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Abstract: Six groups of electrodes with different thickness are prepared in the current study by using
Li[Ni1/3Co1/3MN1/3]O2 as the active substance; the electrode thicknesses are 71.8, 65.4, 52.6, 39.3,
32.9, and 26.2 µm, respectively, with similar internal microstructures. The effect of electrode thickness
on the discharge rate, pulse discharge, internal resistance, and long-term cycle life of a pouch cell
are investigated. The results show that, with the decrease in the electrode thickness from 71.8 µm to
26.2 µm, the high-current-discharge performance of the cell gradually improves, the pulse-discharge
power density under 50% SOC increases from 1561 W/Kg to 2691 W/Kg, the Rdis decreases from
8.70 mΩ to 3.34 mΩ, and the internal resistance decreases from 3.36 mΩ to 1.21 mΩ. In the long-term
cycle-life test, the thinner the electrode thickness, the less the capacity fading of the cell; the internal
resistance of the cell is observed with the increase in the cycle index.

Keywords: electrode thickness; lithium-ion battery; impedance; power performance; cycle life

1. Introduction

In recent years, with the development of intelligent transportation and the promotion
of clean energy, the application of lithium-ion batteries in the field of new-energy vehicles
and electrochemical energy storage has become a research hotspot for many scientists and
engineers [1–4]. Lithium-ion batteries have excellent performance characteristics, such as
high-energy density and high-power density, but different application scenarios have differ-
ent requirements [5,6]. For example, a pure electric vehicle (BEV) requires the high-energy
density of a lithium-ion battery, and a plug-in hybrid electric vehicle (PHEV) requires
both high-energy and power densities. In addition, hybrid electric vehicles (HEVs) and
the 48V micro-hybrid system (MHEV) require a high-current charge–discharge perfor-
mance and the high-power density of lithium-ion batteries [7]. The demand for long-term
energy-storage technology in the power grid requires high-energy density and a long ser-
vice life for electrochemical energy-storage technology, such as lithium-ion batteries [8,9],
while short-term high-frequency energy-storage technology requires a high-current charge–
discharge performance and high-power density of a lithium-ion battery [10]. Therefore, it
is important to develop appropriate energy-power performances for different application
scenarios [11–14].

In order to further improve the performance of lithium-ion batteries, many researchers
have conducted a lot of research on material preparation and modification [15–22], formula
optimization [23,24], and electrode-structure design [25–28]. Zhang et al. [29] prepared
Li[Ni1/3Co1/3MN1/3]O2 and LiFePO4 electrodes with different thicknesses. The research

Batteries 2022, 8, 101. https://doi.org/10.3390/batteries8080101 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries8080101
https://doi.org/10.3390/batteries8080101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0003-3954-1739
https://orcid.org/0000-0001-8748-7840
https://orcid.org/0000-0001-6147-3248
https://doi.org/10.3390/batteries8080101
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries8080101?type=check_update&version=1


Batteries 2022, 8, 101 2 of 13

results show that the thicker the electrode, the higher its energy density, but its capacity
declines more rapidly and its power density is lower. Denis et al. [30] studied the electrode
parameters of an LiFePO4 battery, and the study showed that the influence of an increasing
electrode thickness on a lithium-ion battery was mainly reflected in increasing the electrode
impedance and decreasing the conduction rate of lithium ions in electrolytes. LiMn2O4 cells
with different electrode thicknesses were also assembled to optimize the active material
load, thus designing high-performance batteries [31]. Thunmana et al. [32] studied the
effect of the electrode thickness of an Li4Ti5O12/LiMn2O4 battery on discharge performance,
and the results show that when the discharge current density is increased, the discharge
capacity related to the polarization in the electrolyte and electrode.

The examples of literature stated above show that the electrode structure parameters,
such as electrode thickness and porosity, have important effects on the performance of a
lithium-ion battery. In the current paper, the Li[Ni1/3Co1/3Mn1/3]O2 material is used to
prepare a series of electrodes with the same porosity and different thicknesses. Meanwhile,
a pouch cell is prepared. Combined with the high-current discharge and long-term cycle
tests, the influence of electrode thickness on cell performance is analyzed. The research
focuses on the rate performance of cells with electrode designs of different thicknesses
and the cycle-life performance of cells with electrode designs of different thicknesses. It
provides reference for the electrode-structure design of a lithium-ion battery with different
performance requirements.

2. Materials and Methods
2.1. Materials

The cathode material used was SN1(Li[Ni1/3Co1/3Mn1/3]O2, Soudon New Energy
Technology Co., Ltd., Xiangtan, China); we used secondary particles, the average particle
size was 8 µm, and the BET specific surface area was 0.28 m2/g. The composite conductive
agents, Super P-Li and CNT, built a rich conductive network; the binder used was PVDF
(polyvinylidene fluoride). The negative active material used was artificial graphite (A8-5,
BTR New Material Group Co., Ltd., Shenzhen, China), the average particle size was 15 µm,
BET was 1.8 m2/g, the binder was SBR (styrene butadiene rubber), and the dispersant was
CMC (carboxymethyl cellulose). The particle morphology of the cathode and anode materi-
als are presented in Figure 1. The separator was PE coated with Al2O3; the thicknesses of
the PE and ceramic coating were 16 and 4 µm, respectively. The electrolyte used was LiPF6
(1.2 mol/L) in EC/DEC/EMC (volume ratio: 1:1:1).
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Figure 1. SEM images of cathode material SN1 and anode material A8-5. Scale bar = 10 µm.

2.2. Preparation of Electrode

The cathode slurry was composed of 93 wt% active material SN1, 3 wt% PVDF binder
dissolved in moderate NMP (N-methyl-2-pyrrolidone), and 4 wt% conductive agents (3%
Super P-Li and 1%CNT). The slurry was spread onto cleaned Al foil using the transfer-
coating technique to prepare the cathode plate followed by drying. Analogously, the well-
proportioned anode slurry was manufactured with 94.8 wt% graphite, 2 wt% conductive
agents, 1.2 wt% CMC, and 2 wt% SBR mixed in DI (deionized) water in the planetary mixer,
which was spread onto cleaned Cu foil with the transfer-coating technique, and then dried.
By adjusting the parameters of the coating machine, six groups of positive and negative
electrode pieces with different coating weights were prepared. The roll squeezer was used
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to pressurize the cathode to increase the compaction density. Table 1 presents the true
density of the material in the cathode.

Table 1. True density of substance in the positive electrode.

Components True Density (kg/m3)

Al 2700
Li[Ni1/3Co1/3Mn1/3]O2 4651

Carbon black 1800
CNT 2100

PVDF 1710

The electrode consisted of a current collector and a uniformly mixed active material,
conductive agent, and binder. The true density and weight ratio of each material were
known, and the actual thickness of the electrode was measured. The porosity of the
positive electrode was calculated according to Formula (1), as presented in Table 2; the
porosity and compaction density of the six groups with different thicknesses were almost
the same [33–35].

ε = 1− Mareal
L
×

(
ωAM
ρAM

+
ωB
ρB

+
ωCA
ρCA

)
(1)

ε is the porosity; ω is the amount of the material coated; ρ is the true density of the
material, where AM represents the active material; B represents the binders (PVDF, SBR,
and CMC); and CA represents the conductive agent.

Table 2. Physical parameters of the positive electrode.

Electrode Thickness
(µm)

Coated Weight
(mg/cm2)

Compaction Density
(g/cm3) Porosity

71.8 21.9 3.05 27.1%
65.4 20.0 3.05 27.1%
52.6 16.0 3.04 27.3%
39.3 11.9 3.04 27.4%
32.9 10.0 3.05 27.1%
26.2 8.0 3.04 27.4%

2.3. Preparation of Cell

The electrodes were die-cut into small electrode pieces; the effective areas were
77 × 176 cm2 and 79 × 179 cm2 for the cathode and anode plates, respectively. The
capacity-balancing factor of the cathode and anode was 1:1.18. The anode piece, separa-
tor, and cathode piece were assembled into an electrode group by a laminating machine.
Aluminum and nickel sheets were ultrasonically soldered to the negative and positive
poles and controlled at 60 ◦C for 48 h in a vacuum. The electrolyte of the laminated cells
sealed under vacuum within a dry chamber was 40 g (dew point temperature ≤ −50 ◦C).
The pouch cells were sustained overnight at ambient temperature before formation and
testing. The capacity of the pouch cell was about 8.5–9.0 Ah; the length and width of the
pouch cell were 190 mm and 88 mm, respectively. Table 3 summarizes the size and relevant
electrochemical performance data of the pouch cell. A physical view of the pouch cell is
presented in Figure 2.
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Table 3. Size and basic performance information of pouch cell.

Electrode thickness (µm) 71.8 65.4 52.6 39.3 32.9 26.2

Cell thickness (mm) 5.5 5.6 5.8 6.2 6.5 7.1

Positive\negative electrode layers 11\12 12\13 15\14 20\21 24\25 30\31

capacity@1C, 25 ◦C (Ah) 8.7 8.8 8.8 8.9 9.0 9.0

Internal resistance (mΩ) 3.3 2.7 2.1 1.6 1.4 1.2

Weight of the cell (g) 181.9 183.3 192.9 205.7 215.4 231.1

Energy density (Wh/kg) 174.6 175.2 166.5 157.9 152.5 142.1

Energy density (Wh/L) 345.4 343 331.2 313.4 302.3 276.7

Batteries 2022, 8, x FOR PEER REVIEW 4 of 14 
 

 

Table 3. Size and basic performance information of pouch cell. 

Electrode thickness 

(μm) 
71.8 65.4 52.6 39.3 32.9 26.2 

Cell thickness (mm) 5.5 5.6 5.8 6.2 6.5 7.1 

Positive\negative 

electrode layers 
11\12 12\13 15\14 20\21 24\25 30\31 

capacity@1C, 

25 °C(Ah) 
8.7 8.8 8.8 8.9 9.0 9.0 

Internal resistance 

(mΩ) 
3.3 2.7 2.1 1.6 1.4 1.2 

Weight of the cell (g) 181.9 183.3 192.9 205.7 215.4 231.1 

Energy density 

(Wh/kg) 
174.6 175.2 166.5 157.9 152.5 142.1 

Energy density 

(Wh/L) 
345.4 343 331.2 313.4 302.3 276.7 

 

Figure 2. Physical view of the pouch cell. 

2.4. Characterization 

The microscopic features of the cathode material were investigated using scanning 

electron microscopy (SEM, 250 FEG, FEI). The electrochemical characteristics of the dis-

charge rate, pulse discharge, internal resistance, and long-term cycle-life measurements 

of the cells were obtained by a BTS05200C8-HP (Shenzhen Sinexcel Electric Co.,Ltd. Shen-

zhen, China) cell test instrument under ambient temperature. Three charge–discharge cy-

cles were performed under the current of 1 C as the initial activation. For the rate dis-

charge/charge capability experiment, the cell was charged at a constant current of 1 C and 

then discharged under various currents varying from 1 C, 3 C, 5 C,7 C, 10 C, 15 C, and 20 

C. In the long-term cycle-life test, for electrode thicknesses of 71.8, 65.4, and 52.6 μm, a 1 

C constant current was used for the charge–discharge cycle in the 2.8–4.2 V voltage win-

dow. For the electrode thicknesses of 39.3, 32.9, and 26.2 μm, a 3 C constant current was 

used for the charge–discharge cycle in the 2.8–4.1 V voltage window, and tested the inter-

nal resistance of the cell every 500 cycles. 

The power performance experiment was employed with the HPPC technique within 

a 2.8–4.2  V range for the pouch cell. The characterization tis presentation in Figure 3, and 

the calculation formulas for he discharge pulse-power capability and internal resistance 

of the battery are as follows: 

Figure 2. Physical view of the pouch cell.

2.4. Characterization

The microscopic features of the cathode material were investigated using scanning
electron microscopy (SEM, 250 FEG, FEI). The electrochemical characteristics of the dis-
charge rate, pulse discharge, internal resistance, and long-term cycle-life measurements
of the cells were obtained by a BTS05200C8-HP (Shenzhen Sinexcel Electric Co., Ltd.,
Shenzhen, China) cell test instrument under ambient temperature. Three charge–discharge
cycles were performed under the current of 1 C as the initial activation. For the rate dis-
charge/charge capability experiment, the cell was charged at a constant current of 1 C and
then discharged under various currents varying from 1 C, 3 C, 5 C, 7 C, 10 C, 15 C, and
20 C. In the long-term cycle-life test, for electrode thicknesses of 71.8, 65.4, and 52.6 µm,
a 1 C constant current was used for the charge–discharge cycle in the 2.8–4.2 V voltage
window. For the electrode thicknesses of 39.3, 32.9, and 26.2 µm, a 3 C constant current
was used for the charge–discharge cycle in the 2.8–4.1 V voltage window, and tested the
internal resistance of the cell every 500 cycles.

The power performance experiment was employed with the HPPC technique within a
2.8–4.2 V range for the pouch cell. The characterization tis presentation in Figure 3, and the
calculation formulas for he discharge pulse-power capability and internal resistance of the
battery are as follows:

Rdis =
∆Vdischarge

∆Idischarge
=

OCV −Vt1
−(It1 − It0)

=
OCV −Vt1

It0 − It1
(2)

DPPC = VMIN∆(OCV −VMIN)÷ Rdis (3)
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The internal resistance of the battery during discharge is expressed by Rdis. The time
at the beginning of discharge is represented by t0, and t1 is represented by the time after
10 s of discharge. The discharge pulse-power capability is abbreviated as DPPC. VMIN
in the formula represents the upper and lower limits of the cell voltage, and OCV is the
open-circuit voltage corresponding to SOC before discharge.
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3. Experimental Results and Discussion
3.1. Energy Density

As presented in Table 3, the capacity of the cell is similar, and the thickness of the cell
decreases with the increase in the electrode thickness. As presented in Figure 4, the energy
density of the cell increases with the increase in electrode thickness, but the increased ampli-
tude gradually decreases. The cells with different thicknesses have the same capacity and
contain the same amount of active substance. The same active substance is evenly coated
on the current collector. The smaller the unit-coating amount, the larger the corresponding
coating area. The smaller the unit-coating amount, the smaller the electrode’s thickness.
The thinner the electrode, the more electrode layers there are in the cell, as presented in
Table 3, and the more current-collector layers are needed. As a result, the volume (thickness)
and weight of the cell increase, so both the volume and mass energy densities decrease.
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3.2. Discharge Performance (Continuous)

Figure 5 presents the capacities of the cells with different electrode thicknesses obtained
from various discharge rates between 0.5 C and 30 C. The cell capacities at 0.5–5 C (except
71.8 µm) obeyed the Peukert law Q = ik × t, where Q is the capacity, k is the Peukert
coefficient, and t is the nominal discharge time (in hours) for a specific C rate. The k values
range from 1.020 to 1.005 for cells with different electrode thicknesses. Thinner electrodes
have a K value close to 1, meaning the accessible capacity of the electrode is independent
to the discharge rate [36,37].
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Figure 6 presents the discharge curves of the cells prepared by electrodes with thick-
nesses of 71.8 µm and 26.2 µm at different discharge rates. Some researchers proposed the
concept of the characteristic diffusion length of lithium ions [29]. When the discharge ratio
is small, the electrode active layer thickness is less than the characteristic diffusion length
of lithium ions, and the discharge capacity of the cell is consistent with the structure of
the electrode. With the increase in the discharge rate, the characteristic diffusion length of
the lithium ion increases. When the characteristic diffusion length is equal to the electrode
thickness, the electrode can release almost all of the structure design. The discharge rate
increases further, the characteristic diffusion length is less than the electrode’s thickness,
and the discharge capacity of the cell is less than the design capacity. In Figure 6a, the
thickness of the positive electrode of the cell is 26.2 µm and the discharge rate reaches
20 C, but almost all of the designed capacity can be released. In Figure 6b, the electrode
thickness is 71.8 µm. When the discharge rate exceeds 3 C, part of the lithium ions cannot
be completely released from the active particles, and the cell cannot release the designed
capacity. It is worth mentioning that when the discharge rate is greater than a certain value,
the discharge curve drops sharply, as presented in Figure 6b at 7 C discharge, which is
caused by internal polarization of the cell. When there is a high concentration difference of
lithium ions in the active substance particles during the discharge process, the solid-state
diffusion of Li+ is the rate-controlling factor; the electrode potential instantly decreases to
the cut-off voltage. Similar conclusions exist within the literature [38,39].

The transport of lithium ions in the electrode is related to the position of active sub-
stances in the electrode, electrode potential, diffusion length, and ion-diffusion coefficient,
etc. The kinetics of any active point in the electrode is dependent on time and space [40–42].

Figure 7 presents the discharge curves of cells prepared with electrodes of different
thicknesses discharged at a 5 C rate. The electrode thickness had a considerable influence
on the discharge capacity of the cell. As the electrode thickness increased from 26.2 to
71.8 µm, the cell polarization (IR drop) increased obviously, and the initial discharge voltage
changed from 4033 to 3880 mV. The platform of the discharge curve also decreased, which
resulted from the increase in the polarization of the cell with the increase in the electrode’s
thickness. The discharge curves with electrode thicknesses of 65.4 and 71.8 µm presented
a significant capacity loss, which was mainly caused by the diffusion of lithium ions in
the electrode. At the same discharge rate, the electrode thickness increased and exceeded
the characteristic diffusion length of the lithium ions, resulting in the capacity not being
fully released. In the discharge process, the greater the electrode’s thickness, the greater the
lithium-ion’s transmission resistance, leading to a decrease in the discharge capacity of the
cell [29].
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3.3. Discharge Performance (Pulse)

As we all know, the performance of lithium-ion batteries depends on the transport
of electrons and ions through the electrodes, which is composed of a porous solid phase
and an electrolyte that fills the pores [43]. The transport of electrons and ions is closely
related to the electrode’s microstructure. ZHENG H. et al. [36] divided the transport of
electrons and ions into several parts, and the transmission of each part had corresponding
resistance values: (1) Re: electronic resistance of the electrode; (2) Rs: transport of Li ions
in the electrolyte to the active material’s particle surface; (3) RSEI: diffusion of Li ions
through the solid electrolyte interphase (SEI) film; (4) Rct: Li-ion charge transfers at the
electrode/electrolyte interface; and (5) Rdiff: Li ion diffused within the bulk electrode.

From the perspective of polarization, scholars [44–46] decomposed the charging and
discharging processes of lithium-ion batteries into inadequate contact between the materials
in the electrodes, mass transport of species in the solid phase, and, in the electrolyte, the
activation of electrochemical reactions.

According to the continuous-rate-discharge performance of the cell, 5 C was used
for a 10 S pulse discharge of the cell with electrode thicknesses of 71.8, 65.4, and 52.6 µm,
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respectively, and 15 C was used for a 10 S pulse discharge of the cell with electrode
thicknesses of 39.3, 32.9, and 26.2 µm, respectively, and to test the power and DC impedance
of the cell. The voltage and current changes with time during the pulse-discharge test at
50% SOC are presented in Figure 7. The initial discharge voltage (OCV), instantaneous
discharge voltage (Vt0), and discharge terminal voltage (Vt1) are presented in Table 4.

Table 4. The voltage change of the cell during pulse discharge.

Electrode
Thickness (µm) OCV Vt0 OCV-Vt0 Vt1 Vt0–Vt1 OCV-Vt1

71.8 3.682 3.392 0.290 3.314 0.078 0.368
65.4 3.683 3.426 0.257 3.354 0.072 0.329
52.6 3.687 3.47 0.217 3.407 0.064 0.281
39.3 3.673 3.217 0.456 3.061 0.156 0.612
32.9 3.680 3.259 0.421 3.115 0.144 0.565
26.2 3.678 3.279 0.399 3.148 0.131 0.53

During the initial discharge, the capacity of the cell was almost the same, and the
content of active substances was the same, so the electrochemical reaction’s overpotential
can be considered unchanged at the same rate of discharge. The voltage sharply decreased
due to the contact impedance and ohmic drop of lithium ions in the electrolyte. When the
electrode formula, porosity, and microstructure were consistent, the electrode’s thickness
increased. This was equivalent to series resistance, resulting in the contact impedance and
transmission distance of lithium ions in the increased electrolyte. The ohmic drop of lithium
ions in the electrolyte also increased [42]. As the electrode thickness in the cell increased,
Vt0 decreased more dramatically. The same conclusion is presented in Figure 8a,b.
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As presented in Figure 8, in the discharge process, on the surface of the active sub-
stance, Li ions in the electrolyte on the surface of positive active substance, close to the
current collector, are more likely to be consumed without effective replenishment. Li ions in
the electrolyte on the surface of the active substance, close to the membrane, can be rapidly
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supplied by the diffusion of Li ions from the counter electrode. This difference led to a
concentration gradient of Li ions in the electrode, and with the increase in the electrode’s
thickness, the concentration gradient of the Li ions in the electrode also increased, resulting
in a increased polarization. The final expression was the inhomogeneity of SOC distribution
in the direction of the thickness inside the electrode. It can be observed from Table 1 that
under the same discharge rate, Vt0–Vt1 increase with the increase in thickness [47].

It is worth mentioning that the reason why the electrode thickness of the cell presented
in Figure 8b is small and the voltage change is greater than that presented in Figure 8a is
that the pulse discharge rate increased three times.

The power density and DC internal resistance Rdis calculated according to Formulas (2)
and (3) are presented in Table 5. The power density of the cell increased from 1813.2 Wh/Kg
to 3204.3 Wh/Kg; DC internal resistance Rdis decreased from 7.50 mΩ to 3.34 mΩ as the
thickness of the electrode decreased.

Table 5. The power density and DC internal resistance Rdis of the cell.

Electrode Thickness (µm) Power Density (W/Kg) Rdis (mΩ)

71.8 1813.2 7.50
65.4 2009.7 6.72
52.6 2455.8 5.26
39.3 2938.0 4.04
32.9 3200.6 3.58
26.2 3204.3 3.34

3.4. Long-Term Cycle Performance

The long-term cycling behavior of the full pouch cell with different electrode thick-
nesses was tested under different conditions. The 1 C charge and 1C discharge rates for the
cell with electrode thicknesses of 71.8, 65.4, and 52.6 µm, with voltage windows of 2.8 V
to 4.2 V, and 3 C charge and 3 C discharge rates for the cell with electrode thicknesses of
39.3, 32.9, and 26.2 µm, with voltage windows of 2.8 to 4.1 V were presented. Figure 9
presents the capacity fading of the cell during the long-term cycle. Following the long-term
cycles, the capacity retention values of the cell, with electrode thicknesses of 71.8, 65.4, and
52.6 µm, were 85, 90, and 92%, respectively. The capacity retention values of the cell, with
electrode thicknesses of 39.3, 32.9, and 26.2 µm, were 92, 93, and 94%, respectively. The
cycle performance of the cell decreased with the increase in the electrode’s thickness.
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The internal resistance of the cell was measured every 500 cycles. As shown in
Figure 10, the internal resistance of the cell is a function of the cycle number. The in-
ternal resistance of the cell with difference electrode thicknesses displayed a similar trend,
increasing with the number of cycles.
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For the active substance in the electrode undergoing a volume expansion and contrac-
tion during the cycle, the volume change brought about a connection between the active
layer and the current collector, and the particles in between the active layer became worse,
and the contact impedance increased during the cycle [48]. After repeated charging and
discharging, an inactive layer appeared on the surface of the active substance particles,
resulting in a loss of capacity and an increase in the diffusion polarization of Li ion in the
solid phase [49]. The CEI layer was generated on the surface of the active substance, which
blocked the pores in the electrode plate, hindered the transport of Li ions, and increased
the transport impedance of Li ions [29].

The SOC in the thickness direction of the electrode was not uniform, which was due
to the diffusion polarization of the Li ion in the charging and discharging processes, and
the non-uniformity expanded with the increase in the electrode’s thickness. Therefore, the
increase in the electrode’s thickness led to a further deterioration of the above-mentioned
situation, resulting in impedance increasing and the deterioration of the cycle performance
of the cell [50].

4. Conclusions

The pouch cells with electrode thicknesses of 71.8, 65.4, 52.6, 39.3, 32.9, and 26.2 µm,
with the same microstructure, were prepared and investigated in the current study. The
electrode thickness had a significant effect on energy density, rate performance (continuous
and pulse), and long-term cycle performance of the cell. The energy density of the cell
was improved by increasing the electrode’s thickness. With the increase in the electrode’s
thickness, the decrease in the rate capacity and voltage mainly occurred due to the diffusion
of the lithium ions inside the electrode. The long-term cycling performance of the cell
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presented a higher capacity-fading rate for thicker electrodes. High-capacity fading is
ascribed to the mechanical issue of the electrode and severe polarization at larger thickness,
considering that all of the above factors, the rate performance (continuous and pulse), and
the cycle-life performance of the cell had a strong correlation with the thickness of the
electrode. The electrode structure design of the lithium-ion battery was critical for the
different performance requirements, such as for batteries used for HEV, PHEV and EV.
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