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Abstract: The formation and evolution of the solid electrolyte interphase (SEI) layer as a function of
electrolyte and electrolyte additives has been extensively studied on simple and model pure Si thin
film or Si nanowire electrodes inversely to complex composite Si-based electrodes with binders and/or
conductive carbon. It has been recently demonstrated that a binder-free Si@C-network electrode had
superior electrochemical properties to the Si electrode with a xanthan gum binder (Si-XG-AB), which
can be principally related to a reductive decomposition of electrolytes and formation of an SEI layer.
Thus, here, the Si@C-network and Si-XG-AB electrodes have been used to elucidate the mechanism
of SEI formation and evolution on Si-based electrodes with and without binder induced by lithiation
and delithiation applying surface analytical techniques. The X-ray photoelectron spectroscopy and
time-of-flight ion mass spectrometry results demonstrate that the SEI layer formed on the surface of
the Si-XG-AB electrode during the discharge partially decomposes during the subsequent charging
process, which results in a less stable SEI layer. Contrarily, on the surface of the Si@C-network
electrode, the SEI shows less significant decomposition during the cycle, demonstrating its stability.
For the Si@C-network electrode, initially, the inorganic and organic species are formed on the surface
of the carbon shell and the silicon surface, respectively. These two parts of species in the SEI layer
gradually grow and then fuse when the electrode is fully discharged. The behavior of the SEI layer
on both electrodes corroborates with the electrochemical results.

Keywords: Lithium ion battery; Si anode; SEI layer; binder; XPS; ToF-SIMS

1. Introduction

Silicon is regarded as a promising candidate of anode material for the next generation
of Li-ion batteries (LIBs), due to its high specific capacity (over 3500 mAh·g−1), a low
operating voltage of 0.5 V (vs. Li+/Li), and high abundance in the Earth’s crust. However,
the huge volume changes of Si (over 280%) during lithiation/delithiation processes lead
to pulverization and then delamination of the Si electrode and, consequently, instability
of the solid electrolyte interphase (SEI) layer and, finally, reduced electrode conductivity
of the Si-based electrode [1]. The continuous growth of the SEI layer will decrease the
conductivity between the Si-particles and the conductive agents and become inactive to
the lithiation/delithiation processes. To solve this problem, several strategies have been
reported, including the modifications of electrode materials [2–8], binders [9–17], electrolyte
solvent [18–21], salts [22–24], and electrolyte additives [19,25–30].

Applying these strategies, the huge volume changes of Si are buffered and the pulver-
ization of the electrodes can be significantly reduced. At the same time, the SEI layer also
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becomes more stable and resistant, resulting in fewer side reactions during charge-discharge
processes leading to higher coulombic efficiency. Several surface analytical techniques were
used to characterize the SEI layer at different stages of charge–discharge potentials in these
studies [21,23,31–33]. The SEI layer generation and evolution mechanisms were discussed
to guide the development of new functional materials leading to enhanced performances of
Si-based anodes. Chan et al. demonstrated a formation of a complex SEI composition at a
discharged state (at 0.5 V) and a relatively simple SEI composition with mainly Li2CO3 and
LiF after discharge (to 0.01 V) on a Si nanowire anode in a LiPF6/EC-DEC electrolyte by ex
situ X-ray photoelectron spectroscopy (XPS) [34]. Dynamic behavior of the SEI layer was
also demonstrated on graphite and other types of negative electrode materials [35,36]. Hou
et al. investigated the decomposition mechanism of fluoroethylene carbonate (FEC) in a
LiPF6/ethylene carbonate (EC) electrolyte on the surface of a Si anode [37]. The reduction in
Li+-coordinated FEC occurs prior to the potential decomposition of EC. The uncoordinated
FEC passivates the anode surface by forming LiF. Philippe et al. demonstrated that the
LiPF6 salt decomposition results in the formation of SiOxFy species and the dissolution of
Li2O on the Si anode surface due to the formation of HF by the reaction between LiPF6 and
traces of water [22]. The lithium bis(fluorosulfonyl)imide (LiFSI) salt has lower sensitivity
toward hydrolysis. Thus, it shows a continuous reaction with SiO2 leading to the formation
of Li4SiO4. Moreover, the reduction products of LiFSI play a particular role in a passivation
layer by preventing further reduction in the salt during cycling. However, most of these
analyses of the mechanism of SEI generation and evolution have applied pure silicon
electrodes (e.g., Si thin film, Si nanowires, etc.,) to simplify the analysis, interpretation,
and identification of complex species. Other electrode components affecting the SEI layer
variations have not been systematically investigated [26,38–42].

In our previous studies [8], a binder-free Si@C-network electrode with a relatively
simple structure was fabricated. It exhibited significantly superior performances than the
silicon nanoparticle electrode with a xanthan gum binder (Si-XG-AB electrode). Therefore,
more thorough studies and comparison of the evolution of SEI on this Si@C-network
electrode and Si-XG-AB electrode is necessary to have a more comprehensive knowledge
of the SEI variation with multiple battery components.

In this work, a detailed surface characterization by means of XPS and time-of-flight
secondary ion mass spectrometry (ToF-SIMS) techniques were performed on the afore-
mentioned binder-free Si@C-network and Si-XG-AB electrodes. The surface modifications
of Si-based electrodes, the interface stability, and the in-depth distribution of different
chemical species as a function of lithiation and delithiation potentials were investigated
and discussed.

2. Experimental Part
2.1. Si-Based Electrodes

The Si@C-network electrode was prepared by in situ carbonization using the same
method as that in our previous paper [8]. 0.05 g Si nanoparticles (Alfa Aesar, 50–100 nm) and
0.05 g xanthan gum (XG) were stirred in deionized water to make a homogenous slurry and
then coated on the Cu current collector. After drying in a vacuum oven overnight at 100 ◦C,
it was put in an Ar atmosphere and heated to 600 ◦C for 2 h (a heat rate of 5 ◦C·min−1) to
obtain the Si@C-network electrode. The Si@C-network electrode comprises 83.4 wt% of Si
and 16.6 wt% of carbon. For comparison, the Si-XG-AB electrode was prepared by mixing
0.06 g Si nanoparticles (SiNPs) with 0.02 g acetylene black (AB) and 0.02 g XG in 1.0 mL
deionized water to form a homogeneous slurry. Then, the slurry was coated on thecurrent
collector and dried in a vacuum at 100 ◦C for 12 h. The mass loading of the active Si is
0.4 mg·cm−2 on both the Si@C-network electrode and the Si-XG-AB electrode.

2.2. Galvanostatic Tests

The galvanostatic tests of the Si-XG-AB and the Si@C-network electrodes were per-
formed in 1M LiPF6/dimethyl carbonate (DMC) at the rate of 0.2 C (1 C = 3580 mAh·g−1)
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using a VMP3 Biologic multi-channel potentiostat/galvanostat. To activate the electrodes,
the first cycles were performed with a current of 200 mA·g−1.

2.3. Morphology Characterizations

The morphological characterizations of Si-XG-AB and Si@C-network electrodes were
performed by SEM (a Zeiss Ultra55 microscope with a high-resolution field emission gun,
Schottky SEM-FEG).

2.4. XPS and ToF-SIMS Characterizations
2.4.1. XPS and ToF-SIMS Experimental Conditions

XPS measurements were performed under an ultra-high-vacuum (~10−9 mbar) using a
ThermoElectron ESCALAB 250 spectrometer with a monochromatic Al Kα X-ray radiation
source (hν = 1486.6 eV). Survey and high-resolution spectra were obtained at a 90◦ take-off
angle. Binding energy was corrected by setting the lower energy C 1 s peak at 285.0 eV
(corresponding to C-C sp3 bond). Some characteristic peaks, e.g., the narrow peak at
~284.0 eV corresponding to the C-C sp2 bond [41], the peak at ~685.0 eV corresponding to
the Li-F bond [23,34], and the peak at 528.0 eV corresponding to the Li-O bond [39] were
also be taken into account in the binding energy correction. The CASA software (version
2.3.17) was used for peak fitting and decomposition. The Shirley-type background and
Gaussian/Lorentzian ratio of 70/30 were used for all peak fittings.

ToF-SIMS ion depth profiles analysis was performed using a ToF-SIMS 5 spectrom-
eter (IONTOF GmbH, Munster, Germany) under 10−9 mbar, with a 25 keV Bi+ beam
(100 × 100 µm2) for analysis, delivering a target current of 1.2 pA and a 2 keV Cs+ beam
(300 × 300 µm2) for sputtering, delivering a target current of 90 nA. Data acquisition and
analyses were performed with Ion-Spec software (version 6.8).

2.4.2. Sample Preparation for XPS and ToF-SIMS

XPS and ToF-SIMS analyses were performed after the electrochemical tests at different
stages of lithiation/delithiation in 1M LiPF6/DMC electrolyte at 200 mA·g−1 in Swagelok
cells, as shown in Figure 1. During the first cycle of charge–discharge, four points of
lithiation and delithiation were chosen for each type of electrode:
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Figure 1. The first cycle of charge–discharge curves of (a) Si-XG-AB electrode and (b) Si@C-network
electrode for XPS and ToF-SIMS sample preparations performed in 1M LiPF6/DMC electrolyte at
200 mA·g−1.

- point 1 (~0.8–1.0 V) corresponding to the state after electrolyte decomposition and SEI
formation [19,23,34,41,43];

- point 2 (~0.1–0.3 V) corresponding to the further formation of the SEI layer before the
lithiation of crystalline Si [44–46];

- point 3 (0.01 V) corresponding to the full lithiated state of the electrode [47–49]; and
- point 4 (3.0 V) corresponding to the full delithiated state of the electrode.



Batteries 2022, 8, 271 4 of 17

At each point, the cycling was stopped and the sample was immediately transferred
into the Ar-filled glove box. Then, the cell was disassembled and rinsed with DMC more
than three times, dried with Ar-flow, and transferred directly to the XPS or ToF-SIMS
analysis chamber under anaerobic and anhydrous conditions without any exposition to the
ambient air as detailed in our previous work [50].

3. Results and Discussion
3.1. Morphological Characterization of Electrodes by SEM

The SEM images of the Si-XG-AB and the Si@C-network electrodes before and after
cycling are shown in Figure 2 and the Supplementary Materials (Figure S1). Before cy-
cling, the Si@C-network and the Si-XG-AB electrodes exhibit a similar size of SiNPs of
around 50–100 nm. The Si@C-network electrode (Figures 2b and S1b) shows some linkages
between SiNPs, forming a three-dimensional structure. In the case of the Si-XG-AB elec-
trode, the SiNPs together with the AB particles of 5–10 nm are covered by an XG binder
(Figure 2a). The higher magnification images of pristine Si-XG-AB and Si@C-network
electrodes (Figure S1) demonstrate more clearly the morphology of SiNPs and AB particles.
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Figure 2. Morphology of a pristine (a) Si-XG-AB electrode, (b) Si@C-network electrode and after
galvanostatic cycling in LiPF6/DMC at 0.2 C for 100 cycles, (c,e) Si-XG-AB, and (d,f) Si@C-network
electrode.

After 100 cycles of galvanostatic tests, the Si@C-network electrode (Figure 2d) shows a
grainy morphology with bigger particles than the pristine sample. The Si-XG-AB electrode
(Figure 2c) also exhibits bigger particles. The particle size increase observed for both types
of electrodes can be due to the SEI layer deposition over the particles and also the process of
lithiation leading to the pulverization of Si particles. However, the lower resolution images
(Figure 2e,f) show a more cracked layer with numerous defects on the surface of Si-XG-AB
than on the Si@C-network electrode, which would indicate the formation of thicker and
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more defectuous SEI layer with an enhanced decomposition of the electrolyte. The presence
of pores and defects can lead to enhanced diffusion of electrolytes in the bulk of the layer
and/or layer/electrode interface and renewal of the SEI with continuous consumption
of electrolytes. Less significant formation of cracks on the surface of Si@C (Figure 2f) can
indicate a higher stability of the electrolyte during the 100 cycles and, consequently, lower
consumption of the electrolyte.

3.2. Galvanostatic Tests

The galvanostatic tests of the Si-XG-AB and the Si@C-network electrodes performed
in 1M LiPF6/DMC at the rate of 0.2 C were preceded in the Supplementary Materials
(Figure S2) by the initial cycle performed with the current of 200 mA·g−1 to activate the
electrodes. The Si-XG-AB and Si@C-network electrodes exhibit their initial charge capacities
of 2568.1 mAh·g−1 and 2866.4 mAh·g−1, respectively. After 100 cycles, the capacity of
the Si-XG-AB electrode drops significantly to 54.3 mAh·g−1, in contrary to the Si@C-
network electrode, which shows a much slower capacity decrease reaching the final value
of 952.2 mAh·g−1. The more unstable cycle life of the Si-XG-AB electrode in comparison
to the Si@C-network electrode can be explained by the surface and/or bulk electrode
modifications with a continuous SEI layer formation inside the cracks (as shown by SEM in
Figure 2e) during each cycle. Accordingly, the conductive agent loses contact with SiNPs
leading to damage to the conductive network. Better stability of the Si@C-network electrode
can be explained by a more robust and less vulnerable carbon layer enveloping Si particle
and providing good conductivity. Thus, the electrode shows fewer cracks (Figure 2f) and,
consequently, less electrolyte is consumed during each process of lithiation/delithiation.

3.3. Surface Characterizations
3.3.1. XPS Surface Characterizations of the Si-XG-AB Electrode

In order to better understand the influence of binder-free Si@C-network electrodes
on the surface modifications at different stages of lithiation/delithiation (four points, as
shown in Figure 1), the surface characterizations were performed on both electrodes. A
detailed explanation of the selection of these four points is presented in Section 2.4 of the
experimental part.

First of all, the XPS results are presented for the Si-XG-AB electrode. The high-
resolution XPS spectra of C 1s, F 1s, O 1s, and Si 2p and the peak decompositions for
pristine and after different lithiation/delithiation states (points 1–4) during the first charge–
discharge cycle of the Si-XG-AB electrodes are shown in Figure 3. The binding energies of
all spectra were corrected with reference to the C-H and the C-C sp3 peak at 285.0 eV.

The pristine Si-XG-AB electrode exhibit a narrow peak at ~284.0 eV corresponding to
the C-C sp2 bond [41], which corresponds to the 20 wt% of AB present in the electrode. The
high intensities of the C-H, C-C sp3 peak, and C-OH,−OCH3 peak (~287.1 eV) [23,42,51–53]
can be attributed to the organic species in the XG binder molecule. After the electrolyte
decomposition and the SEI layer formation (point 1), the peak area ratio of the C-C sp2 peak
decreases a little, illustrating the formation of a thin SEI layer on the electrode. However,
the other higher binding energy peaks do not show significant changes, and the peaks
attributed to XG are overlapped with peaks corresponding to SEI layer species. At more
negative potential, after the further stages of the SEI formation and the lithiation of Si
(point 2), the C-C sp2 peak ratio continues to decrease and a new peak formed at ~282.5 eV,
which corresponds to the lithiation of AB [54]. The attenuation of the C-C sp2 peak confirms
the thickening of the SEI layer. The relative ratios of the peaks at 286.5 eV, 288.9 eV, and
290.0 eV increase, indicating the formation of C-O ether linkage, O-C=O, and the carbonate
species on the electrode surface, respectively. After the full lithiation of the Si electrode
(point 3), the peak area ratio of the C-Li and C-C sp2 peak is much lower than at point 2,
demonstrating a thick SEI layer formed on the surface, which shields the signals from
the SiNPs-AB-binder region. The existence of a C-C sp2 peak also demonstrates that the
AB is partially lithiated during cycling. The amount of C-O ether linkage and carbonate
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species have further increased at this point, corresponding to Reactions (1)–(4) [19,55–58],
as shown below.

DMC + e− + Li+ → CH3OCO2Li + CH3 (1)

DMC + 2e− + 2Li+ → Li2CO3 + C2H6 (2)

n R· → Rn (polymers) (3)

2 ROCO2Li + H2O→ Li2CO3 + ROH +CO2 (4)
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Figure 3. High-resolution C 1s, F 1s, O 1s, and Si 2p core level spectra obtained on the pristine surface
of the Si-XG-AB electrode and the Si-XG-AB electrode after different stages of lithiation/delithiation
(points 1–4) in 1 M LiPF6/DMC.

At point 4 of delithiation, the C-Li peak still can be observed but shows a much lower
peak area ratio, demonstrating that most of the AB has been delithiated. The ratios of the
peaks corresponding to C-O ether linkage and carbonate species decrease a lot, indicating
the decomposition of these species during the delithiation. The shape of the XPS profiles
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at points 2 and 4 looks similar but quite different from the profile of point 3, indicating
that the SEI layer formed at the fully lithiated state is not stable and can easily undergo
decomposition.

There is no F 1s signal on the pristine Si-XG-AB electrode. At point 1, the inten-
sity of the F 1s signal is weak. At further lithiation state (point 2), a big Li-F peak
at 685.0 eV [23,34,42,51,53,54], due to decomposition of LiPF6 according to Reactions
(5)–(8) [55,57–59] and a small peak intensity at 686.8 eV corresponding to SiOF [60–63], can
be observed below.

LiPF6 
 LiF + PF5 (5)

ROCO2Li + HF→ ROCO2H (sol) + LiF (6)

Li2CO3 + 2 HF→ H2CO3 (sol) + 2 LiF (7)

ROLi + HF→ ROH + LiF (8)

The presence of SiOF can be a fingerprint of the bare Si electrode. After the full
lithiation (point 3), the ratio of the Li-F peak becomes much higher, while the peaks
corresponding to SiOF and P-F (688.0 eV) are nearly invisible (a total area ratio of 5.40% in
the F 1s spectra) [23,42,51,53,54], illustrating the thicker SEI layer formed on the electrode
surface. After the full cycle at the delithiation state (point 4), the SiOF signal corresponding
to the Si substrate becomes obvious, indicating a thinning of the SEI layer.

The O-C=O (533.6 eV), Si-O, C-O (532.9 eV), and C=O, P=O (532.0 eV) peaks [23,42,51,
54,55,59,60,64,65] are present in the O 1s spectra for the Si-XG-AB pristine sample (Figure 3).
The presence of the organic species can be attributed to the XG binder molecules. At point
1, the C=O, P=O, and C-O peak ratios increase significantly [51,54,55,59,60,65], due to the
formation of related organic species in the SEI layer. At point 2, the peak corresponding to
ROLi, LixSiOy (530.5 eV) appears, confirming the lithiation of Si oxide [41,55,56,66]. At a
fully lithiated state (point 3), the ratio of ROLi and LixSiOy peaks further increase and a
Li-O peak appears at 528.0 eV, according to Reaction (9) [39]:

SiO2 + 4 Li+ + 4 e−→ Si + 2 Li2O (9)

The decrease in the C-O, Si-O peak at this point can be attributed to the thickening of
the SEI layer, since the Si-O signal is related to the bulk Si, and Si-O undergoes lithiation.
After delithiation (point 4), the lower intensity of LixSiOy confirms a partial delithiation. The
Li-O peak vanished and C=O, P=O become the principal species on the electrode surface.

The Si 2p spectrum displays the Si 2p3/2 and the Si 2p1/2 spin-orbit doublet and its de-
composition indicates that the surface of the pristine Si-XG-AB electrode is covered by a thin
layer of Si oxides (Si+ at ~100.1 eV, Si2+ at ~101.8 eV, and Si4+ at ~103.5 eV) [38,60,61,67,68],
which agrees with the decomposition of O 1s core level peak (showing the Si-O species). The
lowest binding energy peak at ~99.1 eV (Si 2p3/2) can be attributed to Si0 [38,41]. At point 1,
the Si 2p3/2 peaks corresponding to Si+ and Si2+ increase, and the Si4+ peak decreases,
which can be attributed to the reduction in Si oxide during discharge and/or formation of
Si fluorides (due to overlapping of the Si 2p peaks with the same Si valence corresponding
to oxides and fluorides [38,60,61,67,68]). At point 2, the ratios of the Si 2p peaks do not
show significant changes, but the peaks are shifted to lower binding energies due to the
differential charging effect related to the surface heterogeneity (the presence of different
compounds on the Si electrode) [23,67]. Therefore, at later stages of lithiation/delithiation
(after point 2), the Si 2p peaks were assigned to different Si compounds by calculating
the difference in the binding energies corresponding to Si0 and other Si peaks. The Si
2p3/2 peak at the lowest binding energy (96.2 eV) can be attributed to the Li-Si alloy [41].
The Si 2p3/2 peaks of 2.2 eV and 3.9 eV are higher than Li-Si, corresponding to the Si+

and Si2+ species, respectively [38,60,61,67,68]. At a fully lithiated state (point 3), the Si 2p
peak intensity is much lower (as compared to other states), indicating the formation of
a thick SEI layer. After delithiation (point 4), the Si 2p peaks are shifted back to higher
binding energy but are still lower than those observed for the pristine sample. The peaks
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corresponding to Si0, different oxides and fluorides, and a new peak corresponding to
SiOxFy (104.5 eV) [38,60,67] can be distinguished.

3.3.2. XPS Surface Characterizations of the Si@C-Network Electrode

The high-resolution XPS spectra of C 1s, F 1s, O 1s, and Si 2p and the peak decomposi-
tions for the pristine sample and at different electrochemical states (points 1–4) of the first
charge–discharge cycle of the Si@C-network electrode are shown in Figure 4. Similar to the
Si-XG-AB electrode, binding energies of all spectra were also corrected with reference to
the C-H and C-C sp3 peak at 285.0 eV.
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Figure 4. High-resolution C 1s, F 1s, O 1s, and Si 2p core level spectra obtained on the pristine and
after different stages of lithiation/delithiation (points 1–4) in 1 M LiPF6/DMC of the Si@C-network
electrode.

The C 1s profile at point 1 is nearly the same as the C 1s profile of the pristine sample.
Both of them present a very high peak corresponding to the carbon network on the surface
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(C-C sp2 and 284.0 eV), a smaller peak corresponding to the C-H and C-C sp3 contamination,
while the other peaks show relatively low ratios, demonstrating that almost all ingredients
of XG are carbonized. Although the C 1s profiles have similar shapes for the pristine sample
and after the first lithiation (point 1), the SEI formation can be evidenced from analyses of
the F 1s and O 1s. No F 1s signal can be observed for the pristine sample, while at point 1, a
high ratio of the Li-F (685.0 eV) peak and lower ratios of the SiOF (686.8 eV) and P-F peaks
(688.0 eV) can be observed. The pristine sample shows a high peak in O 1s corresponding
to Si oxide (532.9 eV), while at point 1, the major species of C=O, P=O are formed due to the
decomposition of electrolyte [41,51,54]. A decrease in the Si0 signal ratio in the Si 2p core
level region for the sample at point 1, with reference to the pristine sample, also confirms
the formation of the SEI layer. From the results obtained on C 1s, F 1s, O 1s, and Si 2p,
it can be concluded that the SEI formed on the surface of the Si@C-network electrode at
point 1 mainly occurs in the zones between SiNPs and carbon inside the carbon network,
as shown in Figure 5.
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Figure 5. Schematic diagram of the pristine Si@C-network electrode and after different stages of
lithiation/delithiation (points 1–4) on the Si@C-network electrode.

At point 2 of lithiation, the C-C sp2 peak disappears and the C-H/C-C sp3 becomes
a dominating contribution, indicating the further growth of the SEI layer, which covers
the carbon network of the electrode. The decrease in the SiOF peak in F 1s agrees with
the thickening of the SEI layer. The high ratio peak at 531.9 eV can be mainly attributed
to ROLi species and not to LixSiOy, because the carbon network surrounding the SiNPs
is covered by the SEI layer, and less of the Si-related signal can be observed by the XPS.
The schematic diagram of SEI growth at point 2 is also shown in Figure 5. Similar to the Si
2p profiles of the Si-XG-AB electrode (described above), the peaks are shifted to a lower
binding energy due to the differential charging effect.

At point 3, the Si@C-network electrode is fully lithiated and the SEI layer is further
varying. The species found by decomposition of in C 1s core level region such as C-OH,
OCH3, and carbonate, are the main components originating from the decomposition of the
DMC solvent, according to Reactions (1) and (2) and the reaction as already confirmed in
our previous work [21]:

DMC + e− + Li+ → CH3OLi + CH3OCO (10)

The high ratios of ROLi, LixSiOy, and C=O, P=O peaks in O 1s spectra confirm the
formation of CH3OLi and lithium carbonate. The Li-O peak is also observed on Si-based
electrodes at a fully lithiated state [34,42]. The main species in the area of F 1s spectra is
Li-F, following decomposition of LiPF6 according to Reactions (5)–(8), while the P-F and
SiOF species are nearly invisible. The Si 2p signal is significantly attenuated due to the
growth of the SEI layer so that the Si 2p peaks cannot be easily decomposed. The Li-Si,
Si4+, and SiOxFy species were identified by calculating the differences between the binding
energy of peaks [38,41,42,67].

After the delithiation at point 4, the C 1s profile shows only some slight modifications,
with reference to the C 1s profile at point 3. The carbon network is still covered by the SEI
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layer. There are no C-O ether linkage species formed after the cycle in 1 M LiPF6/DMC,
which agrees with our previous results [21]. The SiOF peak ratio in F 1s spectra increases a
little, illustrating a decrease in the SEI layer thickness (schematically shown in Figure 5).
The Li-O peak disappears after delithation and C=O, P=O becomes the major species in O
1s spectra. In Si 2p spectra, the Li-Si peak vanishes, and the Si0 peak emerges with a high
Si4+ signal.

Summarizing the XPS results, it could be concluded that several SEI layer species
are easily formed during the lithiation and then easily undergo decomposition during the
delithiation on the Si-XG-AB electrode. Thus, the formation of the SEI layer is dynamic
and reversible during the first cycle of lithiation/delithiation. Consequently, the Si-XG-AB
electrode spent a high quantity of electrolyte in order to form an SEI layer at every cycle,
which may lead to lower coulombic efficiency. Furthermore, the continuous formation of the
SEI layer every cycle can lead to the termination of SiNPs and AB particles and, therefore,
impairment of the conductive network of the electrode, resulting in capacity fading.

The SEI layer on the Si@C-network electrode forms on the Si surface inside the carbon
layer at the beginning of lithiation (point 1), and then during the further lithiation stages
(points 2 and 3), and grows thicker to cover the carbon network. During delithiation
(point 4), the SEI layer thickness slightly decreases but still covers the carbon network, and
the components of the SEI layer are not significantly modified. Therefore, the Si@C-network
electrode exhibits a more stable SEI layer in comparison to the Si-XG-AB electrode, which
is beneficial to the coulombic efficiency and cycle life of the electrode.

3.4. ToF-SIMS Surface and Bulk Characterizations

To have a better insight into the surface variation of the Si-XG-AB and the Si@C-
network electrodes, ToF-SIMS ion depth profiles were performed at all states of lithia-
tion/delithiation, similar to for the XPS tests presented above. Figure 6 shows the ToF-SIMS
negative ion depth profiles for Si-XG-AB and Si@C-network pristine electrodes. As ob-
served by SEM in Figure 2, the diameter of the SiNPs on Si-XG-AB and Si@C-network
electrodes is 50–100 nm. Thus, in the 100 × 100 µm2 analyzed area, the high quantity of
SiNPs can be sputtered and characterized. However, the SiNPs are not homogenously and
evenly distributed on the surface (as demonstrated by SEM images in Figure 2). Thus, all
particles will be not etched at the same time. At the beginning of sputtering, the signals
corresponding to the binder layer of Si-XG-AB and the carbon network of the Si@C-network
electrode of the particles present on the outermost surface will be detected. With the sput-
tering time increase, the surface particles will be partially etched while the particles present
in the innermost might be still intact. As a result, a mixture of signals corresponding to the
surface and bulk particles can be detected. A stable intensity of all ions can be observed
already after around 150 s of sputtering. This stable signal intensity can be explained by
an in-depth uniform electrode composition made of homogenous slurries. Therefore, our
discussion here is focused on the signals of the first 200 s of sputtering time corresponding
to the layer covering the Si surface.

In this work, all the ToF-SIMS depth profiles are normalized by Cu− signal intensity,
considering that the Cu substrate is inactive during the lithiation/delithiation process. The
presence of a Cu signal in all profiles can indicate that the electrode materials (the Si-XG-AB
and Si@C-network) do not form a complete and compact layer on the Cu current collector.

In Figure 6a, the initial 24 s of the depth profile for a pristine Si-XG-AB electrode
shows increasing intensities of the C3

− signal from AB. The higher intensities of CH2
− and

CH3O− signals (corresponding to organic species) at the beginning of the sputtering, show
the enrichment in a binder. The Cu− signal from the Cu substrate increases rapidly to reach
a plateau at around 24 s of sputtering. On the Si@C-network electrode, clearly, a C3

− peak
before the Si3−, SiC, and Cu− signals can be observed, indicating the existence of carbon
network on the Si surface.
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The ToF-SIMS depth profiles for the Si-XG-AB electrode and Si@C-network electrodes
at point 1 and point 2 are shown in Figure 7. At point 1 (Figure 7a), the Si-XG-AB electrode
shows a maximum intensity at around 25 s and a small decrease in the Li− and LiSi−

species for 74 s, while the intensities of LiF2
− increase in the first 20 s and then become

stable, demonstrating there is a Li-rich area at the beginning of sputtering (indicated by a
dashed line in Figure 7) corresponding to the outer part of the electrode.

For the Si@C-network electrode at point 1 (Figure 7b), the LiF2
− signal shows the

maximum intensity at the beginning of sputtering time and then an abrupt decrease until
40 s. The C3

− profile reaches the maximum at 10 s and then decreases. The maximum
CH2

− signal intensity is shifted to a higher sputtering time (25 s). The Cu− and Si3−

signals become stable at 40 s. This alteration of maximum signal intensities demonstrates
that LiF species are present on the surface of the carbon network and the CH2

−-related
organic species are principally formed between the carbon network and Si particles. This
agrees with the XPS results obtained at point 1. There are two hypotheses related to the
in-depth enrichment of LiF and organic species. One explanation is that the LiF salt can
be more easily deposited on the porous carbon network than the organic species. The
other explanation is that during the formation of LiF, the HF is consumed according to
Reactions (6)–(8), but the SEI layer formed on the carbon network hinders the diffusion
of HF from the electrolyte into the bulk of the electrode in the carbon network and Si.
Therefore, the formation of LiF between the carbon network and Si is more difficult than
on the electrode surface. At the same time, more Li carbonates (originating from organic
compounds of electrolytes) can be found in the area between the carbon network and Si
without undergoing the reaction with HF.

At point 2 (Figure 7c), the Si-XG-AB electrode presents the maximum peak intensities
for Li−, LiF2

−, CH2
−, LiO−, and CH3O− signals before the stable intensities of C3

−, Cu−,
and Si3−, indicating that the surface SEI layer is enriched in Li salt and organic compounds.
Compared to point 1 (Figure 7a), the intensities of Li−, LiO−, CH2

−, CH3O−, and LiSi−

species show a significant increase, indicating the further uptake of the SEI layer and the
partial lithiation of Si.
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Similarly to point 1, the LiF2
− profile shows also the maximum intensity in the

beginning and then a rapid decrease until 46 s on the Si@C-network electrode (Figure 7b),
indicating deposition of LiF on the surface of carbon at point 2 (Figure 7d). The peaks of
C3
−, Li−, CH2

−, CH3O−, and LiO− can be observed before the stable intensities of signals
of Cu− and Si3−, demonstrating that the organic species are well mixed with the carbon
network and are different from the profiles obtained at point 1, which shows the organic
species-rich area between the carbon network and Si. The intensities of Li−, LiO−, CH2

−,
CH3O−, and LiSi− signals are higher with reference to the profiles obtained at point 1,
demonstrating the growth of the SEI layer and the partial lithiation of Si, similar to the
Si-XG-AB electrode.

The ToF-SIMS depth profiles for the Si-XG-AB electrode and Si@C-network electrodes
at points 3 and point 4 are shown in Figure 8. At point 3, the Si-XG-AB electrode is fully
lithiated, which can be confirmed by very high intensities of Li−, LiF2

−, and LiSi− signals
(Figure 8a). The maximum intensities of LiF2

− and CH2
− peaks obtained before the stable
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signals of Si3− and C3
− (corresponding to the Si electrode material and AB conductive

agent), agree with the high quantity of LiF and organic species observed by the XPS at
point 3. On the Si@C-network electrode, the C3

− signal is not as high (Figure 8b) as at
points 1 and 2 (Figure 7b,d), which can be explained by the high amount of organic species
well mixed with the carbon network. However, it should be noticed that the C3

− signal can
originate from the organic species, as well as from the carbon network. Therefore, when
the SEI layer is mixed with the carbon layer, it becomes enriched in organic species leading
to the disappearance of the C3

− peak. The high intensities of LiF2
− and CH2

− peaks are
observed before reaching the stable intensities of Si3− and Cu− signals, confirming that the
SEI layer is rich in LiF and organic species.
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After delithiation at point 4 (Figure 8c), the intensity of the LiSi− signal decreases, and
a flat LiSi− profile at point 3 (Figure 8a) changes to the profile with a peak at the beginning
of sputtering, demonstrating the dealloying of Li-Si. The high CH2

− and LiF2
− peaks

at the beginning of sputtering can be still observed, illustrating that the SEI layer is well
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present after delithiation. However, these two species show a faster decrease than in the
case of the Si-XG-AB electrode at point 3, indicating that the SEI becomes thinner after
delithiation. After the delithiation of the Si@C-network electrode (point 4, Figure 8d), the
C3
−, Li−, CH2

−, and LiO− profiles present their peaks at the same position, similar to the
Si@C-network electrode at point 2 (Figure 7d), indicating that the Li carbonate salts are
still well mixed with the carbon network after delithiation. The LiF2

− peak becomes wider
than that at point 2, indicating that the LiF salt is also formed in the inner part of the SEI
layer after a full cycle. Compared with point 3, most of the species at point 4 show lower
intensities, except for Si3−, demonstrating the dealloying of Li-Si and the decomposition
of Li-related and organic species in the SEI layer, which corroborates with the XPS results
shown in Figure 4. The lower sputtering time (76 s) of the Li and organic species-rich area
at point 4 than that at point 3 (102 s) indicates the thinning of the SEI layer induced by the
delithiation process.

4. Conclusions

In this work, the SEI formation processes on a binder-free Si@C-network electrode
and a binder-containing Si-XG-AB electrode have been investigated by surface analytical
techniques. The XPS results demonstrated that the SEI layer containing carbonate species
and C-O ether linkage species on the Si-XG-AB electrode decomposes from the fully
lithiated state to the fully delithiated state leading to the formation of −OCH3 and O-C=O
whereas, on the Si@C-network electrode, the SEI layer (with the main species being−OCH3
and carbonate) only shows slight changes during the delithiation. The ToF-SIMS results
also illustrate the growth and decomposition of the SEI on the Si-XG-AB electrode, while
on the Si@C-network electrode, the formation of a LiF-rich layer on a carbon shell and an
organic-rich layer on the Si surface can be observed, respectively. These two layers converge
together at the fully lithiated state and then do not undergo a severe decomposition during
delithiation, illustrating much better surface layer stability on the Si@C-network electrode
than on the Si-XG-AB electrode, which agrees with the electrochemical and morphology
characterization results.
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