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Abstract: The electrochemical reactions of multi-phase metal hydride (MH) alloys were studied using
a series of Laves phase-related body-centered-cubic (BCC) Ti15.6Zr2.1V43Cr11.2Mn6.9Co1.4Ni18.5Al0.3X
(X = V, B, Mg, Y, Zr, Nb, Mo, La, and Nd) alloys. These alloys are composed of BCC (major), TiNi
(major), C14 (minor), and Ti2Ni (minor) phases. The BCC phase was found to be responsible for
the visible equilibrium pressure plateau between 0.1 MPa and 1 MPa. The plateaus belonging to
the other phases occurred below 0.005 MPa. Due to the synergetic effects of other non-BCC phases,
the body-centered-tetragonal (BCT) intermediate step is skipped and the face-centered-cubic (FCC)
hydride phase is formed directly. During hydrogenation in both gaseous phase and electrochemistry,
the non-BCC phases were first charged to completion, followed by charging of the BCC phase. In the
multi-phase system, the side with a higher work function along the grain boundary is believed to
be the first region that becomes hydrogenated and will not be fully dehydrided after 8 h in vacuum
at 300 ˝C. While there is a large step at approximately 50% of the maximum hydrogen storage
for the equilibrium pressure measured in gaseous phase, the charge/discharge curves measured
electrochemically are very smooth, indicating a synergetic effect between BCC and non-BCC phases
in the presence of voltage and charge non-neutrality. Compared to the non-BCC phases, the C14
phase benefits while the TiNi phase deteriorates the high-rate dischargeability (HRD) of the alloys.
These synergetic effects are explained by the preoccupied hydrogen sites on the side of the hydrogen
storage phase near the grain boundary.

Keywords: hydrogen-absorbing alloys; metal hydride (MH) electrode; Laves phase alloys;
body-centered-cubic (BCC) alloys; synergetic effect

1. Introduction

The synergetic effects in multi-phase metal hydride (MH) alloys refer to the presence of
microsegregated secondary phases occurring in the melted alloys that effectively provide beneficial
effects [1]. Some examples of synergetic effects in the gaseous phase and electrochemical environment
are summarized in Table 1. In general, the synergetic effects in the gaseous phase hydrogen storage
can improve the storage capacity and reversibility, and are characterized by a continuous transition
in the pressure-concentration-temperature (PCT) isotherm, from the plateau pressure corresponding
to the phase with a stronger metal–hydrogen (M–H) bond strength to the phase with a weaker M–H
bond strength (Figure 7b in [2]). The interface region between two phases is considered to be critical
for the synergy to take place. Transmission electron microscopy (TEM) studies have demonstrated the
interface between the main C14 phase and other secondary phases (C15, Zr7Ni10, etc.) are clean [3,4],
and strong crystallographic orientation alignment can be established by electron beam back-scattering
diffraction pattern studies [5,6]. Some synergetic effects in the electrochemical environment are similar
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to those in the gaseous phase, i.e., improvement in capacity and hydrogen absorption/desorption rate.
Interestingly, the properties established by the scope of the gaseous phase can be further enhanced
by synergetic effects in the electrochemical environment. For example, it has been found that the
electrochemical discharge capacities of certain multi-phase MH alloys can be increased substantially
by lowering the equivalent plateau pressure (observed through open-circuit voltage (OCV) changes
during charge/discharge [7]) through synergetic effects [8,9]. Therefore, a systematic study in the
difference between the synergetic effects in the two environments is of significant interest.

Table 1. Examples of synergetic effects in multi-phase metal hydride (MH) alloys. GP and EC denote
gaseous phase and electrochemistry experiments, respectively. HRD: high-rate dischargeability.

Main Phase Secondary Phase Main Improvement Environment Reference

C14 Zr7Ni10 Capacity and activation * EC [10]
C14/C15 Zr7Ni10, ZrNi Capacity and activation EC [11]

C15 Zr7Ni10 HRD EC [12]
C15 Zr7Ni10 Capacity EC [13]

MgNi Ti Cycle stability EC [14]
C14/C15 Zr7Ni10 and TiNi HRD EC [15]
C14/C15 Zr7Ni10 and Zr9Ni11 Capacity and HRD EC [1]
Zr8Ni21 Zr7Ni10, Zr9Ni11 Capacity and HRD EC [16]

C14 Zr8Ni21 Activation, bulk diffusion, cycle stability EC [17,18]
Zr7Ni10 C15 HRD EC [19]

C14/C15 Zr7Ni10 and TiNi Capacity and reversibility GP [20]
C14/C15 Zr9Ni11 Activation, HRD, charge retention, and cycle stability EC [21]

C14 Zr9Ni11 and TiNi Capacity GP [21]
C14 Zr9Ni11 and TiNi Capacity, charge retention, and cycle stability EC [21]
C14 Zr7Ni10 and ZrNi HRD EC [21]

C14/C15 Zr7Ni10 and TiNi HRD EC [22]
Mg Mg2Ni Desorption kinetics GP [23]
AB5 AlMnNi2 Capacity and HRD EC [24]

BCC, C14 ZrNi Capacity, activation, and cycle stability EC [25]
Zr2Ni7 Zr7Ni0 Capacity GP, EC [26]
Zr7Ni0 Zr8Ni21 Capacity EC [26]
Zr2Ni7 ZrNi3, ZrNi5, VNi2, VNi3 Capacity EC [9]
Zr2Ni7 ZrNi3 and ZrNi5 Capacity EC [8]
NdNi5 Nd2Ni7 HRD EC [27]
LiBH4 Fluorographite Desorption kinetics GP [28]

Mg(BH4)2 Fluorographite Desorption kinetics GP [29]
MgH2 In, TiMn2 additives Desorption kinetics GP [30]

* indicates that the authors attributed improvement to micro-cracking at the surface instead of to
synergetic effects.

Laves phase-related body-centered-cubic (BCC) solid solution alloys were chosen for this study.
By combining the high-capacity main storage BCC phase with catalytic phases, such as C14, TiNi, and
Ti2Ni, one alloy in the family demonstrated a 30% increase in capacity when discharged at a current
density of 100 mA¨ g´1, which is adequate for electric vehicle applications [31]. The development of this
family of alloys proceeded in stages and the X-ray diffraction (XRD) and PCT analyses demonstrated
strong evidence of synergetic effects between the main storage phase and the catalytic phase [32–35].
With a base alloy of P17 (Ti15.6Zr2.1V44Cr11.2Mn6.9Co1.4Ni18.5Al0.3), the V/Ni content was adjusted
to increase the high-rate dischargeability (HRD) [36]. The synergetic effects in an electrochemical
environment were studied in detail using this same base alloy, P17, with substitutions of other A-site
atoms (B, Mg, Y, Zr, Nb, Mo, La, and Nd) and presented here.

2. Experimental Setup

The alloy samples were prepared using an arc-melting technique. The melting was performed
in an Ar environment with an average alloy weight of 12 g. The chemical composition of the ingot,
compared to the ratios in the raw materials, was determined with a Varian Liberty 100 inductively
coupled plasma-optical emission spectrometer (ICP-OES, Agilent Technologies, Santa Clara, CA,
USA). The microstructures of the as-prepared samples were examined by a Philips X’Pert Pro X-ray
diffractometer (XRD, Philips, Amsterdam, The Netherlands) and a JEOL-JSM6320F scanning electron
microscope (SEM, JEOL, Tokyo, Japan) equipped with energy-dispersive spectroscopy (EDS). The PCT
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analysis was performed with a Suzuki-Shokan multi-channel PCT (Suzuki Shokan, Tokyo, Japan)
system. The MH alloys were compacted on Ni mesh to achieve the negative electrode, and the
battery cells were made by using a standard Ni(OH)2-positive electrode and 30 wt% KOH electrolyte.
The electrochemical testing of the battery cells was performed at room temperature (RT) using a CTE
MCL2 Mini (Chen Tech Electric MFG. Co., Ltd., New Taipei, Taiwan) cell test system.

3. Results

3.1. X-Ray Diffraction Structure Analysis

Eight alloys with the targeted compositions listed in Table 2 were prepared by arc melting. Th base
alloy, P17, originated from a composition optimization study [35]. Other alloys were derivatives of
this base alloy with 1 at% replacement aimed at the A-site element (B, Mg, Y, Nb, Mo, La, and Nd).
The chemical composition of the as-prepared ingot was verified by ICP and shows a large discrepancy
only in alloy P39, where the added Mg was not found in the ingot due to loss from evaporation
during melting. Mg has a high vapor pressure at temperatures near the melting point of the alloy
and low solubility in the AB2 phase [37,38]. The content of La in the final ingot of P43 was less than
50% of the targeted content due to the high chemical reactivity of La metal with the residual oxygen
and the formation of oxide slag during melting. The B/A ratios for the ingots ranged from 4.24 to
4.68, assuming that Ti, Zr, and the additive elements are A-site atoms and the remaining constituent
elements are B-site atoms. The XRD patterns of the alloys are shown in Figure 1. The three major
peaks detected in all alloys belong to a BCC structure. All the minor peaks can be attributed to a C14
Laves phase. A TiNi phase with a B2 structure (a close derivative of a BCC structure) and a slightly
larger lattice constant were separated from the BCC phase using software deconvolution (JADE 9,
Christchurch, New Zealand).

Table 2. Design compositions (bold) and inductively coupled plasma (ICP) results for alloys in this
study in at %.

Alloy Source Ti Zr V Cr Mn Co Ni Al X B/A

P17
Design 15.6 2.1 44 11.2 6.9 1.4 18.5 0.3 0 4.65

ICP 15.6 2 44.1 11.3 6.4 1.4 18.9 0.3 0 4.68

P38 (X = B)
Design 15.6 2.1 43 11.2 6.9 1.4 18.5 0.3 1 4.35

ICP 15.7 2.2 42.7 10.6 6.7 1.4 19.3 0.3 1.1 4.26

P39 (X = Mg) Design 15.6 2.1 43 11.2 6.9 1.4 18.5 0.3 1 4.35
ICP 15.5 2.2 44.5 10.6 7.1 1.4 18.3 0.5 0 4.65

P40 (X = Y)
Design 15.6 2.1 43 11.2 6.9 1.4 18.5 0.3 1 4.35

ICP 15.1 2 44.9 11.4 5.4 1.4 18.7 0.3 0.8 4.59

P41 (X = Nb)
Design 15.6 2.1 43 11.2 6.9 1.4 18.5 0.3 1 4.35

ICP 15.8 2.1 41.2 11.7 7.4 1.5 19.2 0.4 0.8 4.35

P42 (X = Mo)
Design 15.6 2.1 43 11.2 6.9 1.4 18.5 0.3 1 4.35

ICP 15 2 43.1 11 7.7 1.4 18.5 0.4 1 4.56

P43 (X = La)
Design 15.6 2.1 43 11.2 6.9 1.4 18.5 0.3 1 4.35

ICP 16.1 2.2 40.9 11.8 7.4 1.5 19.3 0.4 0.4 4.34

P44 (X = Nd)
Design 15.6 2.1 43 11.2 6.9 1.4 18.5 0.3 1 4.35

ICP 15.9 2.2 43 9.8 6.8 1.4 19.6 0.3 1 4.24

The lattice constants, crystallite size, and phase abundances calculated from the XRD pattern are
listed in Table 3.
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Figure 1. X-ray diffraction (XRD) patterns of alloys (a) P17; (b) P38; (c) P39; (d) P40; (e) P41; (f) P42; 
(g) P43; and (h) P44. The vertical line highlights the shifts of the main body-centered-cubic (BCC) and 
TiNi peaks. 

Table 3. Lattice parameters, unit cell volumes, phase abundances, and crystallite sizes of phases 
derived from XRD analysis. XS denotes crystallite size. 
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P39 2.968 260 53.0 4.892 8.019 1.639 166.2 322 7.0 2.982 89 39.9 
P40 2.974 343 31.8 4.929 8.030 1.629 169.0 414 6.1 2.986 102 62.1 
P41 2.971 187 50.4 4.906 7.991 1.629 166.6 309 20.7 2.986 41 28.9 
P42 2.973 221 58.4 4.893 8.013 1.638 166.1 808 0.8 2.987 74 40.8 
P43 2.962 262 38.9 4.899 8.003 1.634 166.3 240 9.5 2.976 85 51.6 
P44 2.973 228 41.0 4.924 8.007 1.626 168.1 278 6.3 2.988 97 52.7 

The lattice constants a from the three constituent phases are plotted against the metallic radii of 
the additive elements in the Laves-phase alloy [39] in Figure 2a. At a glance, the lattice constants from 
all three phases follow the same trend: a rapid increase followed by a decrease with increasing radii 
of the additive. However, the later EDS analysis indicates that most of the additives have zero or 
limited solubility in these three main phases. Therefore, the changes in lattice constant are tied to 
other characteristics of this group of alloys. For example, the lattice constants show a reasonably 
consistent trend of decreasing with increasing Mn-content (with a relatively small radius) in the BCC 
phase, as shown in Figure 2b. The spread of c/a ratio (a parameter that can be used to estimate the 
preferential occupation site for foreign atoms [36,40]) in the A-atom substitution (1.626–1.641) is 
approximately the same as the spread in the B-atom substitution study (1.627–1.644) [35]. No 
preference for occupation site substitution can be deduced in the current study. From the abundances 
shown in Table 3, BCC (32‒61 wt%) and TiNi (29‒62 wt%) are the two major phases, with C14 as the 
secondary phase. The crystallite of the secondary phase (C14) is larger than those in the main phases 
(BCC and TiNi), which has previously been observed in BCC-Laves-related alloys [33,36], but which 
is not common in multi-phase AB2 MH alloys [41]. It is interesting to observe that there is a correlation 
between the abundance and the crystallite size in each phase. For example, as the TiNi phase becomes 

Figure 1. X-ray diffraction (XRD) patterns of alloys (a) P17; (b) P38; (c) P39; (d) P40; (e) P41; (f) P42;
(g) P43; and (h) P44. The vertical line highlights the shifts of the main body-centered-cubic (BCC) and
TiNi peaks.

Table 3. Lattice parameters, unit cell volumes, phase abundances, and crystallite sizes of phases
derived from XRD analysis. XS denotes crystallite size.

Alloys

BCC C14 TiNi

a (Å)
XS
(Å)

Abundance
(wt%) a (Å) c (Å) c/a Unit Cell

Volume (Å3)
XS
(Å)

Abundance
(wt%)

a
(Å)

XS
(Å)

Abundance
(wt%)

P17 2.977 171 52.8 4.912 8.010 1.631 167.3 215 13.2 2.993 170 34.0
P38 2.961 181 60.5 4.875 7.998 1.641 164.6 631 2.6 2.974 65 36.9
P39 2.968 260 53.0 4.892 8.019 1.639 166.2 322 7.0 2.982 89 39.9
P40 2.974 343 31.8 4.929 8.030 1.629 169.0 414 6.1 2.986 102 62.1
P41 2.971 187 50.4 4.906 7.991 1.629 166.6 309 20.7 2.986 41 28.9
P42 2.973 221 58.4 4.893 8.013 1.638 166.1 808 0.8 2.987 74 40.8
P43 2.962 262 38.9 4.899 8.003 1.634 166.3 240 9.5 2.976 85 51.6
P44 2.973 228 41.0 4.924 8.007 1.626 168.1 278 6.3 2.988 97 52.7

The lattice constants a from the three constituent phases are plotted against the metallic radii
of the additive elements in the Laves-phase alloy [39] in Figure 2a. At a glance, the lattice constants
from all three phases follow the same trend: a rapid increase followed by a decrease with increasing
radii of the additive. However, the later EDS analysis indicates that most of the additives have zero
or limited solubility in these three main phases. Therefore, the changes in lattice constant are tied
to other characteristics of this group of alloys. For example, the lattice constants show a reasonably
consistent trend of decreasing with increasing Mn-content (with a relatively small radius) in the BCC
phase, as shown in Figure 2b. The spread of c/a ratio (a parameter that can be used to estimate
the preferential occupation site for foreign atoms [36,40]) in the A-atom substitution (1.626–1.641) is
approximately the same as the spread in the B-atom substitution study (1.627–1.644) [35]. No preference
for occupation site substitution can be deduced in the current study. From the abundances shown in
Table 3, BCC (32–61 wt%) and TiNi (29–62 wt%) are the two major phases, with C14 as the secondary
phase. The crystallite of the secondary phase (C14) is larger than those in the main phases (BCC
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and TiNi), which has previously been observed in BCC-Laves-related alloys [33,36], but which is not
common in multi-phase AB2 MH alloys [41]. It is interesting to observe that there is a correlation
between the abundance and the crystallite size in each phase. For example, as the TiNi phase becomes
more popular (larger abundance), its crystallite becomes larger. In the case of BCC and C14 phases, the
trend is the opposite (Figure 3).
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3.2. Scanning Electron Microscope Phase Analysis 
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phases, BCC and TiNi, form separate 3D frameworks that interlace with each other (for a schematic 
drawing, see Figure 4 in [32]). This microstructure suggests an early formation of a V-rich BCC 
framework, which pushes the Ni and Ti into grain boundaries and later forms the C14 and TiNi 
phases. According to an earlier TEM study of the C14-predomintaed MH alloy, the C14 phase is 
solidified before the formation of the TiNi phase [3,4]. The B/A ratio in each spot was calculated 
assuming B occupies the A-site in the C14 phase [42] but occupies the A-site in the TiNi and Ti2Ni 
phases [34]. All the calculated B/A ratios are slightly above their stoichiometric values (hyper-
stoichiometry), i.e., 2.0 (C14), 1.0 (TiNi), and 0.5 (Ti2Ni). The anti-site defect (Ni in the A-site) is 
energetically more favorable, compared to the vacancy defect [43], which explains the hyper-
stoichiometry. The average electron density (e/a), calculated from the number of conduction electrons 
in the constituent metals [44] in the C14 phase, is lower than the C14/C15 threshold [45] and thus a 
C14-structure is expected instead of a C15-structure, except for alloy P17. There may be some of the 
C15 phase in alloy P17, according to its relatively higher e/a ratio. From the EDS study, we found that 
only additive Nb participated in all three main phases and only Mo was found in the BCC phase. 
Boron (B) is too light to be detected by EDS, but definitely exists in the alloy, and Mg is missing 

Figure 2. Plots of the lattice constants a for the TiNi, BCC, and C14 phases vs. (a) the metallic radius of
the additives and (b) the Mn-content in the BCC phase.
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3.2. Scanning Electron Microscope Phase Analysis

The composition of the constituent phase was studied through a combination of SEM and EDS
on a few selected areas. A representative SEM-backscattering electron image (BEI) from each alloy is
shown in Figure 4, and the corresponding EDS data are listed in Table 4. In contrast to the composition
information obtained from ICP, EDS results are far less accurate and representative but are still useful
for qualitatively studying the composition in each constituent phase. The two main phases, BCC
and TiNi, form separate 3D frameworks that interlace with each other (for a schematic drawing, see
Figure 4 in [32]). This microstructure suggests an early formation of a V-rich BCC framework, which
pushes the Ni and Ti into grain boundaries and later forms the C14 and TiNi phases. According to an
earlier TEM study of the C14-predomintaed MH alloy, the C14 phase is solidified before the formation
of the TiNi phase [3,4]. The B/A ratio in each spot was calculated assuming B occupies the A-site in
the C14 phase [42] but occupies the A-site in the TiNi and Ti2Ni phases [34]. All the calculated B/A
ratios are slightly above their stoichiometric values (hyper-stoichiometry), i.e., 2.0 (C14), 1.0 (TiNi),
and 0.5 (Ti2Ni). The anti-site defect (Ni in the A-site) is energetically more favorable, compared to
the vacancy defect [43], which explains the hyper-stoichiometry. The average electron density (e/a),
calculated from the number of conduction electrons in the constituent metals [44] in the C14 phase, is
lower than the C14/C15 threshold [45] and thus a C14-structure is expected instead of a C15-structure,
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except for alloy P17. There may be some of the C15 phase in alloy P17, according to its relatively higher
e/a ratio. From the EDS study, we found that only additive Nb participated in all three main phases
and only Mo was found in the BCC phase. Boron (B) is too light to be detected by EDS, but definitely
exists in the alloy, and Mg is missing completely, which can both be confirmed by ICP. Rare earth
elements, such as Y, La, and Nd, promote formation of the AB phase and have undetectable solubilities
in the BCC, TiNi, and C14 phases. The Mn-content in the C14 phase has been correlated with the lattice
constants of the three phases in Figure 2b. Other correlations are less obvious.
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Table 4. Energy-dispersive spectroscopy (EDS) composition data from select spots in Figure 4.
All numbers are in at%. B/A ratios for the C14 phase were calculated assuming V is in the B-site, while
those in the TiNi and VNi phases were calculated assuming V in the A-site. Compositions in the main
BCC phase are highlighted in bold.

Location Zr Ti V Cr Mn Co Ni Al X B/A e/a Phase

P17-1 16.2 16.3 7.8 4.4 5.9 1.8 47.5 0.1 0.0 2.08 7.28 C14
P17-2 4.7 36.4 7.8 0.8 3.6 2.0 44.4 0.3 0.0 1.04 - TiNi
P17-3 6.2 48.4 11.7 1.2 2.3 1.8 28.3 0.1 0.0 0.51 - Ti2Ni
P17-4 0.1 5.5 63.5 16.9 7.4 0.8 5.6 0.2 0.0 - - BCC

P38-1 9.9 22.0 20.3 4.7 6.6 2.0 33.9 0.6 0.0 2.13 6.62 C14
P38-2 4.4 37.0 6.4 1.1 2.8 2.7 44.8 0.8 0.0 1.09 - TiNi
P38-3 5.5 45.4 15.4 2.4 2.8 1.8 26.4 0.3 0.0 0.51 - Ti2Ni
P38-4 0.1 5.2 62.8 17.5 8.4 0.8 5.0 0.2 0.0 - - BCC
P38-5 0.1 13.1 73.4 8.8 3.2 0.2 1.1 0.1 0.0 6.58 - Oxide

P39-1 9.7 22.8 20.0 4.8 7.1 2.2 32.5 1.0 0.0 2.08 6.56 C14
P39-2 3.8 33.9 11.9 2.4 3.4 2.8 40.6 1.1 0.0 1.01 - TiNi
P39-3 6.3 48.5 11.4 1.4 2.8 1.8 27.5 0.3 0.0 0.51 - Ti2Ni
P39-4 0.1 5.7 61.7 18.5 7.8 0.8 5.1 0.3 0.0 - - BCC

P40-1 11.8 21.3 20.4 3.3 4.8 1.6 36.2 0.7 0.0 2.02 6.66 C14
P40-2 5.2 37.9 5.5 0.9 2.0 2.8 45.2 0.4 0.0 1.06 - TiNi
P40-3 0.1 4.6 66.2 17.1 7.2 0.8 3.7 0.2 0.0 - - BCC
P40-4 2.0 0.8 1.4 0.5 0.3 0.0 53.4 0.8 40.8 1.22 - YNi
P40-5 6.6 84.9 5.7 0.5 0.4 0.1 1.7 0.2 0.0 - - TiO2
P40-6 0.0 1.4 1.7 0.4 0.0 0.0 2.3 1.3 92.9 - - Y

P41-1 6.1 22.9 21.1 5.9 7.4 2.0 31.2 0.5 2.8 2.14 6.54 C14
P41-2 2.8 37.5 7.2 1.4 3.3 2.7 43.8 0.8 0.5 1.08 - TiNi
P41-3 4.2 47.9 13.3 2.2 2.7 1.8 27.0 0.3 0.6 0.52 - Ti2Ni
P41-4 0.1 5.2 62.9 17.7 7.1 0.7 5.7 0.2 0.5 - - BCC

P42-1 10.3 21.9 20.0 4.4 6.4 2.0 34.3 0.6 0.1 2.10 6.63 C14
P42-2 4.5 37.0 6.3 0.9 2.6 2.7 45.2 0.8 0.0 1.09 - TiNi
P42-3 6.2 45.5 14.8 2.3 2.5 1.6 26.8 0.3 0.0 0.51 - Ti2Ni
P42-4 0.4 7.0 58.6 15.4 7.9 1.1 8.0 0.2 1.4 - - BCC

P43-1 9.2 23.5 20.6 5.3 7.3 2.1 31.3 0.7 0.0 2.06 6.51 C14
P43-2 4.1 38.5 5.9 1.1 2.5 3.0 44.3 0.7 0.0 1.06 - TiNi
P43-3 0.1 5.9 61.1 18.6 8.1 0.8 5.2 0.2 0.0 - - BCC-1
P43-4 1.1 30.2 45.5 12.7 6.3 0.5 3.3 0.1 0.3 - - BCC-2
P43-5 0.2 1.3 2.6 0.8 0.0 0.3 38.3 0.1 56.4 0.65 - LaNi

P44-1 9.9 23.1 20.8 4.4 6.4 2.1 32.8 0.6 0.0 2.03 6.56 C14
P44-2 4.3 38.4 6.0 0.9 2.5 2.8 44.4 0.7 0.0 1.05 - TiNi
P44-3 0.1 5.8 64.0 16.2 0.8 5.1 0.2 0.0 - - BCC
P44-4 0.5 2.9 2.9 0.3 0.9 0.1 46.5 0.2 45.7 0.92 - NdNi
P44-5 0.1 1.8 4.5 0.7 1.2 0 2 0 89.8 - - Nd

3.3. Gaseous Phase Characteristics

The characteristics of gaseous phase hydrogen storage for these eight alloys were studied by PCT
analysis and the resulting isotherms, obtained at 30 ˝C and 60 ˝C, are shown in Figure 5. Similar to
other alloys in the same family [32,33,35,36], the PCT isotherm shows only one plateau in the pressure
range of our apparatus (0.001–5 MPa). There is at least one more known plateau below 0.001 MPa.
The PCT hysteresis from this family of alloys is much larger than those from the AB2 [46], AB5 [47],
and A2B7 [27] MH alloy families. The gaseous phase properties obtained from the PCT analysis are
summarized in Table 5. The desorption plateau pressures of the substituted alloys are higher than that
in the base alloy (P17), except for Nd-doped P44, which indicates that most of the additives weaken
the M–H bond in the hydride. By comparing the capacities of these alloys, we found that while La is
beneficial to both maximum and reversible capacities, both B and Nb increase the reversible capacity.
The irreversible hydrogen storage capacity (the difference between the maximum and reversible
capacities) is proportional to the TiNi phase abundance (shown in Figure 6). The PCT hysteresis
originates from the elastic lattice deformation energy needed at the metal (α)-hydride (β) interface
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during hydrogen absorption [48,49]. The higher PCT hysteresis in this family of alloys suggests an
environment which results in difficulty with respect to expansion inside the alloy. The substituted
alloys show larger PCT hysteresis at 30 ˝C, but smaller PCT hysteresis at 60 ˝C when compared to
those from the base alloy P17.
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Table 5. Summary of gaseous phase and thermodynamic properties.

Alloy
Desorption

Pressure @30 ˝C
(MPa)

Desorption
Pressure @60 ˝C

(MPa)

Maximum
Capacity @30 ˝C

(wt%)

Reversible
Capacity @30 ˝C

(wt%)

PCT
Hysteresis
@30 ˝C

PCT
Hysteresis

@60 ˝C

P17 0.17 0.53 1.68 1.01 1.06 1.10
P38 0.21 0.65 1.64 1.13 1.14 1.06
P39 0.21 0.71 1.72 1.14 1.16 1.06
P40 0.19 0.60 1.69 0.85 1.22 1.06
P41 0.23 0.76 1.57 1.15 1.13 1.05
P42 0.40 1.29 1.65 1.02 1.13 0.91
P43 0.28 1.05 1.85 1.09 1.23 0.76
P44 0.15 0.47 1.69 0.88 1.27 1.22
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Thermodynamic properties, including changes in enthalpy (∆H) and entropy (∆S), were calculated
from the equation for free energy (G):

∆G “ ∆H ´ T∆S “ RTInP (1)

where R is the ideal gas constant and T is the absolute temperature. Based on plateau pressures in
the absorption, desorption, and halfway point, three sets of ∆H and ∆S were calculated and listed
in Table 6. Conventionally, the values obtained using the desorption isotherm (∆HD and ∆SD) are
adopted because the hysteresis is mainly due to the energy barrier from lattice distortion at the
α-β interface during hydrogen absorption. In the current study, the ∆SA value is more consistent,
suggesting that the absorption isotherm may be increasingly unaffected, and at least should be
included in the report. As can be seen in Table 6, ∆HD is always lower than ∆HA, and ∆H(A+D)/2 falls
between the two values. ∆SD can be higher or lower than ∆SA, and ∆S(A+D)/2 also falls in the middle.
In our previous publication, we adopted an estimation method for ∆H from the atomic percentage
and obtained a ∆H of the three hydride-former atoms, Zr (∆Hh = ´163 kJ¨mol´1 H2 for ZrH2),
Ti (∆Hh = ´124 kJ¨mol´1 H2 for TiH2), and V (∆Hh = ´34 kJ¨mol´1 H2 for VH2). This estimation is
based on the following assumptions. The complete heat of hydride formation of ABn alloy should be:

∆H pABnH2mq “ ∆ H pAHmq ` ∆H BnHmq´∆H pABnq r50s (2)

However, the ∆H for the alloy ABn and the non-hydride former atoms are smaller than those
in the hydride former atoms (for example, ∆H for VCr2 and NiH0.5 are ´2 kJ¨mol´1 H2 [51] and
´6 kJ¨mol´1 H2 [52], respectively). Therefore, the heat of hydride formation can be estimated by:

∆H pA1h A2k A3lBnH2q “ h∆H pA1H2q ` k∆H pA2H2q ` l∆H pA3H2q (3)

where h, k, l, and m are the atomic percentages of the hydride former elements A1, A2, and A3 and the
non-hyride former element B. According to this calculation, the ∆H for the hydride of the constituent
phases of alloy P17 are´28.5 (BCC),´55.4 (TiNi) and´49.3 kJ¨mol´1 H2 (C14). Therefore, the pressure
plateaus in the PCT shown in Figure 5 should correspond to the BCC phase, and those from TiNi and
C14 phases are below the minimum pressure used in our PCT apparatus (0.001 MPa). This explains
why the irrevesible part of the capacity (below 0.001 MPa) has a linear correlation with the abundance
of the TiNi phase, as shown in Figure 6.
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Figure 6. Plot of the amount of irreversible hydrogen storage found in PCT analysis vs. the TiNi
phase abundance.

The ∆Hs calculated with Equation (3) and the composition of the BCC phase highlighted in
Table 4 for each alloy are listed in the last column of Table 6 and compared to the measured ∆H values
in Figure 7a. Except for alloy P42 (Mo), the measured ∆Hs, no matter the variation from the absorption
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(A), desorption isotherms (D) or half-point (half), are lower (more negative) and do not vary much
compared to the calculated values. The decrease in the measured ∆H is due to the synergetic effects
associated with the other two phases that have a much lower ∆H and will be discussed in the next
section of this paper. In addition, the plateau pressure for the PCT and BCC phase lattice constants
have been correlated to the calculated ∆H in the BCC phase, and the results are shown in Figure 7b.
Except for alloy P42 (Mo), it is logical to connect the larger BCC unit cell volume to both lower plateau
pressure and lower (more negative) ∆H, indicating a stronger M–H bond. There is an appreciable
amount of Mo in the BCC phase of alloy P42 (1.4 at %). Mo has a relatively large atomic size and
contributes to the increase in lattice parameter. However, instead of lowering the ∆H, Mo has a positive
contribution (∆H for MoH0.5 = +10 kJ¨mol´1 H2 [52]). This explains the abnormal behavior of alloy
P42 (Mo) in Figure 7.

Batteries 2016, 2, 15 10 of 21 

Except for alloy P42 (Mo), it is logical to connect the larger BCC unit cell volume to both lower plateau 
pressure and lower (more negative) ΔH, indicating a stronger M–H bond. There is an appreciable 
amount of Mo in the BCC phase of alloy P42 (1.4 at%). Mo has a relatively large atomic size and 
contributes to the increase in lattice parameter. However, instead of lowering the ΔH, Mo has a 
positive contribution (ΔH for MoH0.5 = +10 kJ·mol−1 H2 [52]). This explains the abnormal behavior of 
alloy P42 (Mo) in Figure 7. 

 
(a) (b) 

Figure 7. (a) The measured ∆H based on the absorption, half-point, and desorption isotherms and (b) 
Plateau pressure and BCC phase lattice constants vs. the calculated ∆H based on BCC composition 
determined by EDS (Table 4) and Equation (3). 

Table 6. Thermodynamic properties ∆H and ∆S calculated from the equilibrium pressure plateaus (A: 
absorption, D: desorption, (A + D)/2:half-point) measured at 30, 45, and 60 °C with error bars of 
approximately ±3%. −∆HCalc is the calculated value from the BCC phase composition obtained with 
SEM-EDS (Table 4) using Equation (3). 

Alloy −∆HA 
(kJ·mol−1) 

−∆SA 
(J·mol−1·K−1) 

−∆HD 
(kJ·mol−1) 

−∆SD 
(J·mol−1·K−1) 

−∆H(A+D)/2 
(kJ·mol−1) 

−∆S(A+D)/2 
(J·mol−1·K−1) 

−∆HCalc 
(kJ·mol−1) 

P17 29.2 111 30.9 107 30.4 110 28.6 
P38 28.7 111 31.7 111 30.2 111 28.0 
P39 29.4 113 33.9 118 31.7 115 28.2 
P40 30.0 114 32.2 111 31.1 113 28.4 
P41 28.3 111 34.0 119 30.8 114 28.1 
P42 29.9 119 32.8 120 31.4 120 29.3 
P43 28.0 111 37.2 131 32.4 120 28.3 
P44 31.6 118 31.6 108 31.8 113 29.1 

3.4. Electrochemical Properties 

The electrochemical hydrogen storage properties were determined in a flooded half-cell 
configuration with a commercially available co-precipitated Ni91Co4.5Zn4.5 hydroxide (BASF, 
Rochester Hills, MI, USA) counter electrode and 30 wt% KOH electrolyte. The pressed electrode was 
charged with a current density of 100 mA·g−1 for 5 h and then discharged with the same current 
density to a cut-off voltage of 0.9 V with two more pulls at 24 mA·g−1 and 8 mA·g−1 at the same cut-
off voltage. The obtained total capacities and HRDs (as defined by the ratio between capacities 
obtained from 100 mA·g−1 and the total discharge capacity) from the first 13 cycles are plotted in 
Figure 8a,b, respectively, to demonstrate the activation behavior of these alloys. Most of the alloys 
reach their maximum capacity at Cycle 3 or 4, except for alloys P38 (B) and P40 (Y) which require 
more cycles to stabilize the capacity. It is easier to achieve HRD activation for alloys with higher HRD 
than those with lower HRD (alloys P40, P38, and P43). The capacities from 100 mA·g−1 and 8 mA·g−1 
discharge currents and their ratios for Cycle 5 are listed in Table 7. It is obvious that while the increase 
in the full capacity is only marginal with B (P38) and Nd (P44), the decrease in high-rate capacity and 
HRD is significant. The additives chosen for this study do not significantly improve the 

Figure 7. (a) The measured ∆H based on the absorption, half-point, and desorption isotherms and
(b) Plateau pressure and BCC phase lattice constants vs. the calculated ∆H based on BCC composition
determined by EDS (Table 4) and Equation (3).

Table 6. Thermodynamic properties ∆H and ∆S calculated from the equilibrium pressure plateaus
(A: absorption, D: desorption, (A + D)/2:half-point) measured at 30, 45, and 60 ˝C with error bars of
approximately ˘3%. ´∆HCalc is the calculated value from the BCC phase composition obtained with
SEM-EDS (Table 4) using Equation (3).

Alloy ´∆HA
(kJ¨ mol´1)

´∆SA
(J¨ mol´1¨ K´1)

´∆HD
(kJ¨ mol´1)

´∆SD
(J¨ mol´1¨ K´1)

´∆H(A+D)/2
(kJ¨ mol´1)

´∆S(A+D)/2
(J¨ mol´1¨ K´1)

´∆HCalc
(kJ¨ mol´1)

P17 29.2 111 30.9 107 30.4 110 28.6
P38 28.7 111 31.7 111 30.2 111 28.0
P39 29.4 113 33.9 118 31.7 115 28.2
P40 30.0 114 32.2 111 31.1 113 28.4
P41 28.3 111 34.0 119 30.8 114 28.1
P42 29.9 119 32.8 120 31.4 120 29.3
P43 28.0 111 37.2 131 32.4 120 28.3
P44 31.6 118 31.6 108 31.8 113 29.1

3.4. Electrochemical Properties

The electrochemical hydrogen storage properties were determined in a flooded half-cell
configuration with a commercially available co-precipitated Ni91Co4.5Zn4.5 hydroxide (BASF, Rochester
Hills, MI, USA) counter electrode and 30 wt % KOH electrolyte. The pressed electrode was charged
with a current density of 100 mA¨g´1 for 5 h and then discharged with the same current density
to a cut-off voltage of 0.9 V with two more pulls at 24 mA¨g´1 and 8 mA¨g´1 at the same cut-off
voltage. The obtained total capacities and HRDs (as defined by the ratio between capacities obtained
from 100 mA¨g´1 and the total discharge capacity) from the first 13 cycles are plotted in Figure 8a,b,
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respectively, to demonstrate the activation behavior of these alloys. Most of the alloys reach their
maximum capacity at Cycle 3 or 4, except for alloys P38 (B) and P40 (Y) which require more cycles
to stabilize the capacity. It is easier to achieve HRD activation for alloys with higher HRD than those
with lower HRD (alloys P40, P38, and P43). The capacities from 100 mA¨ g´1 and 8 mA¨ g´1 discharge
currents and their ratios for Cycle 5 are listed in Table 7. It is obvious that while the increase in the
full capacity is only marginal with B (P38) and Nd (P44), the decrease in high-rate capacity and HRD
is significant. The additives chosen for this study do not significantly improve the electrochemical
properties of the base alloy (P17). The gaseous phase capacity is converted to the electrochemical
capacity following 1 wt% H2 = 268 mAh g´1 and plotted in Figure 9. As in other MH alloys [53],
both the low-rate and high-rate electrochemical capacities fall in between the boundaries set by the
maximum and reversible gaseous phase capacities. There is no clear correlation between the gaseous
phase maximum storage capacity and the electrochemical low-rate capacity, but there is a strong
similarity between the gaseous phase reversible capacity and the electrochemical high-rate capacity,
except for the base alloy P17 (V).
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In order to further study HRD performance, the bulk diffusion constant (D) and surface exchange
current (I0) of each sample were measured at RT according to previously described procedures [54]
and are listed in Table 7. We found that while D values in the modified alloys are higher than the
base alloy, the opposite is true for I0 values (except for alloy P41 (Nb)). The increase in the degree
of disorder, achieved by introducing an additional element, facilitates the diffusion of hydrogen in
the bulk; the decrease in the V-content with a high leaching rate in KOH [55] impedes the surface
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reaction, except for substitutions with Nb, which is in the same column of V and is expected to have a
high corrosion rate in KOH solution. It is difficult to attribute the large decrease observed in I0 to a
1% decrease in V-content, which will be discussed in the next session. The deterioration of HRD with
various additives is mainly due to the decrease in surface electrochemical reaction activity.

Table 7. Summary of electrochemical properties. Cap100 and Cap8 are discharge capacities measured
for discharge currents at 100 mA¨ g´1 and 8 mA¨ g´1, respectively. HRD100 is the ratio of capacities
measured at 100 mA¨ g´1 and 8 mA¨ g´1. RT: room temperature; and OCV: open circuit voltage.

Alloy
Cap100 at
5th Cycle

(mAh¨g´1)

Cap8 at
5th Cycle

(mAh¨g´1)

HRD100
(Cap100/Cap8)

Activation Cycle to
Reach Maximum

Capacity

Diffusion
Coefficient, D @RT

(10´10 cm2¨s´1)

Exchange
Current Io @RT

(mA¨ g´1)

OCV
(V)

P17 374.0 397.4 0.948 7 1.69 36.5 1.302
P38 332.6 399.0 0.834 10 2.24 22.3 1.303
P39 360.3 402.1 0.896 4 1.81 35.6 1.311
P40 300.2 389.9 0.770 7 1.75 15.0 1.258
P41 362.5 392.9 0.922 5 2.49 37.6 1.319
P42 351.5 392.4 0.896 7 2.27 19.6 1.258
P43 332.6 382.1 0.870 5 2.57 19.2 1.237
P44 346.1 399.2 0.868 4 1.99 15.4 1.266

The OCV was measured at a state-of-charge of 50% and results are listed in Table 7. Theoretically,
OCV can be related to the equilibrium pressure in the gaseous phase through the Nernst equation:

OCV pvs. NiOOH at 0.36 Vq “ 1.294 ` 0.029logppH2q r7s (4)

However, the plot of the desorption pressure versus OCV, as shown in Figure 10, does not follow
the trend where higher pressure corresponds to higher OCV, as indicated in Equation (4). However, the
OCV in this study seems to correlate closely with the maximum hydrogen storage in the gaseous
phase (Figure 10). The alloys with higher OCV show smaller gaseous phase H-storage capacities.
Similar phenomena have been observed previously, but were tied to the change in plateau pressure
and strength of M–H bonding [56].

Batteries 2016, 2, 15 12 of 21 

higher than the base alloy, the opposite is true for I0 values (except for alloy P41 (Nb)). The increase 
in the degree of disorder, achieved by introducing an additional element, facilitates the diffusion of 
hydrogen in the bulk; the decrease in the V-content with a high leaching rate in KOH [55] impedes 
the surface reaction, except for substitutions with Nb, which is in the same column of V and is 
expected to have a high corrosion rate in KOH solution. It is difficult to attribute the large decrease 
observed in I0 to a 1% decrease in V-content, which will be discussed in the next session. The 
deterioration of HRD with various additives is mainly due to the decrease in surface electrochemical 
reaction activity. 

The OCV was measured at a state-of-charge of 50% and results are listed in Table 7. Theoretically, 
OCV can be related to the equilibrium pressure in the gaseous phase through the Nernst equation: 

OCV (vs. NiOOH at 0.36 V) = 1.294 + 0.029logp(H2) [7] (4)

However, the plot of the desorption pressure versus OCV, as shown in Figure 10, does not follow 
the trend where higher pressure corresponds to higher OCV, as indicated in Equation (4). However, 
the OCV in this study seems to correlate closely with the maximum hydrogen storage in the gaseous 
phase (Figure 10). The alloys with higher OCV show smaller gaseous phase H-storage capacities. 
Similar phenomena have been observed previously, but were tied to the change in plateau pressure 
and strength of M–H bonding [56]. 

 
Figure 10. The plots of gaseous phase maximum hydrogen storage capacity and equilibrium plateau 
pressure from PCT desorption isotherm vs. the OCV obtained from the half-cell measurement. 

4. Discussion 

It is generally believed that in a multi-phase MH system the phase with a lower plateau pressure 
and more negative ∆H is a main storage phase, which has a larger hydrogen storage capacity (Zr7Ni10, 
for example [57]), and the secondary phase with a higher plateau pressure and less negative ∆H is 
considered to be the catalytic phase (Zr2Ni7, for example [57]). In the case of funneling phenomenon, 
the gaseous phase hydrogen storage is accomplished with the catalytic phase as the necessary funnel 
to move hydrogen in and out of the alloy [2]. In the case of Laves phase-related BCC MH alloy, the 
BCC phase is considered to be the main storage phase; although it has a large hydrogen storage 
capacity, it has limited absorption/desorption kinetics that require an additional catalytic phase to 
facilitate the hydrogen storage process [58]. Therefore, both C14 and TiNi were considered to be 
catalytic phases in this family of alloys [32–36]. However, the ∆H values estimated from Equation (3) 
for the C14 and TiNi phases are much lower than those of the BCC phase, and the visible plateau in 
the pressure between 0.1 MPa and 1 MPa was assigned to the BCC phase. It is necessary to verify the 
correctness of such an assignment. 

In order to investigate the phase abundance evolution during both gaseous phase and 
electrochemical hydrogen absorption/desorption, an alloy with a target composition of P17 (Table 2) 
was reproduced through conventional induction melting. The XRD patterns from the as-prepared 
samples show an additional Ti2Ni phase (Figure 11a) which was not observed in the sample prepared 
by arc melting, due to different cooling rates (Figure 1). The Rietveld refinement indicates 

Figure 10. The plots of gaseous phase maximum hydrogen storage capacity and equilibrium plateau
pressure from PCT desorption isotherm vs. the OCV obtained from the half-cell measurement.

4. Discussion

It is generally believed that in a multi-phase MH system the phase with a lower plateau pressure
and more negative ∆H is a main storage phase, which has a larger hydrogen storage capacity (Zr7Ni10,
for example [57]), and the secondary phase with a higher plateau pressure and less negative ∆H is
considered to be the catalytic phase (Zr2Ni7, for example [57]). In the case of funneling phenomenon,
the gaseous phase hydrogen storage is accomplished with the catalytic phase as the necessary funnel to
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move hydrogen in and out of the alloy [2]. In the case of Laves phase-related BCC MH alloy, the BCC
phase is considered to be the main storage phase; although it has a large hydrogen storage capacity, it
has limited absorption/desorption kinetics that require an additional catalytic phase to facilitate the
hydrogen storage process [58]. Therefore, both C14 and TiNi were considered to be catalytic phases in
this family of alloys [32–36]. However, the ∆H values estimated from Equation (3) for the C14 and TiNi
phases are much lower than those of the BCC phase, and the visible plateau in the pressure between
0.1 MPa and 1 MPa was assigned to the BCC phase. It is necessary to verify the correctness of such
an assignment.

In order to investigate the phase abundance evolution during both gaseous phase and
electrochemical hydrogen absorption/desorption, an alloy with a target composition of P17 (Table 2)
was reproduced through conventional induction melting. The XRD patterns from the as-prepared
samples show an additional Ti2Ni phase (Figure 11a) which was not observed in the sample prepared
by arc melting, due to different cooling rates (Figure 1). The Rietveld refinement indicates percentages
of 53.6% BCC, 29.4% TiNi, 10.8% Ti2Ni, and 6.2% C14 (Table 8). The sample was activated in a 4 MPa
hydrogen environment first and then degassed under vacuum for 8 h at 300 ˝C. XRD analysis at this
stage (Figure 11b) shows a shift for TiNi peaks to lower angles, which indicates the presence of some
hydrogen remaining in the α-TiNi. The Rietveld refinement shows the β-phase (MH) of C14 and Ti2Ni.
There are still MH remaining in the alloy after 8 h of degassing. In order to understand the cause of the
remaining hydride after 8 h degassing, a discussion of two dissimilar metals is necessary. When two
metallic phases, M1 and M2, with different work functions (differences between the electron potential
in vacuum (EVAC) and the Fermi level (EF)) are brought into contact (Figure 12b), there will be a small
charge transfer that builds a potential (contact potential), preventing electron flow from the metal
with a smaller work function (M2) into the metal with a larger work function (M1). During the initial
hydrogenation, the neutral hydrogen (proton plus a nearby electron) will reside on the M1 side of
the boundary. The extra electron brought by proton will contribute to the conduction-band and raise
the Fermi level, as shown in Figure 12c [59]. These protons will stay balanced in equilibrium under
vacuum. In the case of MH, the hydrogen storage capability of a hydride former metal is related to its
own electron density. For the study in MH from elements, the heat of hydride formation (indicator
for M–H bond strength) and the work function for the first row of transition metals (from Sc to Ni)
were plotted against their number of 3d electron in Figure 13. As the number of electrons increases,
the work function increases due to the increase in the charge of the nucleus, and the host metal starts
to resist incorporation of extra electrons brought by the absorbed hydrogen and consequently weakens
the MH bond strength (less negative ∆H), with the exception of Mn. Mn has an extraordinarily low
work function due to its containing of the maximum number of un-paired electrons (five) and also
to a lower ∆H than predicted by the trend. For MH from intermetallic alloys, the situation is the
opposite. Comparing the alloys LaNi2 and LaNi5, for example, the former has a lower electron density
(lower Ni-content), a lower EF (as M1 in Figure 13), and a tendency to trap the residual hydrogen
near the interface. According to Equation (3), LaNi2 (33% of La) has a stronger MH bond strength
compared to that of LaNi5 (16% of La). Therefore, we believe the phase with a stronger MH bond
will keep the MH (β-phase) during a total degassing in vacuum. In this study, C14 and Ti2Ni are
deemed to be the phases with the strongest MH bond strength, which agrees with the prediction from
Equation (3). These pre-occupied sites at the grain boundary on the side with a higher work function
will act as the nucleation center for the β-phase growth (as illustrated in Figure 14). Therefore, the PCT
absorption/desorption hysteresis of a single-phase AB5 MH alloy is always larger than that from a
typical multi-phase AB2 MH alloy [7].
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Figure 11. XRD patterns of a P17 alloy prepared by the conventional melt-and-cast process: (a) pristine;
(b) hydrided at 4 MPa H2 gas and then degassed in vacuum for 8 h at 300 ˝C; (c) withdrawn from an
equilibrium state with 0.005 MPa H2 pressure; and (d) pull-out from an equilibrium state with 4 MPa
H2 pressure, and the electrodes made from the same alloy with (e) 50% and (f) 100% state of charge
achieved electrochemically.

Table 8. Summary of the phase abundance of a P17 alloy prepared by induction melting through
various gaseous phases and electrochemical hydrogen absorption/desorption processes.

Stage BCC C14 TiNi Ti2Ni

α β α β α β α β

Pristine 53.6 - 6.2 29.4 - 10.8
300 ˝C vacuum 54.0 - 3.0 2.0 30.6 - 4.2 6.2

0.005 MPa 51.7 - - 4.1 11.3 22.2 3.6 7.1
4 MPa 6.1 46.4 - 3.6 - 34.9 - 9.0

50% SOC 53.4 - - 5.1 0.7 32.0 - 8.8
100% SOC 29.5 21.1 - 4.7 - 36.5 - 8.2
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during electrochemistry, starts from the remaining MH in the phase with a larger W near the grain 
boundary. 
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hydrogen gas molecule adsorption and splitting into two hydrogen atoms at the clean surface of 
metals (free from oxide), the electrochemical hydrogen charging is implemented by an applied 
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minimal voltage is required to generate enough of a strong electric field to split water into protons 
and hydroxide ions. Also in PCT, the equilibrium pressure depends only on the concentration of 
hydrogen in the MH; the electrochemical voltage is mainly determined by the surface reaction and 
thus a sudden change in the charge voltage profile is not seen when the active storing material 
switches from one phase into another one (at approximately 50% SOC). The discharge processes 
between the gaseous phase and electrochemistry are also different. For the gaseous phase, the 
movement of proton is influenced by diffusion and an equilibrium is reached when the same amount 
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proton to move in the opposite direction, reaching the surface. Unless the surface recombination of 
either proton-hydroxide or proton-oxygen is very slow (which is unlikely) and there is a large 
number of protons accumulated at the electrolyte interface, the proton should continue to arrive at 
the interface to reach charge neutrality. Energy is gained from both the reduction in number of 
electrons in the metal system and the dehydride process. Therefore, there is no sudden drop in the 
discharge voltage profile when the system finishes discharging for one phase and starts the discharge 
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Figure 14. Comparison of hydrogen storage through (a) a gaseous phase reaction in a perfect
single-component system and (b) an electrochemical reaction in a two-phase system with different
work functions (WM1 > WM2) at different states of charge (SOC). In this illustration, the M1 phase has
a larger W than M2, and contains a small amount of hydride near the boundary, even at a very low
SOC. The MH (β) phase nucleates from a randomly distributed proton (α) in the gaseous phase (left)
that, during electrochemistry, starts from the remaining MH in the phase with a larger W near the
grain boundary.

A sample was removed from the PCT apparatus with an equilibrium hydrogen pressure of
0.005 MPa, a pressure that separates the two plateaus in the PCT isotherms, as shown in Figure 5.
From previous studies in BCC MH alloys, we believe the oxide layer formed at the alloy surface during
the sudden exposure to air can prevent the loss of hydrogen into atmosphere [61]. Its XRD pattern is
shown in Figure 11c, and the Rietveld analysis shows an unchanged BCC phase with 2/3 hydrided
TiNi and Ti2Ni phase (Table 8) and demonstrates that the higher plateau (from 0.1 MPa to 1 MPa)
belongs to the BCC phase. Another sample was removed at the maximum hydrogen pressure (4 MPa).
The XRD pattern of this sample shows a 90% transition from BCC (M) to FCC (MH) in the BCC phase
and complete α- to β-phase transitions for the other three phases.

Besides the phase transition in the gaseous phase hydrogen reaction, we also performed XRD
analysis on two pieces of electrode made from the same P17 alloy by induction melting with 50% and
100% state of charge (SOC). The resulting patterns are shown in Figure 11e,f. The Rietveld analysis
shows a clear α-BCC phase and almost fully hydrided TiNi, Ti2Ni, and C14 phases for the 50% SOC
sample, while a 40% hydrided BCC (β-BCC) phase with the other phases fully hydrided are seen for
the 100% SOC. During charging, the phases with stronger MH bond strength (more negative ∆H) were
hydrided first, and BCC was charged last, as in the case of the gaseous phase reaction. The BCC phase
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was not hydrogenated before completion of hydride formation in other non-BCC phases. The BCC
phase was never fully charged in the half-cell testing, due to the nature of the open-to-air configuration
used in the electrochemical study. This explains the low electrochemical discharge capacity found in
Figure 9, when compared to the gaseous phase maximum capacity.

There are some important differences in hydrogen storage between gaseous phase and
electrochemistry, especially when the PCT isotherm (Figure 5) is compared with the electrochemical
charge and discharge curves (Figure 15). While the gaseous hydrogen charging occurs through
hydrogen gas molecule adsorption and splitting into two hydrogen atoms at the clean surface of
metals (free from oxide), the electrochemical hydrogen charging is implemented by an applied voltage,
which drives electrons into the negative electrode and leads to water splitting at the surface (which
is typically covered with a thin oxide [62]). In PCT, hydrogen absorption can begin as soon as any
amount of hydrogen gas is available. However, in the case of an electrochemical environment, a
minimal voltage is required to generate enough of a strong electric field to split water into protons
and hydroxide ions. Also in PCT, the equilibrium pressure depends only on the concentration of
hydrogen in the MH; the electrochemical voltage is mainly determined by the surface reaction and thus
a sudden change in the charge voltage profile is not seen when the active storing material switches
from one phase into another one (at approximately 50% SOC). The discharge processes between the
gaseous phase and electrochemistry are also different. For the gaseous phase, the movement of proton
is influenced by diffusion and an equilibrium is reached when the same amount of hydrogen gas
leaves and enters the metal. The electrochemical case is far more complicated. During discharge,
the electron moves away from the MH alloy into the current collector, which forces the proton to
move in the opposite direction, reaching the surface. Unless the surface recombination of either
proton-hydroxide or proton-oxygen is very slow (which is unlikely) and there is a large number of
protons accumulated at the electrolyte interface, the proton should continue to arrive at the interface
to reach charge neutrality. Energy is gained from both the reduction in number of electrons in the
metal system and the dehydride process. Therefore, there is no sudden drop in the discharge voltage
profile when the system finishes discharging for one phase and starts the discharge for the next phase.
This finding is very encouraging with regard to the electrochemical applications of MH alloys. In a
multi-phase system, as long as there is an electrochemically active phase, the so called “irreversible”
or “no participation” phases found in PCT can be fully utilized in the electrochemical environment.
This finding can be used to explain the unpredicted high electrochemical capacity (compared to the
gaseous phase capacities) observed in multi-phase systems involving the Zr2Ni7 phase [8,9].
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Figure 15. The second cycle electrochemical charge and discharge voltage profiles for an electrode
made from alloy P40. The smooth curves seen here are very different from the step-shape PCT isotherm
shown in Figure 5.

With the knowledge that the visible plateaus of the PCT isotherm in the 0.1–1 MPa range originate
entirely from the phase transition from BCC to FCC, the mechanism of this step, at equilibrium pressure
in pure BCC alloys [61,63], is not well understood. Evidently, with synergetic effects through the
non-BCC phases, the intermediate body-centered-tetragonal (BCT) phase is skipped. Although the
hysteresis of the BCC phase is still very large (compared to all other MH alloy families), it has been



Batteries 2016, 2, 15 17 of 22

significantly reduced through the synergetic effects of the non-BCC phases. In this study, it is clearly
observed that, during hydrogenation, the non-BCC phases hydrogenate first and expand the lattice
on the non-BCC phase side of the grain boundary. The lattice of the BCC phase is also pre-expanded
before hydrogenation by the stress from the hydride on the other side, which reduces the energy
barrier needed to expand the BCC lattice, and thus reduces the hysteresis and changes the FCC
β-phase directly.

After we identified BCC as the storage phase and the others (C14, TiNi, and Ti2Ni) as the catalytic
phase, a correlation study between the properties of the constituent phases and the hydrogen storage
characteristics (both in gaseous phase and electrochemistry) was conducted; the results are summarized
in Table 9. Those with significant correlation (larger R2) are highlighted. There are two noticeable
correlations in the gaseous phase properties. The first is the reversible capacity, which decreases
with the increase in TiNi phase abundance and C14 unit cell volume (Figure 16a). The former has
already been explained by the TiNi phase being the largest component in the lower plateau (not seen
from the PCT isotherm in Figure 5) and makes the largest contribution to the irreversible part of
the gaseous phase hydrogen storage capacity (Figure 6). The source of the latter correlation is less
clear. C14, although it has a relatively low ∆H, may be still a catalytic phase. With the decrease in the
unit cell volume, hydride from the C14 phase becomes less stable and contributes positively to the
reversible capacity of the storage phase (TiNi and BCC). The second noticeable correlation found in the
gaseous phase properties is related to the PCT hysteresis—more precisely, the hysteresis of the BCC
phase. It has been found that the 30 ˝C PCT hysteresis increases with increasing TiNi phase abundance
and decreasing BCC phase abundance (Figure 16b). Many studies have been conducted on the PCT
hysteresis (for a review see [64]). It is generally accepted that the PCT hysteresis is the elastic energy
needed for the deformation of the lattice near the α-β boundary. Higher PCT hysteresis in an MH alloy
increases the difficulty of hydrogenation. From this aspect, the BCC phase facilitates reaction, while
TiNi phase retards the hydrogenation of the BCC phase, which is very difficult to observe from the
large value of hysteresis since it involves phase changes from BCC to FCC [6].

Table 9. Table of correlation coefficient (R2) between hydrogen storage properties and phase component
characteristics. Significant correlations are highlighted in bold.

Property

Gaseous Phase Electrochemistry

Plateau
Pressure
@30 ˝C

Plateau
Pressure
@60 ˝C

Maximum
Capacity

Reversible
Capacity

PCT
Hysteresis

High-Rate
Discharge
Capacity

Full
Discharge
Capacity

HRD

BCC,
lattice constant 0.02 0.04 0.14 0.36 0.05 0.07 0.04 0.06

BCC,
crystallite size 0.00 0.04 0.21 0.26 0.40 0.57 0.15 0.53

BCC,
abundance 0.11 0.01 0.22 0.41 0.53 0.38 0.27 0.28

C14, unit
cell volume 0.17 0.08 0.01 0.72 0.17 0.09 0.02 0.08

C14,
crystallite size 0.31 0.32 0.13 0.00 0.04 0.04 0.00 0.06

C14,
abundance 0.10 0.08 0.05 0.09 0.07 0.19 0.02 0.26

TiNi,
lattice constant 0.03 0.05 0.13 0.26 0.08 0.17 0.05 0.16

TiNi,
crystallite size 0.16 0.15 0.09 0.19 0.06 0.04 0.02 0.04

TiNi,
abundance 0.02 0.00 0.31 0.57 0.66 0.64 0.15 0.59
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Figure 16. Plots of (a) C14 unit cell volume and TiNi phase abundance vs. gaseous phase reversible 
capacity; (b) TiNi and BCC phase abundance vs. PCT hysteresis measured at 30 °C; (c) HRD vs. BCC 
phase crystallite size; and (d) TiNi, BCC, and C14 phase abundances vs. HRD. 

Figure 16. Plots of (a) C14 unit cell volume and TiNi phase abundance vs. gaseous phase reversible
capacity; (b) TiNi and BCC phase abundance vs. PCT hysteresis measured at 30 ˝C; (c) HRD vs. BCC
phase crystallite size; and (d) TiNi, BCC, and C14 phase abundances vs. HRD.

As for correlation to the electrochemical properties, both the BCC crystallite size and the TiNi
phase abundance show significant correlation to the high-rate discharge performance. A smaller
crystallite in the BCC phase is more desirable, as it gives better high-rate performance (Figure 16c). It is
possible that smaller crystallite sizes will generate more grain boundaries (shown in Figure 12c) and
facilitate more charge transfer between the two phases. The phase abundances from the three major
phases are plotted against HRD in Figure 16d. The general trends suggest that the BCC and C14 phases
are more beneficial to HRD, while the TiNi phase deteriorates it.

5. Conclusions

In this study on the synergetic effects in MH alloys, we challenge the argument that the catalytic
phase must have a weaker MH bond strength compared to that in the main storage phase. The C14
phase, with an ostensibly stronger MH bond, contributes to the reversibility in the hydrogen storage of
other storage phases. The BCC phase, in a multi-phase system, demonstrates a relatively weak MH
bond. On the other hand, the TiNi phase, also with a strong MH bond, hinders the hydrogenation
of the BCC phase. The driving force for proton movement in the alloy varies for gaseous phase and
electrochemistry. The former occurs by diffusion and the equilibrium with gaseous hydrogen at the
clean surface, while the latter proceeds via the electric field and the local distribution of valence
electrons. The synergetic effects in a multi-phase MH system can be explained by the pre-occupied
hydrogen sites on the side of the metal with a larger work function near the grain boundary.
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BCC Body-centered-cubic
BCT Body-centered-tetragonal
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MH Metal hydride
PCT Pressure-centration-temperature
M–H Metal–hydrogen
XRD X-ray diffraction
HRD High-rate dischargeability
ICP-OES Inductively coupled plasma-optical emission spectrometer
SEM Scanning electron microscopy
EDS Energy-dispersive spectroscopy
BEI Backscattering electrode image
TEM Transmission electron microscopy
e/a Average electron density
OCV Open-circuit voltage
EVAC Vacuum potential
EF Fermi level
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SOC State of charge
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