombination capability at the surface of MH alloy
‚ Heavily oxidized electrode and/or electrolyte
‚ Failure in the safety vent

2.1. Capacity Loss During Normal Cycling at Room Temperature

There are two types of capacity loss during cycling: reversible and irreversible. The reversible part
is also called self-discharge, which mainly occurs through six pathways: shuttling effects from nitrogen
containing compounds [64], shuttling effects from soluble ions of multi-valence transition metals [65],
micro-shorts [66] from conducting/semiconducting deposits trapped in the separator [67,68], hydrogen
gas desorption from MH alloys [69–73], direct reaction between hydrogen gas and NiOOH [69,73,74],
and CoOOH protective/conductive coating breakdown due to contamination from leached MH
alloys [6]. Self-discharge accelerates with rises in the environmental temperature. There is basically no
self-discharge at below ´5 ˝C [75]. Before the low self-discharge Ni/MH battery was introduced (the
Eneloop cell from Sanyo using a combination of improved MH alloy, separator, and positive active
materials [6]), cells initially had a monthly 20%–30% capacity reduction, which was then improved to
a monthly loss of 5%–10% at room temperature [76]. Modern low-self discharge Ni/MH consumer
batteries have self-discharge rates of less than 20% per year [6]. An automatically triggered re-charging
algorithm may be necessary for large-scale applications [77]. Common methods used to suppress
self-discharge in Ni/MH batteries are summarized in Table 3. The irreversible capacity loss, which
leads to failure of the battery, covers the majority of this review.

Table 3. Summary of common methods used to suppress self-discharge in Ni/MH batteries. The star
system used in the effectiveness column in Tables 3–9 was meant to show the relative strength in
each method to address the problem based on authors’ own experience. Interested readers are
encouraged to read the original article and to form their own opinions. PP: polypropylene; PTFE:
polytetrafluoroethylene; and CMC: carboxymethyl cellulose.

Method Direct impact Environmental impact Cost impact Effectiveness References

Use of a sulfonated
separator

Removal of N-containing
compounds None Modest ‹‹‹‹‹ [22,78,79]

Use of an acrylic acid
grafted PP separator

Reduction in Al- and Mn-
debris formation in separator None None ‹‹‹‹ [80]

Removal of Co and Mn in
A2B7 MH alloy

Reduction in debris formation
in separator None None ‹‹‹‹‹ [6,81]

Increase of the amount of
electrolyte

Reduction in the hydrogen
diffusion in electrolyte None None ‹‹‹‹ [82]

Removal of Cu-containing
components Reduction in micro-short None None ‹‹‹‹‹ [83–85]

PTFE coating on positive
electrode

Suppression of reaction
between NiOOH and H2

None Negligible ‹‹‹‹ [86]
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Table 3. Cont.

Method Direct impact Environmental impact Cost impact Effectiveness References

CMC solution dipping Suppression of oxygen
evolution None Negligible ‹‹‹‹ [87]

Micro-encapsulation of Cu
on MH alloy

Decrease in H2 released from
MH alloy None Modest ‹‹‹ [88]

Ni-B alloy coating on MH
alloy

Formation of a protection
layer None Modest ‹‹‹ [89]

Alkaline treatment of
negative electrode

Reduction of leach-out of Mn
and Al None Modest ‹‹‹‹ [90]

Addition of LiOH and
NaOH into electrolyte

Reduction in electrolyte
corrosion capabilities None None ‹‹‹‹ [75]

Addition of Al2(SO4)3 into
electrolyte

Reduction in MH alloy
corrosion None Negligible ‹‹ [91]

Irreversible capacity losses under regular cycling conditions (temperature between 20 ˝C and 30 ˝C,
rated below 2C with one or a combination of reasonable cut-off schemas during over-charge, such as
those used in [26,29]) can be categorized into five main categories: degradation of negative electrode
active material (MH alloy), degradation of positive electrode active material (spherical Ni(OH)2),
disintegration of the negative electrode, disintegration of the positive electrode, and venting of cells.

Degradation in the negative electrode includes MH alloy pulverization due to lattice expansion
during hydrogenation [92–95] which results in poor electrical and protonic conduction [49,95,96], alloy
surface oxidation hampering electron and proton conduction [36,52–54,93,94,97–101], and surface
fluoride formation [36]. The corrosion processes of AB5 MH alloys have been characterized by Maurel
and his coworkers using XRD, SEM, and TEM [102]. In the La-only A2B7 superlattice MH alloy, the
pulverization due to different sequences of hydrogenation between Mg-containing A2B7 and Mg-free
AB5 phases dominates the failure mode [25,103].

Degradation in the positive electrode includes swelling from γ-NiOOH formation [67,104],
breaking of the Co-conductive network [105], formation of less electrochemically rechargeable
γ-NiOOH [25,93,106], Co dissolution and migration from the conductive network in the positive
electrode [107], contamination from leach-out products (Al and Mn) in the negative electrode,
deteriorating Co-conductive coating [27,104], and pulverization of positive electrode spherical particles
causing detachment of active material [68,108]. The increased surface area in the positive electrode as
a result of pulverization also deprives electrolyte from the separator, which increases cell resistance [109].

The mechanical disintegration of the negative electrode may include breakage of the NPPS
substrate due to increased stress from electrode expansion/distortion and MH alloy powder
detachment from the substrate. The mechanical disintegration of the positive electrode may
include breakage of the Ni-foam substrate due to large amounts of stress from electrode
expansion/distortion [110], especially in a small wounded cylindrical cell [111], and separation of
spherical particles from the substrate [112]. Venting occurs when high pressure (mostly H2) is built
up inside the cell primarily from inadequate gas recombination capabilities of the MH alloy surface
and/or unbalanced capacity distribution [113], which results in reduced electrolyte content [114].

2.2. Capacity Loss During Long-Term Room Temperature Storage

The irreversible capacity loss during long-term room temperature storage can be attributed to
the dissolution of the surface CoOOH conducting network [115,116], corrosion/passivation of the
negative electrode [23,117–119], decomposition of the positive electrode [115], decomposition of the
separator [116], and poisoning of the positive electrode from cations that originate from the negative
electrode [68,80,115].

2.3. Capacity Loss During High-Temperature Storage

Temperature is one of the key factors affecting cycle stability [120]. In addition to the regular
capacity losses described in Section 2.1, high-temperature environments (ě45 ˝C) will accelerate the
cell degradation through the following pathways: oxidation rate increases at the surface of the MH
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alloy particles [121,122], dissolution of Co-compounds in the Co-conductive network [113,123], higher
self-discharge rates that lower the cell voltage and result in further alloy oxidation, and separator
degradation [124]. The charging method used in the high-temperature range has to be specially
designed. First, the cell voltage tends to be lower at higher temperature, which demands that a lower
cut-off voltage be adopted during charging to prevent over-charge [122] as it can be directly correlated
to capacity degradation [125]. Next, the oxygen gas evolution potential in the positive electrode
tends to decrease with increased temperature, which forces the positive electrode to finish charging
prematurely and for which the ´∆V cut-off method is less effective [122,126,127]. Ni/MH batteries
are also more sensitive to over-charge at elevated temperatures. Ni/MH batteries overcharged at
rates of 0.2C, 0.5C, and 1.0C for one month show irreversible capacity losses of 12%, 30%, and 40%,
respectively [126]. Different from the irreversible capacity losses during high-temperature cycling,
losses in capacity observed during low-temperature cycling are recoverable when returned to room
temperature [74].

2.4. Capacity Loss Due to Low-Temperature Cycling

As stated above, low-temperature storage of Ni/MH batteries causes no apparent damage to
performance. However, Chen et al. [128] reported capacity degradation during a ´20 ˝C cycling
experiment with MH alloy pulverization, but the alloy corrosion was less serious compared to results
from room temperature and high temperature. At low temperatures, a special “surface icing” appears
to form on the MH alloy, further hindering electrochemical reactions and then disappearing at higher
temperature [129].

2.5. Capacity Loss Due to High-Rate Cycling

Fast charge acceptance is controlled by solid-state hydrogen diffusion [130], and the diffusion
coefficient of hydrogen decreases with increasing current density [131]. The increase in the degradation
rate with fast charging typically originates from an improper termination method for detecting the end
of charge, which leads to a large degree of over-charge especially within an aged cell [132]. The heat
generated from the internal resistance of the cell and the hydrogen-oxygen recombination reaction
cannot be dissipated quickly enough, and this results in an increase in the cell temperature. Both the
high rate and the high temperature conditions reduce charging efficiency [133] and therefore both
conditions facilitate similar failure mechanisms, except that a high-rate cycled cell also shows electrode
disintegration from extraordinarily fast gas release [134] (mostly H2 [135]) as well as gas venting
due to the insufficient time for hydrogen-oxygen recombination [136,137]. As such, fast charging of
a large-sized Ni/MH battery is not recommended unless special temperature monitoring devices are
installed [138,139].

2.6. Capacity Loss in a Multi-Cell Module

Thus far, the discussion in this section has focused on the cell-level where most of the capacity
degradation occurs. In a single Ni/MH cell, both the over-charge (with a state-of-charge (SOC) greater
than 100%) and over-discharge (depth of discharge (DOD) greater than 100%) conditions can be
avoided by the proper monitoring of the cell voltage. Because of the low risk of operating Ni/MH cells
under disadvantageous conditions, a multi-cell module or pack does not require voltage monitoring
at the cell-level whereas the Li-ion battery does. With the proper design of the negative-to-positive
capacity (n/p) ratio, the size of the over-discharge reservoir [113] and the anticipated rates of capacity
degradation in both electrodes, the over-charge or the over-discharge of the cells only results in small
amounts of oxygen gas or hydrogen gas evolution, respectively, in the positive electrode [17]. The small
amounts of generated oxygen gas can be recombined with the hydrogen stored in the negative electrode
in case of over-charge, and the small amounts of generated hydrogen gas can be stored in the negative
electrode in case of over-discharge [113]. Repetitive gas evolutions from the positive electrode can
result in both mechanical disintegration of the electrode and cell venting to relieve the pressure,
causing a loss in capacity and an increase in cell impedance. The DOD in a multi-cell pack also plays



Batteries 2016, 2, 3 8 of 28

an important role in the cycle life performance. For example, an increase of DOD from 10% to 90% in
a HEV Ni/MH pack can reduce cycle life from 5000 cycles to 500 cycles [61]. For high-rate operation,
as in a HEV, large swings in the SOC can result in premature MH alloy pulverization.

3. Methods to Improve Cycle Stability

There are many academic publications and issued patents offering, at least, partial solutions to
the capacity loss problem during cycling. While patents addressing cycle stability are reviewed in
two other papers [1,2], the strategies issued from the academic research community reviewed here
fall under six general categories: (1) cell designs guided mainly by n/p ratio, electrolyte loading,
and electrode thickness parameters; (2) active binder and additive material designs in the negative
electrode; (3) composition, coating, and paste additives in the positive electrode; (4) choice of separator;
(5) electrolyte; and (6) other components. Other systematic maintenance protocols for battery packs
using Ni/MH cells were reported by Zhu and his coworkers [140].

3.1. Cell Design

In good Ni/MH cell design, an appropriate n/p ratio is critical to the balance of the various
performance requirements in a specific application. For instance, a high energy consumer cell, a general
purpose cell, and a high-rate cell may have n/p ranges of 1.05–1.2, 1.4–1.6, and 1.8–2.2, respectively.
Adequate distribution of the extra negative electrode capacity into the over-charge-reservoir (OCR)
and the over-discharge-reservoir (ODR) to avoid cell-venting is especially critical, particularly near
the end of service life [116]. Nearly all cases of venting are due to short-circuits in the OCR that
arises from material oxidation and γ-NiOOH formation that overwhelm the ODR. Other important
design parameters that impact cycle life performance are electrolyte loading and electrode thickness.
The amount of electrolyte added to the cell is proportional to cycle life, but too much electrolyte will
eliminate the gas recombination centers and cause venting during formation. Optimal electrolyte
loading is about 1.7–1.9 g¨A´1¨h´1 [141]. Thicker electrodes can improve the gravimetric and
volumetric energy densities of the battery at the expense of high-rate discharge capability and
mechanical integrity of the electrode. Methods for improving cycle performance through cell design
are summarized in Table 4.

Table 4. Summary of cycle stability improvement methods related to cell design. ODR: over-
discharge-reservoir; and n/p: negative-to-positive capacity.

Method Direct impact Environmental impact Cost impact Effectiveness References

Pre-charge of the positive
electrode Reduction of ODR None Negligible ‹‹‹‹‹ [142,143]

Increase in the n/p ratio Trade-off of capacity for
longer life None None ‹‹‹‹‹ [134,144]

Optimization of electrolyte
loading

Balance between cycle
life and production yield None None ‹‹‹‹ [141]

Optimization of positive
electrode thickness

Reduction in electrode
breakage None None ‹‹‹‹ [145]

Pre-charge during the
formation process Protection of MH alloy None Negligible ‹‹‹ [146]

3.2. Negative Electrode

While studies of degradation in MH alloys such as AB2 [147–153], Mg-Ni [154–157], and V-based
body-center-cubic [158] are available, we will singularly focus on the discussion of misch-metal
based AB5 and A2B7 superlattice MH alloys and their related electrode properties. In this section,
improvements in cycle stability related to the negative electrodes are summarized in Table 5 and are
categorized by alloy formula, alloy preparation, alloy post-treatment, electrode additives, and different
electrode types.
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Table 5. Summary of cycle stability improvement methods related to negative electrode. PVA: polyvinel alcohol; HEC: hydroxyethyl cellulose; and RE: rare earth metal.

Method Direct impact Environmental impact Cost impact Effectiveness References

A. Alloy formula

Increase in Al-content Increase in unit cell volume and reduction in lattice expansion during
hydrogenation. Formation of Al2O3 protection layer on MH alloy. None None ‹‹‹‹‹ [159–162]

Increase in Co-content Reduction in hardness and prevention of La-migration onto surface None Modest ‹‹‹‹‹ [163]

Use of misch-metal instead of pure La Increase in degree of disorder None Reduction ‹‹‹‹‹ [164,165]

Increase in Ce and Nd content Increase in oxidation resistance None Modest ‹‹‹‹‹ [166]

Zr addition Decrease in pulverization rate None Negligible ‹‹‹‹‹ [167,168]

Ti addition Decrease in pulverization rate None Negligible ‹‹‹‹ [168,169]

Use of hyper-stoichiometry Reduction in pressure-concentration-temperature hysteresis and pulverization None None ‹‹‹‹ [92,163]

B. Alloy preparation Fast quenching-gas atomization Distribution of stress from lattice expansion None Modest ‹‹‹‹‹ [40,170–173]

Fast quenching-melt spin Improvement in alloy homogeneity None Modest ‹‹‹‹‹ [174,175]

C. Surface treatment

Ni surface plating Protection of alloy surface from oxidation and reduction in inner pressure None Modest ‹‹‹‹‹ [176,177]

Cu coating Protection of alloy surface from oxidation None Modest ‹‹‹‹ [178–181]

Co coating Protection of alloy surface from oxidation None Modest ‹‹‹‹ [182]

Pd coating Protection of alloy surface from oxidation None High ‹‹‹‹ [183]

Ni-B alloy coating Protection of alloy surface from oxidation None Modest ‹‹‹‹ [89]

Ni-P alloy coating Protection of alloy surface from oxidation None Modest ‹‹‹‹ [184]

Ni-S alloy coating Protection of alloy surface from oxidation None Modest ‹‹‹‹ [185]

Ni-Cu alloy coating Protection of alloy surface from oxidation None Modest ‹‹‹‹ [186]

Alkaline pre-activation Formation of a Ni-rich surface None Modest ‹‹‹‹‹ [187]

KBH4 treatment Formation of a Ni-rich surface Toxic in contact with skin Modest ‹‹‹‹‹ [187,188]

Surface fluorination Protection of alloy surface from oxidation None Modest ‹‹‹‹‹ [189–192]

Cu and HF surface treatment Formation of CuF2 protective layer on the surface None Modest ‹‹‹ [193]

D. Other treatments

AB5 annealing Improvement in Mn homogeneity and reduction in inner pressure None Modest ‹‹‹‹‹ [166,194–196]

La-A2B7 annealing Improvement in phase homogeneity None Modest ‹‹‹‹‹ [197]

Magnetization Improvement in mechanical integrity None Modest ‹‹‹ [198]

Ultrasound treatment Reduction in pulverization None Modest ‹‹‹ [128]

E. Additives

Ni fine powder Increase in mechanical integrity None Negligible ‹‹‹‹ [199]

Cu fine powder Increase in mechanical integrity None Negligible ‹‹‹ [200]

Co-compounds Increase in oxidation resistance None Modest ‹‹‹‹ [60,201–203]

CMC:PVA (3:2) Increase in mechanical integrity None Negligible ‹‹‹‹ [204]

Ratio of binder to conductive additives Increase in mechanical integrity None None ‹‹‹‹ [205]

PTFE Improvement in hydrogen gas absorption capability to reduce pressure None Negligible ‹‹‹‹ [206]

Teflonized carbon Creation of 3D conductive network None Negligible ‹‹‹‹ [207]

HEC Improvement in hydrogen gas absorption capability to reduce pressure Very low toxicity if swallowed Negligible ‹‹‹‹ [127,195]

BC-1 (irigenin) Improvement in gas recombination rate None Negligible ‹‹‹‹ [208]

Carbon nanotube Increase in mechanical integrity None Modest ‹‹‹‹ [209,210]

Y2O3 Improvement in corrosion resistance None Modest ‹‹‹‹ [211]

Oxides of light RE Improvement in corrosion resistance None Modest ‹‹‹‹ [212]

Oxides of heavy RE Improvement in corrosion resistance None Modest ‹‹‹‹ [213,214]

F. Electrode type Use of a pellet electrode Increase in mechanical integrity None Reduction ‹‹‹ [215]

Use of a sintered type electrode Increase in mechanical integrity None Reduction ‹‹‹‹ [216]
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3.3. Positive Electrode

Currently, the most commonly used positive active material is a spherical hydroxide
co-precipitated from sulphates [45] of Ni, Co, and Zn [217]. Ni has been in active use for more
than one hundred years due to the chemical reversibility between Ni2+ and Ni3+ and a voltage slightly
above the oxygen gas evolution potential that maximizes energy density for aqueous chemistries.
Both Zn and Cd [218] are good suppressors of γ-NiOOH formation, which causes swelling of the
positive electrode and consequently premature failure, but Cd is highly toxic to the environment. The
element Co is interesting in that it has oxides with different oxidation states (CoO, Co2O3, Co3O4,
β-CoOOH, β-H0.5CoO2 [219], and Co4+ [220]). The mechanism of reaction for Co in alkaline solution
is rather complicated [38,221], but a simplified version for electrochemical engineers can be used as
a guideline. Co in a +2 state is not a good conductor for electrons or protons, and it is only slightly
soluble in 30% KOH. Co can be oxidized into the +3 state through solid-state reaction [222], and it is
a good conductor for both electrons and protons due to the half-filled proton plane between two Co-O
layers in the CoOOH crystal structure; however, the reaction is not easily reversible. The presence
of Co4+ through a solid-state reaction can be detected at charge rates greater than C/5, and it can be
reduced back to Co3+ at a potential of 1.05 V versus Cd-electrode [220]. There are three general methods
for incorporating Co into the positive electrode of Ni/MH batteries, which leverage the irreversible
oxidation of Co2+ in the normal operation voltage range (>0.63 V versus Cd-electrode [220]). First, Co
co-precipitated with the spherical hydroxide particles form Co3+ to enhance the electron and proton
conductivities for Ni(OH)2. Second, the addition of Co, CoO, or other Co-compound into the electrode
paste allows the formation of a CoOOH conductive network that surround the spherical Ni(OH)2

particles. This Co-conductive network is crucial for the operation of Ni/MH batteries, especially at
high rate conditions, but they can have issues with distribution, thickness uniformity, and severe
degradation at high-temperatures [223]. A third method involves adding a pre-coating of CoOOH
onto the spherical particles prior to making the slurry for the electrode paste, which can involve
a wet-precipitation [224–226], a mud-slurry [227], or a dry mixing method. The use of Co in the
pre-coating form is the most effective and economical method, and thus is indispensable in high-end
Ni/MH consumer products. Suggestions to improve cycle stability related to the positive electrode
are summarized in Table 6 and are categorized by spherical particle composition and size, coatings,
additives, fabrication process, and substrates.
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Table 6. Summary of cycle stability improvement methods related to the positive electrode. NPPS: nickel plated perforated stainless steel.

Method Direct impact Environmental impact Cost impact Effectiveness References

A. Composition and particle size

Co-precipitation of Co Increase in intrinsic conductivity None Modest ‹‹‹‹‹ [228]

Co-precipitation of Zn Prevention of γ-NiOOH formation None Negligible ‹‹‹‹‹ [93,229]

Co-precipitation of Mg and/or Ca Improvement in high-temperature performance None Negligible ‹‹‹ [230]

New type of Ni-Al double layered hydroxide High capacity α-Ni(OH)2/γ-NiOOH None Negligible ‹‹‹‹ [58]

Increase in Ni(OH)2 crystallite size Trade-off in activation None None ‹‹‹‹ [231]

B. Surface coating

CoOOH coating Enhancement in survival rate after long-term storage None Modest ‹‹‹‹‹ [121,139,223]

Yb(OH)3 coating Improvement in high-temperature performance None Modest ‹‹‹‹ [232]

Electrode-less plating of Co Improvement in Co-conductive network None Modest ‹‹‹‹ [233]

Co/Yb hydroxide coating Improvement in high-temperature performance None Modest ‹‹‹‹ [234]

C. Additives

Nano-sized Ni(OH)2 Increase in electrochemical reaction reversibility None None ‹‹‹‹ [235]

Nano-sized ZnO Increase in the flexibility of the electrode None None ‹‹‹‹ [236]

Co in paste Formation of conductive Co-network None Modest ‹‹‹‹ [237–239]

CoO in paste Formation of conductive Co-network None Modest ‹‹‹‹ [110,240]

Co(OH)2 in paste Formation of conductive Co-network None Modest ‹‹‹‹‹ [195,241,242]

CoOOH in paste Formation of conductive Co-network None Modest ‹‹‹‹‹ [243,244]

CoSO4 in paste Formation of conductive Co-network None Modest ‹‹‹‹ [245]

Co3O4 in paste Formation of conductive Co-network None Modest ‹‹‹‹ [246]

Co and CaCo3 Prevention of oxygen evolution None Modest ‹‹‹‹ [247,248]

CuO in paste Uniform dispersion of Co-conductive network None Negligible ‹‹‹ [249]

ZnO in paste Prevention of oxygen evolution None Negligible ‹‹‹ [250,251]

Zn(OH)2 in paste Prevention of electrode swelling None Negligible ‹‹‹ [252]

Na0.6CoO2 Formation of better conductive Co-network None Modest ‹‹‹‹ [253–255]

RE Decrease in oxidation rate of MH alloy None Modest ‹‹‹‹‹ [256–259]

Y2O3 Decrease in oxidation rate of MH alloy None Modest ‹‹‹‹‹ [23,250,260–262]

Y(OH)3 Decrease in oxidation rate of MH alloy None Modest ‹‹‹‹‹ [263,264]

Oxides of heavy RE Improvement in corrosion resistance None Modest ‹‹‹‹ [213,265,266]

Calcium metal borate Prevention of oxygen evolution None Negligible ‹‹‹‹ [267]

CaF2 Improvement in high-temperature performance None Negligible ‹‹‹ [116]

Ca(OH)2 Improvement in high-temperature performance None Negligible ‹‹‹ [268,269]

CaS Improvement in high-temperature performance Reacts with acid and releases toxic H2S gas Negligible ‹‹‹ [270]

Ca3(PO4)2 Improvement in high-temperature performance None Negligible ‹‹‹ [271]

D. Electrode process
Use of sintered electrode Enhancement in survival rate after long-term storage None Reduction ‹‹‹‹‹ [272]

Use of pasted electrode on NPPS Increase in mechanical integrity None Reduction ‹‹‹ [273]

Use of granulated particles Suppression of electrode swelling None None ‹‹‹‹‹ [274]

E. Substrate
Use of 3D Ni-plated steel sheet Increase in power and cycle stability None Modest ‹‹‹‹ [275]

Use of Ni fiber felt Increase in surface area and flexibility None Modest ‹‹‹‹ [276]

Pre-coating of Co-Ce alloy Increase in contact area between substrate and Ni(OH)2 None Modest ‹‹‹ [277]
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3.4. Separator

The selection of the separator has a strong impact on the discharge capacity, voltage, and cycle
stability [278]. Degradation related to the separator under storage and cycling conditions includes:
(1) lower rates of electrolyte permeation in the separator; (2) lower electrolyte holding capability;
(3) reduction in the separator volume due to electrode expansion; and (4) reduced gas recombination
abilities [96]. Degradations (1) and (2) can be attributed to the debris formed in the separator as
precipitation products (ZnMn2O4) of ions leached from the negative and positive electrodes [23,67].
These deposits not only offer a path for self-discharge, but also reduce the ionic conductivity and
electrolyte holding capacity by filling the fine pores in the separator [26,29]. Degradation (3) can be
traced to swelling of the positive electrode active material that accompanies over-charging, converting
β-NiOOH to γ-NiOOH with Al-contamination leached from the negative electrode [29]. Methods to
address separator degradation are listed in Table 7.

Table 7. Summary of cycle stability improvement methods related to the separator. EVOH: ethylene-
vinyl alcohol copolymer; and AMPE: alkaline microporous polymer electrolyte.

Method Direct impact Environmental impact Cost impact Effectiveness References

Sulfonated separator Reduction in N-compound
shuttling effects None Modest ‹‹‹‹‹ [23,279–282]

Grafted acrylic acid/PP Improvement in electrolyte holding
capability None Negligible ‹‹‹ [283]

Polymer gel-type Improvement in durability None Negligible ‹‹‹ [284,285]

Hydroentangled CMC
composite Improvement in integrity None Negligible ‹‹‹ [286]

EVOH Improvement in integrity Cytotoxic Modest ‹‹‹ [287,288]

AMPE Improvement in voltage window None Modest ‹‹ [289]

Addition of a K-conducting
solid oxide film

Elimination of cross-contamination
from the negative electrode None High ‹‹ New idea

3.5. Electrolyte

The earliest indication of performance degradation is a decrease in cell voltage, which can be
traced to a reduction in the amount of electrolyte stored in the separator [50]. Electrolyte losses can
be traced to: (1) electrode active material expansion and pulverization, causing an increase in surface
area and the wicking of electrolyte away from the separator [54,290]; (2) venting of the cell; and
(3) oxidation of metal [98,290]. The contamination in/through the electrolyte is also crucial for the
life of both electrodes. Strategies involving the modification of electrolyte that can enhance cycle life
performance in Ni/MH batteries are listed in Table 8.

Table 8. Summary of cycle stability improvement methods related to the electrolyte.

Method Direct impact Environmental impact Cost impact Effectiveness References

Reduction in KOH
concentration Slow-down in alloy oxidation None None ‹‹‹‹ [291]

Replacement with NaOH Slow-down in alloy oxidation None Negligible ‹‹‹‹‹ [292]

ZnO additives Slow-down in alloy oxidation None Negligible ‹‹‹ [293]

LiOH additives Prevention of K+ migrating into Ni(OH)2
and suppression of Fe-poisoning None Negligible ‹‹‹ [93]

Al2(SO4)3 additives Slow-down in alloy oxidation None Negligible ‹‹‹ [91]

NaH2PO4 additives Formation of a Ni-rich surface on MH alloy None Negligible ‹‹‹ [294]

NaBO2 additives Improvement of high-temperature cycle
stability None Negligible ‹‹‹ [295]

Na2WO4 additives Increase in oxygen evolutionary potential None Negligible ‹‹‹ [296]

K4Fe(CN)6 additives Prevention of electrolyte decomposition Highly toxic Modest ‹‹‹ [297]

Use of gel-type electrolyte Reduction in corrosion and pulverization
in the positive electrode None Modest ‹‹‹ [298,299]

Use of polymer electrolyte Wide voltage window and better
mechanical integrity None Modest ‹‹‹‹ [300–310]
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3.6. Other Components

Strategies to improve cycle stability not covered in Sections 3.1–5 are summarized in Table 9, which
include charging processes, formation processes, storage conditions, and hardware modifications.

Table 9. Summary of cycle stability improvement methods related to other components. OCV:
open-circuit voltage.

Method Direct impact Environmental Impact Cost impact Effectiveness References

Install super water absorbing
material at cell bottom Reservoir for additional electrolyte None Negligible ‹‹‹‹‹ [104]

Maintain cell OCV above 1.0 V
Prevention of Co dissolution and
migration from the conductive
network in the positive electrode

None None ‹‹‹‹ [107,311,312]

Maintain cell OCV above 1.1 V
Prevention of Co dissolution and
migration from the conductive
network in the positive electrode

None None ‹‹‹‹‹ [313]

Reduction of depth of
discharge

Prevention of swelling in the
positive electrode None None ‹‹‹‹‹ [110]

Reduction of number of
shallow depth discharge Prevention of memory effect None None ‹‹‹‹‹ [314]

Implementation of
an improved battery
management system

Prevention of abuse None Modest ‹‹‹‹‹ [315]

Pulse charging Reduction in heat generated None Negligible ‹‹‹ [316]

Optimization of formation
parameters

Reduction in cell performance
variation None None ‹‹‹‹ [317,318]

Battery sealing under vacuum Reduction in inner pressure None Modest ‹‹ [319]

Improvement in sealing
technology Prevention of electrolyte leak None Negligible ‹‹ [320,321]

4. Revival of Degraded/Failed Battery

After long-term storage, a few small-current charge/discharge cycles can bring back some of
the lost capacity in Ni/MH batteries [322,323]. A more complicated method proposed by Li and
Meng [324] involves 33% SOC small-current charge, high-temperature storage (45–60 ˝C for 20–24 h),
and a small current charge/discharge cycle to restore at least part of the lost capacity. Its strategy is to
redistribute the Co-conductive network that was destroyed during storage. An alternative method
uses ultrasound to disperse active materials from both electrodes in order to create a fresh surface and
increase the capacity and power of the used cells [325].

Since the most common failure mode for Ni/MH batteries is electrolyte dry-out, opening cycled
cells and refilling with fresh electrolyte can restore the capacity almost to the level before cycling [204].
For re-activation of MH alloy, a patent describes a method of recycling a deteriorated nickel-hydrogen
battery by cleaning the cells with a concentrated sulfuric acid containing at least one type of Ni ion, Co
ions, and La ions [326]. The concentrated sulfuric acid is poured into the deteriorated nickel-hydrogen
battery and maintained at a temperature of 60 ˘ 10 ˝C while an electric current is applied to charge
the nickel-hydrogen battery. After cleaning, the interior of the nickel-hydrogen battery is filled with
an alkaline electrolyte containing a reducing agent. Consequently, γ-NiOOH converts to β-NiOOH,
which restores the capacity of the positive electrode, and RE(OH)3, Al(OH)3, Mn(OH)2, and Co(OH)2

dissolve in the concentrated sulfuric acid to activate the negative electrode surface. In addition, the
hydrophilic properties of the separator are restored following this method. Recycling used negative
electrodes is also possible through the removal of oxide by acetic acid [327]. At the end of usable cycle
life, procedures of dismantling, recovery, and reuse of spent Ni/MH batteries have been reported by
Nan et al. [328,329], Tenorio and Espinosa [330], Bertuol et al. [331], Zhang et al. [332], Rodrigues and
Mansur [333], Muller and Friedrich [334], Rabah et al. [335], Santos et al. [336], and Larsson et al. [337].
U.S. Patents regarding recycling Ni/MH batteries are reviewed in a separate article [2].
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5. Conclusions

Various failure modes and capacity degradation mechanisms are reviewed here. Solutions to
enhance the cycle stability have been summarized in seven tables covering cell design, negative and
positive electrodes, separator, electrolyte, and other hardware. After investigating the capacity-fade
issue in a single cell, the next step is to study the consistency in the capacity degradation in a battery
module composed of multiple cells.
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