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Abstract: The battery is an important part of pure electric vehicles and hybrid electric vehicles, and
its state and parameter estimation has always been a big problem. To determine the available energy
stored in a battery, it is necessary to know the current state-of-charge (SOC) and the capacity of the
battery. For the determination of the battery SOC and capacity, it is generally estimated according to
the Electromotive Force (EMF) of the battery, which is the open-circuit-voltage (OCV) of the battery
in a stable state. An off-line battery SOC and capacity estimation method for lithium-ion batteries is
proposed in this paper. The BP neural network with a high accuracy is trained in the case of sufficient
data with the new neural network intelligent algorithm, and the OCV can be accurately predicted
in a short time. The model training requires a large amount of data, so different experiments were
designed and carried out. Based on the experimental data, the feasibility of this method is verified.
The results show that the neural network model can accurately predict the OCV, and the error of
capacity estimation is controlled within 3%. The mentioned method was also carried out in a real
vehicle by using its cloud data, and the capacity estimation can be easily realized while limiting
inaccuracy to less than 5%.
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1. Introduction

With the continuous consumption of non-renewable energy, more and more energy
problems are emerging. Most countries in the world coincidentally focus their development
on the extraction and storage of renewable energy [1]. As an important energy storage
device, batteries can store electricity from one of the many renewable energy sources for
use at other times. Lithium-ion batteries are also used in various fields because of their
large capacity and long cycle life. The rapid development of the electric vehicle industry
has undoubtedly benefited from lithium-ion batteries as well [2]. However, one of the
many problems affecting the large-scale promotion of electric vehicles is the estimation of
battery capacity, because the battery capacity can visually reflect the battery health, and the
capacity estimation can also be used to study their cycle life [3-5]. As the power source
of electric vehicles, the state of the battery directly affects the operation of EVs. Due to
the different manufacturing conditions and use environments, the same type of battery
will experience different degrees of aging, and, thus, the battery capacity will gradually
decrease. The battery capacity is directly related to the electric vehicle range, and inaccurate
capacity estimation will incorrectly display the range available, greatly affecting the user
experience. Although, most electric vehicles are equipped with a battery management
system (BMS) that can properly manage the batteries in the vehicle [6]. However, its
accuracy for battery capacity estimation is still in the stage of needing improvement and
refinement. If the method of performing the complete charging and discharging process of
the entire vehicle battery to arrive at the capacity is used, it is obviously too cumbersome.
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In order to reduce the time needed for capacity estimation and ensure a certain level of
confidence, a new method needs to be proposed to achieve fast capacity estimation.

As understood from the internal chemicals of the battery [7], the capacity of the battery
decays continuously with the increasing number of cycles in use [8], so the capacity estima-
tion is often linked to the battery aging condition [9-11]. The use of empirical models such
as the Arrhenius aging model [12-14] can simulate the battery aging state more intuitively,
thus allowing for accurate capacity estimation under simple operating conditions, and
there are also many studies that optimize on the basis of this aging model to achieve a
wide use of empirical models [15,16]. However, the increasing complexity of the model
makes practical application more difficult. The hybrid neural network proposed in the
literature [17] combines a convolutional neural network and bidirectional long-short-term
memory network model to realize battery monitoring and prediction. Combining the
model with algorithms places a high demand on mathematical knowledge. Commonly
used data-driven approaches based on data analysis are also proposed when the focus
is placed on data analysis rather than the mechanism itself. Associating battery aging
with specific characteristics such as the differential voltage [18] and the incremental ca-
pacity curve [16,19-21], the peak position and amplitude of the curve are analyzed to
determine the current capacity [22]. Some studies have adopted both model- and data-
driven methods. In [23], the author developed a residual capacity estimation method based
on mechanism- and data-driven models which require both mathematical analysis and
optimization algorithms.

The state of charge of the battery is often used for capacity estimation. The ratio of the
change of charge and discharge to the change of the corresponding SOC is often used to
calculate the capacity, which is shown in Equation (1). In Equation (1), Cp indicates the
calculated capacity, t; and ¢, are the two moments before and after the battery is charged,
S50C; and SOC; are the SOC of the battery at these two moments, respectively. I represents
the current and # = 1 represents the coulomb efficiency. In this method, the cumulative
electricity between two different SOCs is also calculated. If SOC; and SOC, under different
times, t; and tp, can obtained, the electric quantity change can be calculated by integrating
the current between t; and #,. So, the capacity can be estimated by these conditions.
This paper adopts the closed-loop method, which is simple and easy to implement. In the
process of implementation, the BP neural network plays a key role. The rapid development
and maturity of neural networks has also contributed to the battery SOC and capacity
estimation. In [24], the dual-dropout-based neural network proposed by the authors
considers the influence of the battery use process by the operation of the whole vehicle
from many perspectives and finally achieves the multi-step SOC prediction of the battery.
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Another advantage of calculating the capacity based on Equation (1) is that it takes a
short time and is less affected by the error caused by the accumulation of current. The key
point lies in the acquisition of two SOCs. The SOC is often associated with the battery
capacity estimation, so an accurate SOC estimation has also become one of the research
focuses. SOC estimation methods are commonly divided into two categories. The first type
is based on battery voltage, current and internal resistance, such as the open-circuit voltage
method [25], ampere-hour integration method and estimation method based on battery
internal resistance. The other category is more novel and intelligent algorithms, mainly
including the Kalman filter method [26-29], neural network, support vector machine, etc.
The open-circuit voltage (OCV) method is mainly based on the relationship between the
SOC and OCV in the battery characteristics. This method can obtain the SOC faster, but
in practical applications, it is rare to obtain the open-circuit voltage directly, because the
voltage needs a period of relaxation after the charging and discharging stops to reach the
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open-circuit voltage. A method of predicting the OCV in a short time is proposed in [30],
which enhances the degree of applicability of the open-circuit voltage method.

The open-circuit voltage is an important parameter of lithium-ion batteries, and its
acquisition method usually requires the battery to be set aside for a long time after charging
and discharging [31]. It often takes several or tens of hours. As Figure 1a shows, a—c is the
discharge process, and the voltage drops. The current stops in ¢, and the voltage stops both
in a,b and c,d, which shows the ohmic characteristics of the battery. The relaxation process
d,e and voltage rise slowly and finally stabilize. The red part of the Figure can be used for
capacity estimation, and the specific flow is given in Figure 1b. The battery management
system applied in the vehicle can achieve a more accurate sampling of the battery terminal
voltage, so the collected terminal voltage can also be used for the capacity estimation of the
real vehicle.
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Figure 1. (a) The relaxation curve variation process of the cell; (b) Battery capacity estimation process.

Many methods for inferring the OCV through mathematical algorithms and models
have also been proposed [32,33], but the shortcoming of such methods is the need for timely
parameter calibration. In reference [34], the authors extracted reliable characteristics from
the relaxation voltage curves of 130 lithium-ion batteries under several cycle conditions to
build a dataset and construct a model to achieve the battery capacity estimation. In [35], the
voltage variation of the battery relaxation process was analyzed from an electrochemical
point of view by the internal chemical reaction mechanism, and a nonlinear structural model
of the battery relaxation process after charging was established, but the corresponding
analysis of the discharge case was missing. In [36], a model containing the particle size
distribution of active materials was used to physically explain the phenomenon of slow
relaxation, and the reason why the battery relaxation process in the experiment was shorter
than that in the model was analyzed. However, the capacity estimation work was not
further advanced. In [37], a new voltage relaxation model was proposed, which, based on
diffusion theory and the theory of electrochemical reaction, achieves fast OCV prediction
for lithium-ion batteries at a high SOH (state of health). This model greatly reduces the
time needed for calculation and is relatively simple, but it is not applicable to batteries with
a low SOH. It is still necessary to study the methods for predicting the OCV in a short time,
and that can be applied to cells in various situations.

At present, many studies mainly focus on battery SOC and capacity estimation.
Whether it is a mechanistic model or a data-driven method, the ultimate goal is to ob-
tain the SOC or to directly obtain the battery capacity. Many factors, such as the model
accuracy and battery usage, can lead to inaccurate battery capacity estimation results.
The accurate models are also difficult to apply in practice because of the complexity of
building, the large number of calculations and the high requirement for mathematical
knowledge. The relationship between the open-circuit voltage and battery SOC is well
established and not influenced by other factors, so it can be directly used for capacity
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estimation. However, the difficulty of obtaining the OCV makes many studies prohibitive,
so few studies have been conducted to analyze the open-circuit voltage of the battery
after charging and discharging. In this paper, the OCV is taken as the research object to
realize the accurate and fast prediction of stable OCV. By using the accurate relationship
between the OCV and SOC, the battery SOC can be accurately located, and the capacity
of the lithium-ion battery can be accurately estimated. The proposed method does not
require an understanding of the battery mechanism and model building, and there are
no complex mathematical formulas and algorithms required, which is a simple, fast and
accurate capacity estimation method, and the general flow chart of the method is given in
Figure 2.
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Figure 2. Schematic diagram of capacity estimation.

The rest of this article is organized as follows. In Section 2, the proposed method is
elaborated on in detail. In Section 3, the battery tests are introduced. The method validation
and discussions are outlined in Section 4. Conclusions are finally drawn in Section 5.

2. Capacity Estimation Method
2.1. Capacity Estimation Procedure

In the case of a large amount of data, the proposed neural network method requires
the information of the terminal voltage variation of the battery during a short period of
resting as the training data and as the input of the neural network and the open-circuit
voltage of the battery after a long period of resting as the output. The completed neural
network model is used to achieve fast OCV estimation for a single cell. The cell that uses
this method to estimate the capacity needs to meet certain conditions. First, the cell needs to
be charged and discharged in a stable state, and the open circuit voltage in this stable state
is denoted as OCV;. An OCV-SOC curve can be obtained through the calibration method
between the OCV and SOC of the cell, and the same type of battery can share a curve.
This correspondence is relatively linear, and the OCV under different SOCs can be obtained
by the interpolation method. However, the OCV-SOC curve of the LFP battery is relatively
flat at the middle SOC [38], as shown in the blue box in Figure 3b. The error is larger
using the open-circuit voltage capacity estimation method. In contrast, the NCM battery
OCV-SOC curve is better characterized with a large OCV difference between different
SOCs, as shown in Figure 3a, and is more suitable for capacity estimation by this method.
The SOC in this state can be obtained from the stable OCV; through the corresponding
relationship, denoted as SOC;. According to Equation (1), it needs to obtain the SOC,,
which can also be obtained by looking up the table. Therefore, the question is to find the
open-circuit voltage of the battery after charging and discharging, namely, OCV,. The BP
neural network method proposed later in this paper can quickly predict OCV,, so the
capacity estimation can be realized. This method requires that the SOC; or SOC; should
not be too large or too small in order to avoid the error caused by the variation in the OCV-
SOC curves after battery aging. The OCV-SOC curve of the aging battery will deviate
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from that of the fresh battery at low and high SOCs. In view of the inaccurate capacity
estimation caused by this problem, the following suggestions are made: (1) to recalibrate
the aging battery; (2) to use a relatively accurate medium SOC value for evaluation. Given
the complexity of the recalibration of aged batteries in real vehicles, the proposed method
(2) is used in the paper. The neural network prediction method proposed in this paper can
reduce the capacity estimation time to within half an hour with high accuracy.
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Figure 3. OCV-SOC curve of the battery. (a) NCM battery; (b) LFP battery.

2.2. BP Neural Network

A Back Propagation (BP) neural network is a kind of neural network widely used at
present. As a multi-layer feedforward neural network trained according to the error back
propagation algorithm, it systematically solves the problem of learning the connection
rights of network implicit elements. The BP neural network also refers to neural networks
that use backpropagation algorithms. The reverse transfer in the algorithm actually trans-
fers the calculated prediction error, and the weight and threshold between each layer are
adjusted in time according to the error size in the model. Therefore, a complete process
includes two parts: the forward propagation of the input data and the backward propa-
gation of the error. The neural network usually consists of an input layer, a hidden layer
and an output layer, as shown in Figure 4. The terminal voltage at short relaxation times
is used as the network input, and the stable open-circuit voltage is selected as the output
label. The neural network is trained by a large amount of data, which eventually makes
the network learn the characteristics of voltage variation and obtain the optimal weight
parameter matrix and BP neural network model, which can simply implement the stable

open-circuit voltage prediction.
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Figure 4. Structure diagram of the neural network model.
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The advantage of the BP neural network is that there is no need to determine the
mathematical relationship between the input and output; there is only a need to provide
data for training and learning, and the accuracy of the prediction results is positively related
to the amount of training data. At the same time, the model adopts the gradient descent
method in the process of parameter optimization to minimize the value of the objective
function, and the network convergence is controlled within a suitable range by an adaptive
learning rate. The internal signal propagation mode includes the forward propagation of
the signal and the backward propagation of the error. When the error is large, the network
will carry out back propagation, and the error is transmitted from the output layer to the
input layer through the hidden layer and then averaged to each neuron, and the neuron
adjusts the weights and thresholds according to the gradient descent algorithm. Through
repeated training and iterations until the output error is less than the set value, the training
is finished, and the successfully trained network can predict the value similar to the actual
value with the input of new samples. The whole process can be divided into two stages:
the network training and the prediction process. The specific steps are shown in Figure 5.
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Figure 5. Flowchart of rapid capacity estimation based on a BP neural network.
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Given a training set, x' = [v},v},...,v;] is a set of input vectors. y' = [¢v}] is an
output vector; i =1, 2, ..., n means the number. All inputs and outputs constitute the whole
dataset D = (X,Y), which is given in Equation (2).
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2.3. Selection and Processing of Datasets

The purpose of a BP neural network is to fit the voltage relaxation curve and finally
predict the stable open-circuit voltage based on the short-time information of terminal
voltage when the battery is resting. The dataset consists of the experimental data of Celll
to Cell3 mentioned in Section 3. After the experiment, the relaxation voltage information of
the three batteries under different operating conditions was collected.

It is not necessary to use all the voltage during the short-time relaxation period. Its
complexity needs to be minimized while satisfying the prediction accuracy of the neural
network. Therefore, a method is proposed for sampling the terminal voltage for a short
period of time when the battery is resting. The voltage values of 15 points are sampled as
the characteristic voltages, the sampling period is an unbalanced period and the sampling
method is to collect in an equal proportional series incremental way, with time as the
interval. Because when the circuit is in the initial open state, the voltage changes rapidly
and the sampling frequency is relatively high, with the increase in time, the voltage change
rate slows down and the sampling period increases. The battery voltage is extracted
according to the interval time t, where t = 3, 6, 9, 15, 21, 33, 45, 69, 93, 141, 189, 285, 381, 573
and 765, and the sampling time is controlled within 900 s. The extracted 15 voltages can not
only describe the voltage variation in the process of cell relaxation, but they can also occupy
less calculation space and are convenient for training. Figure 6 shows the voltage sampling
diagram. The voltage changes rapidly within 0-200 s, and the sampling frequency is high.
The voltage changes slowly within 300-900 s, so the sampling frequency is relatively low.
An accurate OCV requires a resting time of at least 2 h, and there may still be a difference
of tens of mV between the voltage at the sampling point and the actual OCV. Therefore, a
large amount of data training is required to achieve accurate prediction.
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Figure 6. Schematic diagram of 15 voltage samples.

2.4. The Process of the BP Neural Network Design and Construction

The structure of the BP neural network is mainly determined by the number of input
points, the number of hidden layer layers, the number of hidden layer neurons, the output
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nodes and the activation function. The dataset is fifteen feature values to predict one final
stable open-circuit voltage, and this neural network is a multi-input single-output network.
The single-layer hidden layer network node has strong nonlinear mapping ability and a fast
network convergence speed, so the single-hidden-layer structure is chosen in this paper.
Too many neurons in the hidden layer will affect the learning efficiency, even leading to
overfitting. Otherwise, the network training effect is not good enough. The number of
neurons in the general hidden layer is given by the empirical Equation (3). S is the number
of nodes in the hidden layer, M is the number of neurons in the input layer, N is the number
of neurons in the output layer and A is a constant between 1 and 10. According to the
empirical formula, the value range of the number of neurons in the hidden layer is 5-14.
Here, the number of neurons in the hidden layer is 10. In this paper, the tansing function is
used as the hidden layer activation function, and the purelin function is used as the output
layer activation function. The structure of the final open-circuit voltage prediction neural

network is shown in Figure 7.
s=vm+n+a 3)

\ 4

Figure 7. Structure diagram of an open-circuit voltage prediction neural network.

The following step is to train the BP neural network model nets and solve the optimal
neural network model for dataset D and the optimal weight parameter matrix set W+ for
each layer of the network. net: X — Y means the model constructed from the dataset D.
W: X — Y means the weight parameter matrix of each layer in neural network is given by
Equation (4). W/,1=2, ..., L is the weight parameter matrix from layer L-1 to layer L of
the BP neural network, where the weight parameter already contains the bias term of each
layer. The ith sample error can be expressed as Equation (5). The cumulative error on the
dataset is expressed as Equation (6). The BP neural network model is trained according to
dataset D such that the error of the model should reach the minimum value according to
the preset minimum value. For the sample data (x',), its objective function is shown as
Equation (7).

wz{w2,w3,...,wL} @)
Loss(net(x'),y', W) = %Hnet(x’) — ? (5)
R = f Loss(net(x'),y', W) (6)

i=1

argminR = Loss(net(x'),y', W) 7)
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The initial value of the weight parameter matrix W is randomly initialized in the range
of (0,1), and the parameter matrix is iteratively updated on the dataset D; t represents the
number of iterations. The weight parameter obtained from the previous sample data is
used as the initial weight parameter of the next sample data until the stopping condition
is reached. The optimal weight parameter matrix of each layer in the BP neural network
model constructed from the final dataset D is W!. At the meantime, the optimal weight
parameter matrix set W+ and the optimal network model net- are obtained.

3. Experimental

The experiments mainly include basic experiments and the specifical cycle experiments
in order to obtain more datasets. The basic experiments are the nominal capacity experiment
and the battery aging experiment. The nominal capacity experiment is the key to obtaining
an accurate battery capacity to verify the accuracy of the capacity estimation of this method.
The aging experiment is only for specific batteries to verify whether the proposed method is
also applicable to aging batteries. In this paper, the commonly used cylindrical lithium-ion
battery is taken as the research object. The five batteries produced by the same manufacturer
are named celll, cell2, cell3, cell4 and cell5, respectively, and the cathode material is NCM.
Celll~cell3 was used as the source of the model training set, and cell4 was used for method
verification. Cell5 was used to verify the application of the method to an aging battery.
The basic cell parameters are given in Table 1, and the experiment introduction is shown
in Table 2. The specific parameters of the experimental equipment used are shown in
Table 3. The computer is installed with corresponding program software to analyze and
process the data. The type of the battery test system is HYNN-CT05200F. The channel of
this experimental bench was used for charging and discharging experiments on batteries,
and the data recording frequency was 1 Hz.

Table 1. Basic performance parameters of the battery.

Items Specifications
Positive and negative electrode materials NCM/C
Normal capacity (Ah) 3.1
Normal voltage (V) 3.6
Charge/discharge cut-off voltage (V) 4.1/25
Nominal charging mode cc-cv
Operating temperature (°C) Charge —10~45/Discharge —20~60

Table 2. The experimental arrangement.

Number The Experimental Scheme Temperature
Cell1~Cell4 Charge/discharge-rest cycle 10 °C~25°C~45 °C
Cell5 Cycle of aging 25°C

Table 3. Experimental equipment.

Number Equipment Manufacture Indicators
1 PC Lenovo
2 Charge and discharge machine Neware 0-5V,0-1 mA
3 Thermostat Bell —40-150 °C

3.1. Basic Tests

The nominal capacity experiment is carried out first. First, the temperature is set at
25 °C, and the battery is connected to the device and left to stand for 3 h so that the battery
is in a completely stable state. Then, the battery was discharged until the voltage drops to
the cut-off voltage, and then the battery was left to rest for 1 h. The battery is fully charged
by constant current—constant voltage (CC—CV) and rests for an hour. After three cycles of
these two steps, the real capacity can be calculated by the average capacity of these cycles.
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To verify whether this method has the same effect on aging cells, the aging test was
conducted on cell5. The aging experiment consists of a nominal capacity experiment and a
small cycle of aging decay. The steps of the small cycle are as follows: adjust the battery
to a high SOC, discharge at a 1 C rate for 10 min, leave it for 3 h, discharge the battery to
0% SOC at a 1 C rate with a constant current (CC), charge the battery to 100% SOC at a
1/3 C rate with a constant current and constant voltage (CC-CV) and continue to adjust
the battery SOC to different values of a high SOC. The next step is to adjust different high
SOC levels and repeat the discharge—charge process 10 times. The battery is attenuated
100 times in total, with a nominal capacity test every 10 times.

3.2. Specific Experiments

In order to achieve the requirement of large datasets and at the same time ensure the
robustness of the network, it is required to charge and discharge the battery under different
charge/discharge ratios, temperatures and SOCs. The temperature is set at 10 °C, 25 °C and
45 °C in order to obtain the relaxation information of the battery at different temperatures.
The SOC includes low, medium and high ranges. All of the settings are designed to
simulate the different use situations of real vehicles. The detailed experimental steps are
given in Table 4. In the experiment, a three-hour rest period is given after each charging
and discharging process. The purpose is to obtain the voltage data used in Section 2.3 and 4.
The final stable open-circuit voltage can also be obtained by this experiment. Finally, as
many data as possible can be obtained for neural network training. These data contain the
relaxation information of the battery under different conditions.

Table 4. Detailed operation steps of the specific cycle.

Steps Specifications

Step 1 Set the temperature at 25 °C.

Step 2 Adjust the SOC to a high SOC.

Step 3 Discharge at 1 C for 10 min, and rest for 3 h.

Step 4 Charge at 1 C for 10 min, and rest for 3 h.

Step 5 Adjust the SOC to a medium SOC. Repeat the steps from 3 to 4.
Step 6 Adjust the SOC to a low SOC. Repeat the steps from 3 to 4.
Step 7 Repeat the steps from 2 to 6 with 0.5 C and 2 C current.

Step 8 Set the temperature at 10 °C and 45 °C. Repeat the steps from 2 to 6.

After specific experiments, a total of 352 groups of sample data were collected.
The samples were divided into 80% as the training set, 10% as the validation set and
the other 10% as the test set. The final training dataset is shown in Table 5.

Table 5. Sampling dataset.

Number t1 t2 e t14 t15 Target
1 3.9074 3.9152 e 3.9837 3.9849 3.9890
2 3.7555 3.7630 .. 3.8247 3.8268 3.8498
3 3.6092 3.6163 . 3.6796 3.6811 3.6889
4 3.4985 3.5057 . 3.5773 3.5788 3.5847
5 3.3575 3.3665 . 3.4542 3.4595 3.4747
6 3.8482 3.8560 . 3.9195 3.9205 3.9239
7 3.6982 3.7056 e 3.7670 3.7695 3.7921
8 3.5624 3.5692 . 3.6309 3.6318 3.6359
9 3.4421 3.4495 . 3.5345 3.5382 3.5481
10 3.2753 3.2899 e 3.3717 3.3742 3.3823

3.2592 3.2769 . 3.3640 3.3661 3.3739

w .
a1 .
NI
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4. Results and Discussion
4.1. Predicted Results of the OCV

According to the dataset obtained from the experiment, the neural network is trained.
Figure 8 shows the convergence graph of the BP neural network, the minimum output
error is 2.1192 x 1072 and the number of iterations is 70. The network convergence speed
is fast, and the convergence accuracy is very high. The regression analysis of the BP neural
network model on three different datasets and the whole data is shown in Figure 9. It can
be seen that the experimental data results are stable, and the relevant composite coefficients
between the predicted value and the real value on the three datasets are very close to 1,
which means that the model is trained well.

The trained model is now used to perform OCV prediction on the unlabeled data
to verify the applicability of the network model. The experimental data of Cell4 is used.
According to the open-circuit voltage prediction procedure, 15 characteristic voltage values
are extracted according to the initial curve of terminal voltage relaxation and input to the
trained network model, and the corresponding prediction results are obtained directly.
Then, the predicted OCV was compared with the real OCV obtained from long-time rest.
The comparison between the true and predicted values is given in Figure 10.
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Figure 8. Convergence of the BP neural network.
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In Section 3.2, the OCV of cells at different SOCs are known, so, here, the predicted
OCVs are compared with the actual values to see the accuracy. The prediction results cover
the SOC range from 15% to 95%. It can also be seen that the actual OCV under different
SOCs is close to the predicted value. The yellow curve on the graph represents the error
between the predicted results and the actual OCV. It can be seen that the overall error is
within 5 mV, which shows that the prediction is good. Based on the trained neural network
model, the final stable open-circuit voltage of the battery can be predicted quickly.

In order to verify the open-circuit voltage estimation results of the aging cell cell5, the
open-circuit voltage estimation results after 20, 30, 50, 70 and 100 aging cycles are selected,
which are shown in Table 6. It can be seen that the open-circuit voltage of the battery
after varying degrees of aging is still accurate, so the method proposed in this paper is not
affected by battery aging.

Table 6. Stable open-circuit voltage prediction results after aging cycles.

Cycles Initial SOC Real OCV/V Estimation/V Error/mV
20 81.212% 3.8227 3.8216 11
30 82.694% 3.8354 3.8345 0.9
50 83.576% 3.8452 3.8431 2.1
70 84.4% 3.8541 3.8529 12
100 83.5129 3.8406 3.835 2.4

4.2. SOC and Capacity Estimation

The open-circuit voltage of the battery can be obtained through the prediction model
of the BP neural network. According to the process in Figure 4, the SOC and the capacity of
the battery are estimated according to the capacity estimation method. The results of the
battery capacity estimation under several different SOCs are shown in Table 7.

Table 7. Capacity and SOC estimation results.

Name Result 1 Result 2 Result 3 Result 4 Result 5
Initial OCV1 (V) 3.9509 3.9034 3.6657 3.8028 3.8550
Initial SOCy (%) 86.21 77.58 52.36 60.89 67.32
Changed Ah 0.5 0.5 0.5 0.5 0.5
Predicted OCV; (V) 3.8053 3.7562 3.5886 3.6231 3.6949
Real OCV;, (V) 3.8061 3.7558 3.5876 3.6238 3.6938
OCV prediction error (mV) 0.7 04 1.0 0.7 1.1
Estimated SOC; (%) 69.84 60.71 35.93 44.5 50.9
Changed SOC (%) 16.37 16.87 16.43 16.39 16.42
Estimated capacity (Ah) 3.154 3.063 3.144 3.151 3.145
Real capacity (Ah) 3.1 3.1 3.1 3.1 3.1
Capacity estimation error (Ah) 0.054 0.037 0.044 0.051 0.045

Percentage of capacity

estimation error (%) 18 12 15 17 15

The results show that the error of OCV prediction based on the BP neural network is
generally within 3 mV. Accurate OCV prediction can ensure the accuracy of SOC estimation
such that the capacity calculation is more precise. The percentage of the capacity estimation
error also remained within 3%. A detailed analysis of the capacity estimation is made for the
first set of data results. First, the initial OCV; obtained by the equipment is 3.9509 V, and the
SOC; determined by looking up the OCV-SOC relationship table is 86.21%. The calculated
discharge capacity of the battery for 10 min is 0.5 Ah. Second, 15 characteristic voltages
extracted from the battery resting section were introduced into the trained BP neural network
model. The predicted OCV, was obtained, which is 3.8053 V. Compared with the real OCV
3.8061 V, the prediction error was 0.7 mV; then, through the look-up table, the SOC, was
determined to be 69.84%. Finally, the calculated capacity is 3.054 Ah; compared with the
actual capacity of 3.1 Ah, the difference is 0.046 Ah, and the estimated error is 1.4%.



Batteries 2022, 8, 289

14 0f 18

4.3. Validation of Methods in Cloud Data

In order to verify the applicability of this method to real vehicle data, the BMS cloud
data stored in the cloud systems currently set up by major manufacturers for their own
production passenger cars were selected for validation. Although the frequency of cloud
data recording is low, the relevant charging and resting data after processing can be
applied to evaluate the performance of automotive power batteries. The cloud capacity
estimation schematic is shown in Figure 11. The data from the real vehicle during operation
and charging conditions are recorded by the internal system and uploaded to the cloud
database. If the data stored in the cloud are pre-processed and trained by a neural network
model using the method in this paper, the stranded OCV and thus the capacity can be
accurately estimated.

Capacity SOC
estimation estimation
p o pl | <—
AAL 1 3600

C=——=—
AS0C ~ S0C, - SOC,

Figure 11. Capacity estimation process in the cloud data.

The data used in this section are from the cloud data of an operational vehicle. For the
single cell that has only experienced a short time (a few minutes or ten minutes) in the cloud
data, a BP neural network model is established to quickly predict the open-circuit voltage.
Figure 12 gives the length of time and the number of times the vehicle rested after charging
in the cloud record. It is not difficult to see that the rest time of the car after charging is
relatively long; the data are ideal and can be used for model training. This model is trained
from a total of 360 sets of resting voltage data for the first 20 times for all single cells.

Because the used battery pack in this car is composed of hundreds of single cells, it
takes time to study all of the hundreds of cells. Therefore, this paper selected four cells in
the battery pack for method verification, which are named cell5~cell8, respectively. Based
on the trained BP neural network model and the data of this vehicle with only a short
resting condition after charging, the 15 voltage values obtained from the sampling are used
as the input to let the model output the OCV so as to determine the SOC of the battery at
this moment by looking up the OCV-SOC table. Then, the capacity can be obtained by
the calculation of Equation (1). The relevant results are shown in Table 8. The selected
data have the actual OCV for comparison with the predicted values. It can be seen from
the results that the prediction of OCV is still accurate, the OCV prediction error of the
four selected individual cells is within 2 mV and the estimation results of the capacity are
relatively accurate. The estimated capacity is close to the real capacity and is less than the
nominal capacity, which shows the decay in the batteries used in the vehicle.
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Figure 12. Length and number of relaxation times after charging.

Table 8. Results of the capacity estimation in a real vehicle.

Name Cell 5 Cell 6 Cell 7 Cell 8
Initial OCV1 (V) 3.28 3.28 3.284 3.283
Initial SOC; (%) 29.0599 29.0599 30.1978 29.9133
Changed Ah 35.91 3591 3591 3591
Predicted OCV; (V) 3.3392 3.3338 3.3306 3.3318
Real OCV; (V) 3.341 3.335 3.332 3.333
OCV prediction error (mV) 1.8 1.2 1.4 1.2
Predicted SOC; (%) 98.7181 96.8473 93.3599 96.1544
Real SOC; (%) 99.3418 97.2631 96.2237 96.5702
Percentage of SOC estimation 0.6236 0.157 28638 0.4158
error (%)
Changed SOC (%) 69.6583 67.7885 63.1622 66.2412
Predicted capacity (Ah) 51.5516 52.9774 56.8537 54.211
Real capacity (Ah) 51.0942 52.6515 54.3877 53.872
Nominal capacity (Ah) 55 55 55 55
Capacity estimation error (Ah) 0.4574 0.3259 2.466 0.339
Percentage of 0.9 0.62 45 0.63

capacity estimation error (%)

5. Conclusions

In order to achieve a good use of batteries, it is necessary to estimate the state of
batteries and evaluate the state of batteries. In recent years, with the application of cloud
data, more and more EV data are uploaded to the cloud, through which the battery status
can be monitored. Therefore, these recorded data can be used to estimate the SOC and
capacity of the battery. Battery capacity and SOC estimation are the two core parts of
battery state estimation, and other battery state estimation algorithms are also based on
these two parts. The battery open-circuit voltage is closely related to SOC and can often
be used for SOC estimation, but an accurate and fast method for obtaining the OCV is
difficult to achieve. For the battery SOC and capacity estimation, this paper proposes a
fast prediction method of OCV. The proposed BP neural network model can realize the
prediction of OCV and then carries out the SOC estimation according to the OCV-SOC
table, and it finally calculates the capacity according to the charge accumulation method
between two points. Subject to time constraints, other cases with different SOC usage
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ranges are not considered. In addition, the present capacity estimation method is only
applicable to NCM batteries. Subsequent work will focus on overcoming these difficulties.
The BP neural network model is used to predict the OCV. The data at the initial stage
of voltage relaxation are taken as the input of the neural network, and the final stable
open-circuit voltage is taken as the output of the neural network for training. Based on the
experimental data, this method achieves a rapid estimation of battery capacity and controls
the estimation error to within 5%. The data of the real vehicle chosen in the cloud are used
to verify the proposed method, and the results are still good. However, the selected cloud
data are relatively ideal because of the long relaxation time after battery charging and thus
can be used for model training. All the research in this paper is based on a large number of
experiments on the research object and has a lot of training data. It is no longer applicable
to the case of fewer data, and the subsequent research will aim at overcoming this problem.
In addition, the quality of real vehicle cloud data may be uneven, which will also affect the
model training and results prediction. Specific problems need to be analyzed in detail.
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