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Abstract: Accurately predicting battery behavior, while using low input data, is highly desirable
in embedded simulation architectures like grid or integrated energy system analysis. Currently,
the available vanadium redox flow battery (VRFB) models achieve highly accurate predictions of
electrochemical behavior or control algorithms, while the optimization of the required input data
scope is neglected. In this study, a parametrization tool for a DC grey box simulation model is
developed using measurements with a 10 kW/100 kWh VRFB. An objective function is applied to
optimize the required input data scope while analyzing simulation accuracy. The model is based
on a differential-algebraic system, and an optimization process allows model parameter estimation
and verification while reducing the input data scope. Current losses, theoretical storage capacity,
open circuit voltage, and ohmic cell resistance are used as fitting parameters. Internal electrochemical
phenomena are represented by a self-discharge current while material related losses are represented
by a changing ohmic resistance. Upon reducing input data the deviation between the model and
measurements shows an insignificant increase of 2% even for a 60% input data reduction. The
developed grey box model is easily adaptable to other VRFB and is highly integrable into an existing
energy architecture.

Keywords: vanadium redox flow battery; redox flow battery; modeling; energy storage; grey box
simulation model; parameter optimization process; integrated energy system simulations; model
parametrization; applications

1. Introduction

Leading Europe to a more sustainable future, especially considering the energy pro-
duction, the amount of renewable energy sources (RES) in the grid increased rapidly
during the last decade. Compared to conventional power plants, e.g., coal, RES are often
not located on central network connection points, but are widespread over rural areas.
Naturally, RES lead to high fluctuations in the daily generation profile all over the grid
and to grid stability problems like infringement of local voltage or power quality. The
use of electric energy storage (EES) is a possible option to mitigate negative effects of the
decentralized intermittent RES [1].

During the last decade, vanadium redox flow batteries (VRFB), developed and
patented in 1980s by M. Skyllar-Kazacos et al. [2], have drawn attention especially for large
storage applications. Since then, many research groups have been focused on improving
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VRFB materials [3–8], control algorithms [9–15] and on techno-economic analysis [16–19].
Compared to other electrochemical EES, VRFB show technical and ecological benefits. Due
to the principle of storing the energy in tanks, the ratio of power and energy can be scaled
up easily and independently. Furthermore, VRFB systems show high energy efficiency, low
costs for large capacities, and long lifetimes [2,16,20].

Positive effects of distributed EES on the grid stabilization, as well as high life-time,
high overall efficiency, and short reaction times strongly depend on their control algo-
rithms [21,22] and their strategic placement in the grid [23,24]. The computational analysis
of single storage applications, as well as whole grid segments are necessary to evaluate
the effect of EES for different time scales, different grid areas or inhomogeneous consumer
and producer distributions, and facilitate decision criteria for storage placement. Simple
battery models, thereby balancing accuracy, complexity and input data scope are essen-
tial for implementing the characteristics of EES and control algorithms within embedded
energy architectures. Depending on the used modeling approach, different scopes of input
data are used for the parameter estimation and model validation. Generally, EES models
can be categorized based on their field of research (component and system research), on
their modeling approach (white, grey and black box models [25]) and their input data.
Battery models should map real behavior, while using low amounts of input data and need
to be capable of being integrated into existing energy architecture like grid networks.

Some studies focusing on simple grey box VRFB models fitted with measured data
have been already presented. For behavior approximation, these models use equivalent cir-
cuits [26–28], simplified equations or black box modeling approaches [29]. Often, separated sub-
modeling steps, e.g., for battery, inverter, controller or auxiliary consumption are considered.

A dynamic model of a VRFB was developed by Baccino et al. using measurements
from a 15 kW/320 kWh VRFB and an equivalent circuit approach [26]. A more detailed
equivalent circuit model was proposed by Bhattacharjee et al. simulating the interface
of VRFB with renewable energy sources while designing a suitable battery management
system. The model gives a precise analysis of VRFB systems, but also necessitates for a
high amount of input data like membrane thickness. [28] D’Agostino et al. introduced
a semi-empirical model developed with a 6 kW/20 kWh VRFB. He used a simplified
modeling approach to reduce computational time. Comparable to this paper, D’Agostino
et al. considered integrated energy system analysis with EES as the purpose of use of
their model while a reduction of the input data scope was neglected [27]. An electrical
circuit model developed by Chahwan et al. evaluates the transient behavior of a VRFB
in connection with a wind energy system. Comparable to the aforementioned study
from D’Agostino et al. the authors focused on a trade-off between simulation time and
modeling complexity and also revealed several types of battery losses [30]. Additionally,
Qiu et al. simplified an existing equivalent circuit model of a VRFB to develop a new
control strategy for VRFB, while neglecting input data scope [31]. Turker et al. aimed at
a wide utilization of their model for different research fields, as well as its up-scaling for
megawatt batteries. Therefore, they developed a power dependent efficiency matrix to
parameterize a black box simulation model of a 10 kW/100 kWh VRFB, without aiming for
universal parametrization [29].

Several modeling approaches for VRFB, following different research objectives, have
been published so far and numerous research areas necessitate simple models of EES, which
can easily be adapted for various systems architectures. To the best of our knowledge so
far no research has been carried out to understand the required input data scope to balance
the complexity and the accuracy for model parametrization of grey box VRFB models.
Currently available VRFB models are intended to achieve highly accurate predictions, and
to serve for detailed analysis of electrochemical behavior or control algorithms, while the
optimization of the required input data scope is often neglected.

The aim of this study is to develop a simple, grey box battery model and parametrize
this model with experiments from a 10 kW/100 kWh VRFB. The DC battery behavior
and internal processes are described with deterministic equations and physico-chemical
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knowledge of VRFB, while inverters, pumps, ventilation and system electronics are ex-
cluded from the model. The focus of the study is to minimize the amount of measurements
(input data scope) necessary for the parametrization. During model development, we can
distinguish between parameter estimation and model validation to some experimental
data not employed for parameter fitting. Therefore, the validation step typically tests the
model prediction capabilities. A sufficient agreement between experiments and model, a
simple adaptability and integrability to further computational analysis is pursued. The
outcome meets the reality of simulating the interfaces between different energy system
architectures by applying a minimized input data scope.

2. Results and Discussion

Performing the optimization process described in Section 3 for all evaluation cases,
fitting parameters, least square sum (LSS), as well as weighted least square sum (WLSS)
are stored for different input data scopes. The effect of a reduced data scope (index p) as an
input for the optimization process is elaborated.

Table 1 shows a summary of all evaluation cases used within this study. Ten different
variations of the vector Papl are defined to determine the effect of different input data scopes
on the parameter estimation and thus on the accuracy of the model. Evaluation cases are
selected to represent different performance ranges of the battery e.g., maximum and
minimum values of Papl in Case 2A and additional medium value in Case 3A. Additionally,
Case 2B and Case 3B exclude upper and lower boundaries in Papl as especially low powers
show different pumping behavior and stack performance including lower efficiencies.
While during Cases 2A and 3A the battery behavior is interpolated between end point
values of the power range, Case 2B and Case 3B show an extrapolation of the behavior, as
only middle values are used. Case 4 uses all power values separately, indicating power
specific performance issues.

Table 1. Evaluation cases for the VRFB model.

Evaluation Case Papl (kW) Index p in Papl Index n 1

Case 1 1, 2.5, 5, 7.5, 10 p1 = [1; 2; 3; 4; 5] 10
Case 2A 1, 10 p2 = [1; 5] 4
Case 2B 2.5, 7.5 p3 = [2; 4] 4
Case 3A 1, 5, 10 p4 = [1; 3; 5] 6
Case 3B 2.5, 5, 7.5 p5 = [2; 3; 4] 6
Case 4A 1 p6 = [1] 2
Case 4B 2.5 p7 = [2] 2
Case 4C 5 p8 = [3] 2
Case 4D 7.5 p9 = [4] 2
Case 4E 10 p10 = [5] 2

1 Amount of half-cycles used for the parametrization.

2.1. Model Validation for Power Specific Parametrization

The Power Specific Parametrization (PSP) implies a power separated model parametriza-
tion, revealing power related performance issues of the VRFB. Fitting parameters and the
corresponding WLSS are optimized for each power separately instead of optimizing them
along the overall power range. Except for Case 4, evaluation cases always map a mixed be-
havior of the battery as more than one cycle is used for the parametrization. Table 2 provides
the optimal values of all fitted parameters as a lookup table. All fitting parameters show
only slight changes for different Papl. U0

′ reduces from 1 kW to 5 kW by 1% and stays nearly
constant for all other powers. ILoss fluctuates slightly with a median value of 7.17 A at 7 at
5 kW. Ri shows an increase of 16% between 1 kW and 2.5 kW and remains nearly constant for
Case 4D and 4E. The parameter CStor varied for Papl in a range between 2286 Ah and 2409 Ah.
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Table 2. Optimal model parameters for power specific parametrization.

Evaluation Case Fitting Parameters Ri/(mΩ) U0
′/(V) ILoss/(A) CStor/(Ah)

Case 4A 1 kW 0.5602 1.3846 7.01 2321
Case 4B 2.5 kW 0.6489 1.3822 8.62 2286
Case 4C 5 kW 0.6736 1.3774 6.06 2409
Case 4D 7.5 kW 0.6316 1.3730 7.17 2363
Case 4E 10 kW 0.6337 1.3749 8.30 2402

Table 3 shows the results for the PSP per evaluation case and performed cycle. The
deviation error WLSS is normalized to the lowest error for each power values in Papl, as
described in Section 3.2.3. WLSS is calculated in relation to initial cases marked with a
star in Table 3. For all values of Papl despite the 10 kW cycle the lowest WLSS is reached at
Case 4. Contrary to all other cases, the lowest WLSS of 10 kW cycle occurs at Case 1 and
even Case 3A shows a lower result than Case 4. In general, results for 1 kW, 2.5 kW, and
5 kW cycle show a broad dispersion of WLSS for different evaluation cases while WLSS
for 10 kW and 7.5 kW remain nearly constant. The continuously low WLSS of the 7.5 kW
and 10 kW cycle indicates a stable performance and fewer non-linear effects which can be
reproduced sufficiently also by other evaluation cases. As soon as one of the two cycles
(7.5 kW, 10 kW) is included in the parameterization e.g., Case 2A or Case 3A, the behavior
of both power values can be mapped accurately. While 7.5 kW shows almost constant and
low WLSS for all cases, 2.5 kW presents high deviation errors. If the 2.5 kW cycle is not
included in the parameterization, for example in Case 2A and Case 3A the WLSS increases
significantly up to 294% and 283%, respectively. Similarities can be confirmed for the 1 kW
cycle with an increase of the WLSS of 487% and 136% in Case 2B and 3B. Thus both the
1 kW and 2.5 kW, show a specific behavior which cannot be represented sufficiently by
other cycles. While Case 2A and 3A interpolate the battery behavior within the complete
power range, both Cases 2B and 3B only interpolate the battery behavior between 2.5 kW
and 7.5 kW. Therefore, the model needs to extrapolate power values outside the range,
leading to higher deviation error.

Table 3. Deviation of WLSS for power specific parametrization.

Papl
WLSS/(%)

Case 1 Case 2A Case 2B Case 3A Case 3B Case 4

1 kW 7.2 10.6 487.1 13.8 136.3 *
2.5 kW 278.9 293.6 96.5 283.3 104.0 *
5 kW 32.6 30.4 102.5 28.6 85.0 *

7.5 kW 2.9 2.9 2.0. 3.9 0.5 *
10 kW * 15.7 12.8 0.7 13.1 11.5

*: Initial case for WLSS calculation; WLSS equals 0%.

2.2. Model Validation for Universally Valid Parametrization

Universally valid parametrization (UVP) presents a new method yielding for suffi-
cient model accuracy while reducing the input data scope for the parametrization. The
programming effort for integrating the battery model into superimposed simulations such
as network simulations is reduced, as one set of fitting parameters describes the battery
performance sufficiently in all power ranges. Except for Case 4, evaluation cases always
map a mixed behavior of the battery, as more than one cycle is used for the parametrization.
Case 4 is subscripted with 1 kW to 10 kW, as only one cycling data set is used for the
parametrization. Contrary to the lookup table (PSP) discussed above, Table 4 provides
optimal values of all fitted parameters per evaluation case. Evaluation cases show different
input data scopes related to the number of cycles used for the parametrization.
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Table 4. Optimal model parameters for universally valid parametrization.

Evaluation Cases Ri/(mΩ) U0
′/(V) ILoss/(A) CStor/(Ah)

Case 1 0.6387 1.3755 6.94 2386
Case 2A 0.6425 1.3767 6.82 2382
Case 2B 0.6285 1.3755 8.16 2367
Case 3A 0.6426 1.3766 6.93 2387
Case 3B 0,6399 1.3762 7.89 2367

Case 41 kW 0.5602 1.3846 7.01 2321
Case 42.5 kW 0.6489 1.3822 8.62 2286
Case 45 kW 0.6736 1.3774 6.06 2409

Case 47.5 kW 0.6316 1.3730 7.17 2363
Case 410 kW 0.6337 1.3749 8.30 2402

Parameters in Table 4 are used to simulate the complete battery behavior while the
effect of input data scope on the model accuracy is investigated. While, U0

′ changes slightly
between different evaluation cases, Ri varies in a range between 0.5602 mΩ in Case 41 kW
and 0.6734 mΩ in Case 45 kW. Same can be found for ILoss, varying in a range between
8.62 A in Case 42.5 kW and 6.06 A in Case 45 kW. The parameter CStor changes slightly from
Case 1 to Case 3B. Significant changes can be found in all Case 4 evaluations. While PSP
optimize fitting parameters per power value, the UVP is used to optimize parameters for
the complete power range and to evaluate possibilities for data input reduction. Thus, UVP
method aims to find an input data scope mapping the overall battery behavior best.

Table 5 shows the WLSS of all evaluation cases in the UVP. The battery is charged and
discharged in the complete power range (1 kW to 10 kW) with the respective parameters
from Table 4 per evaluation case. The maximum data scope (Case 1) reveals the lowest
WLSS and is set as initial case. Again, the WLSS of following cases is always calculated
in relation to the initial case in percent. By reducing the data scope from Case 1 (5 cycles),
Case 2 (2 cycle), Case 3 (3 cycles), and Case 4 (1 cycle) the accuracy of the simulation model
as well as the time-requirement for appropriate data acquisition is reduced. Case 2A uses
only maximum and minimum power, the extended Case 3A uses also the medium power
value. In Cases 3B both the maximum and minimum power (1 kW and 10 kW) are excluded
from the data scope.

Table 5. Deviation of WLSS for for universally valid parametrization for all values in Papl.

WLSS/(%)

Case 1 Case 2A Case 2B Case 3A Case 3B

* 1.67 52.76 6.98 82.58

Case 4A Case 4B Case 4C Case 4D Case 4E

129.65 187.58 100.14 7.90 120.51
*: Initial case for WLSS calculation; WLSS equals 0%.

WLSS in Case 2A (1 kW, 10 kW) shows an increase of 6.98% while input data scope
is decreased by 60%. In comparison, Case 2B (2.5 kW, 7.5 kW) WLSS is increased by 80%
for the same data scope reduction. The results indicate, that using the end point values
of the battery’s power range (1kW and 10 kW, in Case 2A) shows better results, as we
are interpolating the battery’s behavior between these boundary values. Contrary, using
only middle values of the battery’s power range (2.5 kW and 7.5 kW, in Case 2B) leads to
less accuracy, as the model needs to extrapolate outside the used power range. Similarly,
behavior is found between Case 3A and 3B. While, Case 3A shows the lowest increase of the
WLSS of 1.67% using minimal, medium, and maximal power values (1 kW, 5 kW, 10 kW),
WLSS in Case 3B is increased by 53%. Performing UVP with only one cycle measurement
(Case 4) leads to a wide range of results. The worst WLSS is achieved using Papl = 2.5 kW.
The deviation error is 188% higher than the initial point. Similarly, the Papl = 1 kW leads to
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a high WLSS. Using medium and high power values (above 5 kW), lead to better results,
compared to values below 5 kW.

While, using more experiments in Case 1 gives generally better results, a reduction
of the used experiments about 40% (Case 3A) still leads to a high accuracy of the DC
model. Even a reduction of the input data about 60% (Case 2A) shows sufficient results. In
both cases, the input data scope and time for the data acquisition could be significantly
reduced while the accuracy in relation to Case 1 is still high with WLSS of 2% and 7%.
Power values with high and nearly constant DC efficiency (5 kW, 7.5 kW, 10 kW) are
able to represent the VRFB with lower WLSS than power values (1 kW, 2.5 kW) with low
DC efficiency. By including high power values into parametrization, the overall model
performance can be mapped sufficiently. Moreover, the 1 kW cycle should be included into
the parametrization process as it shows specific behavior with drops in the voltage and
State of Charge (SoC) profile.

2.3. Accuracy Evaluation for Charging and Discharging Cycles

Charging and discharging cycles at different power values (Figures 1–3) are performed
to evaluate the accuracy of the simulation model by comparing simulation and raw data
of voltage and SoC. Besides Case 1, Case 2A is used to demonstrate data scope reduction.
Model Parametrization is carried out in accordance with Table 4. Despite the 1 kW cycle, the
simulation model is able to predict the complete battery behavior accurately in both Case 1
and Case 2A. Although, model parametrization in Case 2A is performed with a reduced
data scope of 60%, simulation results are in good agreement with the measurements and
only a WLSS of 1.67% against initial Case 1 occurred.

Figure 1. Comparison between simulation model and measurements using fitting Case 1 and Case 2A: (a) Voltage with Papl

= 1kW; (b) SoC with Papl = 1kW; (c), Voltage with Papl = 2.5kW; (d) SoC with Papl = 2.5kW.
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Figure 2. Comparison between simulation model and measurements using fitting Case 1 and Case 2A: (a) Voltage with Papl

= 5 kW; (b) SoC with Papl = 5 kW; (c), Voltage with Papl = 7.5 kW; (d) SoC with Papl = 7.5 kW.

Figure 3. Comparison between simulation model and measurements using fitting Case 1 and Case 2A: (a) Voltage with
Papl = 10 kW; (b) SoC with Papl = 10 kW.

Unpredictable drops in the voltage and SoC profile occur during the 1 kW charging
cycle while the external charging current remains unaffected (Figure 1a). The first drop of
3% occurs after 136 h and last one hour before the charging process continues. The same
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effect is observed after 240 h of charging. The unpredictable changes in the voltage and
SoC profile are caused by periodical rebalancing of the electrolyte, performed to reduce
cross-contamination and to minimize capacity fading [32]. The rebalancing unit and VRFB
stacks are connected to the same DC voltage bus, which may explain the influence of the
rebalancing unit on the DC voltage and SoC of the battery. Due to the low efficiency of the
battery at 1 kW of 17%, the battery needs 270 h to be fully charged. As charging times of
other cycles are far below 136 h, the rebalancing unit is not active during the measurements.

The simulation model is not able to predict voltage and SoC drops due to the rebal-
ancing system or other unpredictable events. Therefore, deviation error between measure-
ments and simulation is higher during the 1 kW charging cycle (Figure 1). From the three
state variables SoC, voltage, and current, the voltage shows the highest deviation error.

Contrary to the aforementioned cycling with 1 kW, simulation results with 2.5 kW,
5 kW, 7.5 kW, and 10 kW show good agreement with experiments. The simulation model
reproduces the VRFB performance for the 2.5 kW (Figure 1c,d), 5 kW (Figure 2a,b), 7.5 kW
(Figure 2c,d), and the 10 kW cycle (Figure 3) with sufficient accuracy. Discrepancies can be
observed at the end of both the charging and discharging voltage profile, where non-linear
electrochemical behavior takes place and the model is not able to predict the voltage profile
correctly. The SoC prediction is stable in-between the power range.

Differences between predicted and real voltage are related to electrochemical processes
and kinetics during cycling of VRFB. The real stack voltage of a VRFB is calculated using the
theoretical potential represented by the Nernst Equation, subtracted by voltage drops also
called overpotentials. Generally, overpotentials are related to the energy needed to carry
out chemical redox-reactions. The overpotentials are grouped in activation losses, related
to charge transfer process and concentration losses, based on different concentrations
between electrode surface and vanadium-solution. Moreover, ohmic losses arise due to
actual electrical cell resistance and ionic transport in the electrolyte, while ionic losses are
caused by gradual ionic flow leading to vanadium ion and water permeation through
membrane [33].

By comparing both theoretical and simulated voltage profile, differences can be qual-
itatively observed at the beginning of charging and ending of discharging cycle. The
predicted voltage (USim) shows an almost linear behavior during the half-cycles based on
a linear voltage drop caused by the ohmic cell resistance. The real voltage (URaw) shows
a non-linear behavior due to the aforementioned overpotentials, which occur at different
points in the charging or discharging cycle. Comparing the discharging cycles, it can be
seen that the cell performance is limited, due to the mass-transfer phenomena. During the
charging cycle, the kinetics of the chemical reaction limit the charge transfer rate.

The simple battery model describes the internal electrochemical phenomena of the
VRFB using a linear approximation. Due to this approximation, the parametrization of the
presented battery model is done with a reduced data scope while a sufficient accuracy can
still be achieved. The presented model can easily be used with different input data-sets
(experiments). Measurements performed to parametrize the model are simple power
measurements, which can be realized with any battery inverter. The presented battery
model can be integrated into simulation architectures of any energy system simulation by
using DC power and State of Charge (SoC) of the battery. The main objectives of reduced
input data scope, sufficient accuracy, adaptability, and integrability are fulfilled with the
presented study.

3. Materials and Methods
3.1. Experimental Set-Up

For this study, a VRFB from Cellstrom GmbH with a nominal power of 10 kW and a
nominal energy storage capacity of 100 kWh is used. The technical characteristics taken
from the data sheet state a reaction time of around 60 ms or less, an overall DC efficiency
up to 80% and self-discharge of 150 W. Moreover, an active cooling respectively heating
system maintains the temperature inside the container in a safe operation range. Three
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independent hydraulic circuits enable an energy efficient pump control. The stacks are
connected in parallel to a DC-bus, which is connected to three reversible DC/AC inverters
coupled onto the utility grid. The auxiliary services of the battery are powered by a 24 V
power supply connected to the DC-bus of the battery. Auxiliary power consumption is
caused by the pumps, the control power system and the ventilation. The battery container
is separated into two sides with five battery stacks each. Beneath each container side, a
tank contains the vanadium electrolyte [34].

Within this study, complete charging and discharging cycles at different AC power
values Papl (1 kW, 2.5 kW, 5 kW, 7.5 kW, 10 kW) between 20% and 80% state of charge (SoC)
have been performed. There are no interruptions between charging and discharging during
the measurements to avoid self-discharging of the electrolyte in the stacks. AC power, DC
voltage, DC current, SoC as well as the temperature of the environment and the electrolyte,
were logged every second by the energy management system (EMS) of the battery.

According to the electric circuit diagram of the battery EMS calculates the SoC based
on a voltage measurement with a separate VRFB cell installed in the hydraulic cycle of
the battery. A detailed explanation of the connection between the separate VRFB cell
voltage (also called open circuit voltage) and the SoC calculation is given in Section 3.2. The
effective AC power is measured with a network analyzer in a separate module after the
inverter (on the AC side). DC losses cover the complete auxiliary power consumption of
the battery while DC stack power is calculated by multiplying the charging or discharging
current and the battery voltage. Figure 4a shows AC and DC efficiency in dependency on
Papl. The efficiency is calculated using the average AC and DC power during discharging
and charging process at each of the applied power values. The lowest battery AC efficiency
of 17% is reached at 1 kW, while the highest AC efficiency of 62% is reached at 5 kW. From
5 kW to 10 kW AC efficiency decreases to 60% at 10 kW. The DC efficiency shows a stable
behavior with a decrease of 0.5% between 5 kW to 7.5 kW and a decrease of 1% from 7.5 kW
to 10 kW. An average DC efficiency of 77% is reached from 5 kW to 10 kW. The measured
DC efficiency in this study is comparable to the DC efficiency excluding the inverter losses
presented in [29,35]. By reviewing the inverter data sheet of the studied VRFB, inverter
losses at 10 kW are in the range of 250 W corresponding to 4% of the total losses.

Figure 4. Battery performance evaluation: (a) Battery efficiency for charging and discharging cycles;
(b) power losses between AC and DC battery power for all measurements.
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Additionally, Figure 4b deals with the discrepancy between measured AC and calcu-
lated DC power for each Papl, separated for charging and discharging. AC power takes
the complete auxiliary losses into account: Inverter and rectifier, control power system,
pump, and ventilation losses. The circuit diagram of the VRFB installation shows that
power control system, pumps, and ventilation system are connected directly to the DC-bus.
Specification of loss shares is not possible. The highest AC to DC difference of 1.26 kW
occured at the 10 kW discharging cycle. The value corresponds to a 14% loss between AC
and DC power. The highest losses between AC and DC power of 48% were measured
at the 1kW charging cycle. Power losses in percent decreased with increasing Papl. The
difference between losses during charge and discharge cycle decreased with increasing
stack current mainly due to longer operation with lower charging/discharging power [36].
Due to different pumping strategies power losses were always higher for charging [29,36].

3.2. Method

Figure 5 demonstrates the overall simulation process. The proposed model combines
a mathematical description of a VRFB (3) with simplifications, and the optimization process
(2) is based on measurements from a 10 kW/100 kWh system (1). The model is developed
in Matlab (Version: R2017a) by using a differential-algebraic system. Steps one to three
in Figure 5 show the parts of the computational analysis which are related to the battery
modeling. Part one are the battery measurements, described in Section 3.1. The second
part is the optimization process (also called fitting process) to estimate battery specific
parameters. The last step is the battery modeling based on the measurements, the esti-
mated parameters, and physio-chemical equations. Step four illustrates the computational
environment in which the battery model can be used. The interface between the model
and any kind of user environment (simulation architecture (4)) is linked by the parameters
SOC and applied DC power (Papl).

Figure 5. Schematic illustration of the complete simulation process (orange) and the interface to
superimposed simulation architectures (blue).

3.2.1. Physical Description of the Battery Model

The following sections give a brief description of the differential-algebraic model used
for the simulation model which can be divided in three parts.
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Part I: Calculation of the SoC

The theoretical SoC of a battery is defined as the available electric charge Q(U) equals
to the current I(t) which is used to charge or discharge the battery integrated over the
time [37]. Equation (1) shows the modified SoC calculation within the presented simulation
model. While several published models calculate SoC change by multiplying stack power
and time divided by energy capacity [27,30,31] the proposed model calculates SoC changes
by diving integral of currents used to charge or discharge the battery in this time step
by real storage capacity. While, I(t) indicates the current used to charge or discharge
the battery, ILoss represents the current losses due to the internal processes in the VRFB
like shunt currents or vanadium permeation. The variable CStor with physical unit Ah
represents the real storage capacity of the battery system normally unequals the theoretical
storage capacity CTheo:

dSOC(t)
dt

= − I(t) + ILoss

CStor
(1)

As stated by König, CStor is dependent on the mixture of Vanadium ions in the
electrolyte tanks, normally not accessible during operation mode [38]. Comparable VRFB
models [27,30,31] calculate total energy capacity based on measurements, and some of
them modified the equation in order to estimate not only theoretical, but also the real
values for the energy capacity of the battery. Energy Engineers and System researchers
often have no access to electrolyte analyzing techniques and even with some equipment
CStor, usable during the battery operation cannot be determined exactly. Thus CStor is
chosen to be part of the parameter estimation process to ensure a simple and adjustable
model in the proposed work.

Part II: Calculation of the Cell Voltage

The open circuit voltage (OCV) is the standard potential difference between two
electrodes when no external source or load is connected and the battery is in equilibrium
state [37]. Commonly, the Nernst equation is used to calculate the OCV of VRFB. While, the
Nernst equation according to [39,40] originally uses an activity factor for each species in
the electrolyte, several modifications are published [27,30,31,38,41] to simplify the Nernst
equation for application-oriented modeling. The following literature based simplifications
lead to Equation (2):

• Constant activity coefficients of both vanadium species and protons lead to a simplified
logarithmic term with only reactant concentrations. The constants form together with
the standard potential the formal cell potential U′0 [37–39].

• Proton concentration is assumed to be constant in both tanks and is also added to the
formal cell potential [38,40].

• Concentration of vanadium ions is related to the SoC of the battery [27,30,31,38,41]:

U0 = NCellU′0 +
NCellRT

zF
log

[
SOC2

(1− SOC)2

]
(2)

The voltage-current characteristics of a battery U(I) are computed using the OCV (U0)
calculated by the simplified Nernst equation from Equation (2) and the voltage drop caused
by the internal ohmic resistance Ri and the current I(t) of the cell (Equation (3)) [37]. The
combination of both modified Nernst and voltage-current equation lead the second part of
the DC model (Equation (4)):

U(I) = NCellU0 − NCell I(t)Ri (3)

U(I) = NCellU′0 +
NCellRT

zF
log

[
SOC2

(1− SOC)2

]
− NCell I(t)Ri (4)
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Equation (4) includes the following parameters: Faraday constant F = 96486 AsMol−1,
Gas constant R = 8.314 Jmol−1K−1, average ambient temperature T and z = 1 showing
electrons transferred during the reactions also called valency of ion [42]. A defined number
of cells Ncell is used to determine the battery voltage. The SOC, the DC current I(t), and
the DC voltage U(t) are variables calculated by the simulation model. U′0 is formal cell
potential, which equals to U0 if concentrations of all vanadium oxidation sates are equal.
The ohmic resistance Ri, used to compare and evaluate material performance, depends on
the components of the battery, e.g., bipolar plates, membrane, and the contact resistance
in between. Again, both parameters U′0 and Ri, are material-based, often not accessible
or separately measurable in closed battery systems. Cited by different research groups,
internal resistances are often based on percentage literature values [30] or estimated by
dividing voltage losses by stack current [27,31]. The estimation of the internal resistances
is difficult without the knowledge of used materials inside the battery. Therefore, these
two parameters were part of the estimation process in this study to provide a simple and
adjustable model.

Part III: Calculation of Power

Equation (5) shows the typical power balance of a battery. The applied DC power
P(t)apl is used for cycling the battery with current I(t) causing an applied DC voltage
U(I) and overall system losses Ploss. As the system is controlled using fixed power val-
ues, P(t)applied is the control parameter of the battery system and also the external input
parameter of the simulation model. The parameter Ploss covers the internal DC system
losses of the battery excluding losses linked to pumps, inverters, battery management
system, and cooling system of the battery, while ILoss reflects the self-discharge current or
leakage current inside the battery stack. Simulation models using sub-modeling steps for
the auxiliary hardware like pumps display the related losses separately. The DC battery
model in this study is designed without sub-systems, and ILoss is a part of the optimization
process to ensure a simple and adjustable model:

P(t)DC,apl = U(I)I(t)− Ploss (5)

To conclude, the model is based on one differential Equation (1) and two algebraic
Equations (4) and (5). State variables are SOC, U(I), I(t), P(t)apl while the battery specific
parameters ILoss, CStor, U′0 and Ri are optimized during the optimization routine. Initial
conditions for differential Equation (1) are SoC = 80% to start discharging and SoC = 20%
to start charging.

3.2.2. Boundary Conditions of Optimization Process and State Variable Definition

As discussed above the VRFB model is based on one differential equation and two
algebraic equations which are solved for different charging and discharging powers Papl.
Beyond Papl and before the model is useable, four fitting parameters (CStor, ILoss, U′0 and
Ri) are selected during a optimization process also called parametrization. Aiming at high
modelling accuracy, an optimization function is applied for different input data scopes,
and optimal values of fitting parameters are defined. Once the model is parametrized, a
universal usage in integrated energy system simulations without any further parametriza-
tion is possible. The parametrization itself is performed with two different scopes, the
power specific and the universally valid. While, universally valid (UVP) means that the
selected fitting parameters can be used at any power stage, power specific parametrization
(PSP) generates a lookup table with fitting parameters for different power steps.

Figure 6 illustrates the optimization process consisting of three nested loops (index
p, index s, index k) executed one after the other. The vector Papl contains all performed
measurements (compare Section 3.1, Papl = [1 kW, 2.5 kW, 5 kW, 7.5 kW, 10 kW]). Prior to
the start of the optimization routine, p is selected as an index in Papl to choose the input
data scope. While varying index p the optimization reveals the simulation accuracy for
different input data scopes. For example, using only the 1 kW charging/discharging cycle
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for the parametrization, index p = 1 need to be chosen. Moreover, single cycles, as well as
different combinations of cycles are pre-defined within the list of cases Table 1 in Section 2.
If p = [1;2] the 1 kW and 2.5 kW cycle are both used for the optimization process.

Figure 6. Schematic illustration of the steps performed during the fitting process (index p is used as
an index in vector Papl = [1, 2.5, 5, 7.5, 10] in kW for varying the input data scope, index s is used for
the optimization steps (s = 1–3) and index k is used for the step size in the screening range of CStor.

After the start vector Papl is chosen, three fitting steps with index s (s = 1–3) are
performed. During every step s the same routine (Figure 6, violet and blue colored loops)
is performed with the objective to estimate the four fitting parameters of the model while
minimizing the deviation error between measurements and VRFB model. Starting from
s = 1, different starting values for the fitting parameters are selected for the optimization. In
the pre-optimization step (s = 1), first guesses for fitting parameters ILoss, U0

′, and Ri as well
as a range for the screening of CStor are defined. Therefore, the fitting parameters are index
with SV e.g., CStor,SV meaning start value. In an iterative loop the best fitting values during
one step s are used as start values for the next step. Therefore, the algorithm approaches an
optimal solution for the selected index p after the final step s = 3. While, fitting parameters
ILoss, U0

′, and Ri always have fixed values during one step s (Figure 6, orange colored
loop), CStor is varied in a defined ranges listed in Table 6. The variable stepsize defines the
amount of values in vector CStor(k) and is used to calculate the stepvalue in accordance
with Equation (6).

stepvalue =
(1 + kCstor)× CStor,SV − (1− kCstor)× CStor,SV

(stepsize− 1)× CStor,SV
(6)

Table 6. Formulation of screening ranges of CStor.

Optimization Step Screening Range of CStor
(Startvalue Calculated with Equation (6))

s = 1 (1− kCstor)× CStor,SV ≤ CStor(k) + stepvalue ≤ (1 + kCstor)× CStor,SV
1

s = 2 (1− kCstor)× CStor,SV ≤ CStor(k) + stepvalue ≤ (1 + kCstor)× CStor,SV
1

s = 3 (1− kCstor)× CStor,SV ≤ CStor(k) + stepvalue ≤ (1 + kCstor)× CStor,SV
2

1 kCstor = 0.05, stepsize = 30. 2 kCstor = 0.015, stepsize = 60.

As discussed above, the state parameters are assessed with different values before
the optimization function is applied to the VRFB model. The indexes p, s and k define the
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amount of iterations performed within the optimization process. To sum up, the following
state parameters need to be set:

• Define index p in vector Papl to iterate different input data scopes.
• Define start values for CStor,SV, ILoss,SV, U0

′
SV, and Ri,SV and adjust them after every

step s = 1, . . . ,3.
• Calculate vector CStor(k) for brute force screening for every step s = 1, . . . ,3.

3.2.3. Optimization Function

As discussed above, the optimization starts (p = [p1, . . . , p10] s = 1, k = 1) with
supplying the VRFB model with predefined state parameters (Papl, Start values of fitting
parameters). The differential equations of the VRFB model (blue loop in Figure 6) are solved
for all input data scopes of Papl[p1, . . . ,p10]. The optimization function calculates state
variables USim, ISim, and SOCSim and compare them with measured values from Section 3.1
URaw, IRaw, and SOCRaw. A deviation error LSS is calculated by adopting the method of the
least square sum between the model and the experiments based on Equation (7) [43]. The
parameter ei in Equation (7) displays the deviation error between the experiments (xi, yi)
and the fitting curve f (xi) for each data point i. Aiming at minimizing the square sums the
approach achieves the best fitting result [43]. As the optimization function reveals three
state variable three, deviation errors (E1, E2, E3) are calculated for time steps q during all
simulated cycles according to Equations (8)–(10):

n

∑
i=1

e2
i =

n

∑
i=1

[yi − f (xi) ]
2 (7)

E1 =
q

∑
1

e12
q =

q

∑
1

[
URaw,q −USim,q

]2 (8)

E2 =
q

∑
1

e22
q =

q

∑
1

[
IRaw,q − ISim,q

]2 (9)

E3 =
q

∑
1

e32
q =

q

∑
1

[
SOCRaw,q − SOCSim,q

]2 (10)

LSS = E1 + E2 + E3 (11)

WLSS(p) =

 LSS(p)
min

p
LSS(p)

− 1

× 100% (12)

Equation (11) sums up the last square sums to reveal the deviation between the model
and the experiments LSS during the optimization step. It needs to be highlighted that
LSS has no physical unit as it is a globally summed deviation error for all state variable
and performed cycles. To increase comparability, the weighted LSS (WLSS) based on
Equation (12) is used. For every index p the LSS is divided by the lowest LSS during the
parametrization (p1, . . . , p10). By comparing all WLSS(p), not only the deviation error itself,
but also the increase of the deviation error while reducing the input data scope is found.

The Matlab optimization function “FMINCON” is applied to reveal optimal fitting
parameters corresponding to the minimal LSS for iterations in k during step s. After all
iterations with k and s, optimal fitting parameters with lowest LSS are stored for every
index p. By comparing the results for different indexes p the impact of the data scope on
the simulation accuracy is revealed.

4. Conclusions

In a two-step process, this study shows the parametrization, optimization, and valida-
tion of a DC grey box VRFB model using measurements from a 10 kW/100 kWh VRFB.
Based on mathematical equations, an optimization process is developed to adjust battery
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specific parameters while maximizing model accuracy. The specific battery parameters,
also called fitting parameters, are real storage capacity, current losses, open circuit voltage
and ohmic resistance. They were identified as parameters not easily accessed or measured
within a closed battery system.

Charging and discharging cycles at 1 kW, 2.5 kW, 5 kW, 7.5 kW, and 10 kW as well
as different combinations of these values (evaluation cases) serve as input data for the
optimization process. The evaluation cases involve different amounts of measurements
and different measurement combinations based on full charging and discharging cycles
(2 to 10 measurements). This allowed to investigate, which measurements or measurement
combinations reflect the overall behavior of the battery in a meaningful way. Yielding
reduced input data scopes, sufficient modelling accuracy should remain.

Comparing the evaluation cases and the resulting deviation error between the mea-
surements and the simulation, the best results were found using all measurements (1 kW,
2.5 kW, 5 kW, 7.5 kW, 10 kW). This case was defined as the initial point for investi-
gating the effects of the data scope reduction on the accuracy of the simulation model.
The weighted deviation error (WLSS) between experiments and model was used as an
evaluation parameter.

Using more experimental data generally gives better results (Case 1), but the fitting
accuracy is still sufficient for some cases of smaller data scope (Case 2A, Case 3A). Reducing
the data scope from Case 1 (five charging and discharging cycles) to Case 3A (three charging
and discharging cycles) still leads to a small increase of WLSS of 2%. Even further reduction
of the input data scope to Case 2A (two charging and discharging cycles) shows a WLSS
of 7%. Using experimental cycling data with stable battery performance and high DC
efficiency, model performance can be improved significantly. Comparing Case 3A and
Case 3B, both including three charging and discharging cycles, it has been found that 1 kW
cycle should be included into the parametrization process as it shows specific behavior
with drops in the voltage and SoC profile. The same conclusion can be applied for Case 2A
and Case 2B.

The first investigation indicates a sufficient battery model while reducing input data
scope. This method was called universally valid parametrization as only one parameter
set was used to simulate the complete battery performance. The presented model is
able to obtain the temperature dependency of estimated parameters, but a limited set of
experiments has not allowed it yet. Further experiments with the VRFB can be executed
to study the temperature dependency more detailed. Moreover, model validation with
different VRFB control experiments will be performed in a follow-up study.

The simulation model with the universal valid fitting parameters, found in this study,
can be easily integrated into other simulation architectures to evaluate battery performance
in different applications. The interface parameters for such evaluations are DC battery
power and SoC of the battery, both calculated for every time step. A follow-up study
further investigates the integration and performance of the VRFB model in energy system
analysis and evaluates the performance of decentralized and centralized VRFB installations
in the low-voltage grid. Moreover, the battery model will be used for further studies on the
grid stability of low voltage grids with a high penetration of renewable energies.
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