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Abstract: To ensure a reliable and safe operation of battery systems in various applications, the
system’s internal states must be observed with high accuracy. Hereby, the Kalman filter is a frequently
used and well-known tool to estimate the states and model parameters of a lithium-ion cell. A
strong requirement is the selection of a suitable model and a reasonable initialization, otherwise the
algorithm’s estimation might be insufficient. Especially the process noise parametrization poses a
difficult task, since it is an abstract parameter and often optimized by an arbitrary trial-and-error
principle. In this work, a traceable procedure based on the genetic algorithm is introduced to
determine the process noise offline considering the estimation error and filter consistency. Hereby,
the parameters found are independent of the researcher’s experience. Results are validated with
a simulative and experimental study, using an NCA /graphite lithium-ion cell. After the transient
phase, the estimation error of the state-of-charge is lower than 0.6% and for internal resistance smaller
than 4 mQ) while the corresponding estimated covariances fit the error well.

Keywords: battery model; Kalman filter; joint estimation; Kalman filter tuning; genetic algorithm;
multi-objective optimization

1. Introduction

In today’s management systems of lithium-ion batteries, state estimation is a crucial
part. In the context of battery electric vehicles, the precise estimation of the state-of-charge
(SOC) enables reliable range prediction, whereas estimation of the battery’s resistance is
essential to determine the currently available power. Besides other approaches, the Kalman
filter (KF) is widely used as a model based state and parameter estimator for this task [1].
It comprises on the one hand a prediction step based on the battery current and a battery
model, and on the other hand a correction step, which uses the terminal voltage of the
battery. It is worth noting that KFs are optimal estimators with respect to the squared
estimation error under certain assumptions. These involve that the process noise and
measurement noise are Gaussian distributed, zero mean and not correlated with each
other. Furthermore, the covariances of the process and measurement noise have to be
known. While the voltage measurement noise is easily determinable, selecting an optimal
process noise covariance matrix is a challenging task and still an unsolved problem. This is
commonly known as Kalman filter tuning.

Former approaches of filter tuning such as bayesian estimation [2,3], maximum like-
lihood estimation [4], correlation methods [5,6] or covariance matching [7,8] reach back
to the 1970s and are intensively discussed in the literature [2,9,10]. However, besides the
heavy computational costs of the two former approaches, a common drawback of the
correlation method is the limitation to stable systems, unlike random-walk models used
in this work. Furthermore, according to [11] the covariance matching leads to systematic
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errors. Hence, nowadays filter tuning is still too often realized by trial-and-error of an
experienced engineer or researcher.

KF tuning can be seen as an optimization problem, whereas a process noise covariance
is sought under certain optimization objectives. Most commonly, only the estimation
error of a few states [3,12,13] or the measurement error [14,15] is minimized. Within
this work, we present a multi-objective optimization approach that (a) minimizes the
estimation errors of all estimated states and parameters and (b) maximizes the consistency
of the estimation results. The latter is a new approach to the author’s best knowledge.
Considering magnitude and consistency of the estimation error leads to reasonable results
and avoids overfitting to training data.

The large optimization space of the process noise covariance is challenging and re-
quires an efficient search algorithm. Furthermore, the relation between the process noise
covariance and the estimation result is highly non-linear and hard to predict. Therefore, we
chose the genetic algorithm for this optimization problem. Genetic algorithms (GAs) are
heuristic methods and are based on the work of John Holland and his colleagues. Since they
are gradient free and start with a population of several initial points, they efficiently search
solutions in large spaces despite little prior knowledge and are suitable for a wide range of
problems [16,17]. By using an optimization approach for tuning the Kalman filter, the re-
sults are traceable, objective and independent of the researcher’s experience. In ref. [13],
the authors use a GA for filter tuning within a battery management system. However,
the parameters of the optimization algorithm are not selected consciously and only the
mean absolute errors of SOC and ohmic resistance are taken as optimization objectives.

In this paper, the process noise covariance of an extended Kalman filter (EKF) is
optimized, in order to estimate the states and parameters of a lithium-ion cell’s equivalent
circuit model (ECM). In contrast to the existing literature, we use three optimization
objectives in combination with a GA to find the best set of solutions with respect to both,
estimation accuracy and consistency. The remainder of this contribution is organized as
follows: Section 2 explains the used model and the joint extended Kalman filter. In Section 3
the optimization methodology including the GA, objective selection and initialization
process is described. At the end of this work, simulative and experimental results are
demonstrated, compared and discussed.

2. State and Parameter Estimation
2.1. Battery Model

The ECM, shown in Figure 1, is used to model the lithium-ion battery’s electrical
behavior. It consists of an SOC-dependent voltage source vocy, Ro to represent the ohmic
resistant and two RC elements (R1, C; and Ry, Gy, respectively). Some authors in the
literature [18-20] link the first RC element to the charge transfer resistance and the double
layer capacitance and the second RC element to the diffusion resistance and capacitance.
However, more generally, the voltage response of lithium-ion cells can be described by
an arbitrary number of RC elements. Adding more RC elements can improve the model
accuracy but also leads to higher computational costs. Refs. [21,22] found two RC elements
to be a reasonable trade-off. All parameters depend on SOC, temperature and the aging state
of the battery. In our case only the SOC dependence is considered since the temperature
is assumed to be constant during all experiments, and aging is neglected for simplicity.
In addition, the data used is recorded over a short period of time. Therefore, it is assumed
that aging has no influence on the operation of the battery. The load current I and the
terminal voltage vt are measured during operation. The following is based on [23,24].
Using the mesh rule and the ECM in Figure 1 leads to the measurable terminal voltage vt
of the battery:

vt = vocy (SOC) + v1 + v3 + Rol. €))
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The differential equations of the two RC elements are given as

0; I .
- — i={1,2 2
rete =12 @

0; =
with i = 1,2 and the SOC is obtained by integrating the current over time:

nl
= — = dt
SOC = SOC, + / Sa0c 3)
Hereby, SOCy is the initial state-of-charge and Cc,y the available capacity of the cell.
The coulombic efficiency 7 of lithium-ion batteries is high and therefore set to y = 1.
According to (3) a positive current I is defined to charge the lithium-ion cell.
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Figure 1. ECM of the battery with two RC elements.

These equations form a discrete SISO (single input single output) state space model
as follows:
X1 = Ax + Buy 4

Yk = Cxx + Duy 5)

where A is the system matrix, B the input matrix, C the output matrix, D the feed through
value, u the input, y the output and x € RNx the state vector. By defining the state vector

tox = [SOC v, vz]T the state space model results with 7; = R;C;, At as step size,
up = I(k- At) and Y = vr(k - Atf) in

At
1 0 0 3600Ccan
At —At
X1 = 0 em ON X+ R4 (1 —e ‘1 ) Uy (6)
—At —At
0 0 e ™ Rz(l —e 2 )
N—
A B
v = [©280% 1 1] e+ Ro e 7)
e D

Please note that the first element of the output matrix C has to be updated in every time
step based on the current SOC. For simplicity, the two time constants of the RC elements
are kept constant. This leads in total to three states (SOC, v1, v;) and three parameters (R,
Ry, Ry), respectively.
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2.2. Kalman Filter

The KF [25] is based on the state space model, whereby a zero mean and Gaus-
sian distributed process noise g; ~ N(0, Q) with Q € RN+*Nr and measurement noise
ry ~ N(0,R) is added. The states and the parameters of the model are estimated simultane-

ously by augmenting the parameter vector § = [Ry R; Ry] " to the state vector. Please
note, for a simple notation all states and parameters are combined in the state vector x
with N, = 6. Since there is no prior knowledge about the parameters’ change over time,
a random-walk model is used. Therefore the equation of the state-space model for the joint
estimation can be formulated as follows [24]:

- LAt .
SOC.1 SOCk + 3600CC 1
V1k+1 Uy €T1 + I - Ry (1 —eﬁ)
2| = oy e® T Rog(1— ) | +g ®)
0,k+1 1
Rijs1
Ro k41 1
\W—/ L J
e f o)
Yk = vocv (SOCy) + v1  + 01k + Roxli +7% )
(g )

Since the system has a non-linear behavior, the discrete state-space system is shown
in (10) and (11) with the non-linear system equation f and output equation .

X1 = f (X, k) + qx (10)

Y = h(xp, ug) + 1y (11)

To solve the non-linear state-space system, an EKF is applied, which calculates the system
matrix A and the output matrix € by linearizing the system at each time step with the
Jacobean matrix. Algorithm 1 shows the whole procedure of the EKFE.

Algorithm 1 Extended Kalman filter

Initialization:
Zo0 = E{x0}
Pyjo = E{(%0)0 — x0) (%00 — x0)"}
Prediction:
Rrpeor = fErop-1 k1)
A= o)

ox

X=X 1|k—1/4=Uk—1
R _ in T

Py = AP 14" +Q
Update:

A oh(xu)
C= ox

X=Xp |1 U=k

Sk = CPy_1CT+R

K = pk‘kfléTSkil

ek = Yk — h(Xxk_1, k)

Rk = Ryjp—1 + Keg

By = (I - KC)Py_1(I — KC)T + KRK
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According to Yang et al. [26] the estimation is stabilized by neglecting all covariances
between states, which are not linked in reality. Therefore, all irrelevant covariances are set
to zero after each iteration of the filter algorithm as shown by Schneider et al. [24]:

100000
010010

A 00100 1| 4

P10 0 0 1 0 of P 12)
010010
001001

The linked states are only the polarization voltages with their corresponding resistances of
the RC elements.

3. Optimization Methodology

The proposed methodology to optimize the process noise is shown in Figure 2. For fil-
ter tuning, the input load current [ is predefined by the WLTP (Worldwide Harmonized
Light-Duty Vehicles Test Procedure) driving profile shown in Figure 3a. Subsequently,
the validation is performed using the UDDS (Urban Dynamometer Driving Schedule)
profile in Figure 3b. Both provide a realistic current profile with discharge, charge and
rest phases. The terminal voltage vt is obtained either by simulation or by measurements
in case of experiments. Afterwards, a sensor model is used to add a known normal dis-
tributed noise before the data is used to estimate states and parameters with the EKF. Those
estimation outputs are compared with the reference states and parameters to calculate the
estimation error. Please note that in case of experiments, the reference states and parameters
are also obtained from simulations, since the states and parameters are not accessible in
reality. To optimize the process noise Q, the estimation error and two consistency values
defined in Section 3.2 are evaluated. Therefore a multi-objective optimization method is
used. The GA is suitable for this specific task.

Filter Tuning Using Genetic Algorithm

1
x . Evaluation !
1
------------ i 1
Initialization i
_____________ N —~ s 1
|  %ojo: Pojo, R, € | Y o
& Cell model I Consistency |
I I Check !
- . S
1] Simulative | Sensor Joint extended S : i
. R model S Kalman filter . !
i 1
. — ! :
Pl Cell tes y B —> |
! o |) |

Figure 2. Optimization methodology for (a) the simulative and (b) the experimental case based
on GAs.
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Figure 3. Current profiles for (a) the filter tuning process with the WLTP cycle and (b) validation
with the UDDS cycle.

3.1. Genetic Algorithm

GAs are based on the “survival of the fittest” principle [17]. They start with an initial
population with a certain amount of possible solutions for the problem, called individ-
uals. In our case each individual contains the six diagonal elements Q1, Q», ..., Qg of Q,
which can be inherited to the next generation. For each individual, a fitness values is
calculated representing the suitability of the solution for the problem at hand. Furthermore,
the probability of an individual to be selected to inherit its properties or to be passed on
to the new generation increases with a better fitness. A new generation is built by elite
individuals (duplication), recombination and mutation [15]. This whole process repeats
itself leading to an extinction of bad individuals and properties until defined end criteria
are met. As already pointed out, a multi-objective optimization is needed. Therefore the
result is not a single solution, but a set of solutions forming a Pareto front [27]. Here, no
objective can be improved without worsening at least another one.

3.2. Object Selection

For the multi-objective optimization several objectives need to be defined. For the
KF estimation, it is essential to obtain an accurate and consistent filter. To determine the
accuracy, the relative root mean squared error (RRMSE) is calculated separately for all
entries of the state vector over K time steps according to (13), where the root mean squared
error (RMSE) in the numerator is divided by the mean absolute value of the observations.

VR (- )2
K
%Zkzl |k

The normalization ensures a unitless error measure. Furthermore, features with larger
value ranges do not have a greater influence on the following mean value calculation.

RRMSE = (13)
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The RRMSE is averaged over all Ny entries of the state vector and over the number of
Monte-Carlo runs N as follows

Ly ( Ly
JRRMSE = — RRMSE,,, (14)
N = N.

X ne=1

to obtain one single accuracy measure for the estimator. According to [28], a KF is consistent
if the estimation error and the innovation e have an expectation of zero and the covariance
Pk| « or Sg, respectively. Those conditions can be tested by evaluating the distribution of the
normalized estimation error square (NEES) € and normalized innovation squared (NIS) {
over several Monte-Carlo runs with:

e = (% — ??k|k)T13;J;3(xk — &) (15)

N
N-& =Y en~xk,n (16)

n=1

and .
Tk = (i — 96) S My — D) (17)
N-Ce=Y Tin~an (18)
n=1

where x?2 is a chi-square-distribution with the degree of freedom a. In order to use consis-

tency as an optimization objective, a quantification method is required. This is implemented
2 2

following Oshman et al [16]. The probabilities FeXk and ng for each time step 1 < k < K are

calculated as follows

2
FX = P{xk,.n < N-&} (19)
2 _
B}y = P{x{ < N- i} (20)

and sorted in ascending order of magnitude. For a consistent KF, the probabilities must
lie on the angle bisector over the normalized index. By calculating the area between the
resulting curve and the angle bisector a consistency value can be obtained

K

1 2k
INEES = = Y |FX — ‘ (21)
K = € K
1 & 2 &k
Inis = — Y |FY - ‘ (22)
K = G K

where [Ngrs and Jnis are limited between 0 and 0.5. Smaller values are indicates to a more
consistent KF.

3.3. Setup and Model Characterization

To determine the model parameters for simulations and to validate the proposed
method with experiments, an experimental setup and a characterization procedure is re-
quired. The used lithium-ion battery cells INR18650-25R from Samsung have NCA (lithium
nickel cobalt aluminum oxide) as cathode and graphite as anode. The specifications of this
cell type according to the data sheet are shown in Table 1. All experiments are conducted
with the LBT21084 Arbin battery test system (60 A /5 V) within a Binder temperature cham-
ber (KB 115). The temperature is set to 25 °C. After a 1 C discharge capacity test, the open
circuit voltage (OCV) of the used cell is measured in the charge and discharge direction over
the whole SOC range with a step size of 2%. By averaging and interpolating the measured
OCV in the charge and discharge direction for one SOC step, the OCV function vocy (SOC)
shown in Figure 4a is obtained. Due to averaging possible hysteresis effects are neglected.
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OCV [V]

The parameters Ry, Ry and R; in Figure 4b are obtained by a current pulse test with 2 C and
a duration of 1s and 20's from 10% to 100% SOC in 10% steps. The searched parameters
are optimized by minimizing the RMSE between modeled and measured terminal voltage
with the help of the MATLAB function fminsearch. Hereby 71 = 1s and 1, = 20s applies.
For more information about the characterization, we refer to [24].

Table 1. Lithium-ion cell specification.

Manufacturer Samsung
Type INR18650-25R
Format 18650
Chemistry NCA /graphite
Charge cut-off-voltage 42V
Discharge cut-off-voltage 25V
Nominal voltage 3.6V
Nominal capacity @ 0.2C 2.5Ah
4.5 ; ‘ ; ; 30 =3 \ e ) Ryl -
c 20+ .
£
& 10+ ]
/\’—’,\_
. ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
SOC [%] SOC [%]
(a) OCV (b) Resistances

Figure 4. Cell characterization results for the (a) OCV and (b) the resistances of the ECM over the
entire SOC range.

3.4. Implementation

To show the benefits and the feasibility of the proposed optimization methodology,
simulations are conducted. The initial SOC is approximately 90% for all studies. The sensor
noise is modeled as a zero mean Gaussian distribution with a current standard deviation
0?7 of 10mA and a voltage standard deviation 0, of 5mV. This leads to the variance of the
measurement noise

R=02=(5mV)?=25-10"V2 (23)

The step size At in the simulative as well as in the experimental study is 0.1 s. To ensure
statistical reasonable results the KF is evaluated over N = 30 Monte-Carlos runs. In each
Monte-Carlo run the state vector is reinitialized, such that (24) applies [28].

Zoj0 ~ N (x0, Pyjo) (24)

The covariance 150‘0 is initialized as in (25) such that the standard deviation is in the order
of 10 % of the true initial entries of x. Since the initial values of the polarization voltages
are zero, the standard deviation is set to 10mV and 20 mV, respectively.

Pyp = diag{0.0081 10~* 4-10* 53-10°° 77-10°% 22.10°°} (25)

The process noise is optimized using the multi-objective GA using the built-in function
gamultiobj from MATLAB 2021b. The most important GA options are shown in Table 2.
Hereby, only the logarithm of the six diagonal elements log;,(Q) of the matrix Q are
optimized while all other entries are set to zero. The upper and lower limit of the decision
variable space are set based on the authors’ experience to reduce the set of possible solutions
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for a faster convergence of the algorithm. The objectives shown in the previous chapter
are combined in the fitness function J = [Jrrvse JNeEs Inis] |- The number of individuals
forming the Pareto front can be set as a ratio of the population size via the Pareto fraction
(here: 35%). The only selection function available for gamultiobj is the tournament
selection, where a certain number of individuals compete against each other, and only the
best one is selected [29,30]. The crossover function crossoverintermediate determines
how new individuals are generated by recombination. Two parents span an N, dimensional
space in which the resulting child is randomly located [31]. The ratio of crossover children
in the new generation is specified by the crossover fraction. While crossover is based
on existing individuals and searches around their properties, mutation is required to
introduce new properties to the individuals and therefore prevent early convergence of the
algorithm [30]. The mutation function mutationadaptfeasible determines the direction
of mutation adaptively depending on the previous generation and its fitness [31].

Table 2. GA optimization options.

Parameter Value
Algorithm NSGA-II [32]
Population size 200
Maximum number of generations 100
Dimension of decision variable space 6
Upper limit of decision variable space 0
Lower limit of decision variable space -15
Fitness function J = Urrmse Inees Inis]”
Selection function Tournament
Pareto fraction 0.35
Crossover function crossoverintermediate
Crossover fraction 0.8
Mutation function mutationadaptfeasible

4. Results and Discussion

For evaluation of the estimation results, the RMSE in (26) is calculated for each state
and parameter beside the already explained optimization objectives. The RMSE is addition-
ally averaged over 30 Monte-Carlo runs. Please note, that for simulative and experimental
studies the reference values are obtained from simulation and model characterization.
In real experiments, it is not possible to obtain the non-measurable states and parame-
ters directly.

1 K
RMSE =, | — R — Xk )2
K (= %) (26)
In order to be able to assess the error measures, the range of values occurring in our
investigations for each state and parameter is given in Table 3. The cell is discharged with
the WLTP and UDDS profile from 90% SOC to 69% and 75%, respectively.

Table 3. Occurring minimal and maximal values for each state and parameter within our investigation.

SOC 1 02 R() R1 R2
Min 69% —31mV —-93mV 25 mQ) 2.5 mQ) 13 mQ)
Max 90% 16 mV 21 mV 26 mQ) 4 mQ 18 mQ)

4.1. Simulative Study

In the simulative case, the optimization process using the WLTP cycle converges after
around 57 generations resulting in the blue Pareto front shown in Figure 5. The trade-
off between all three optimization objectives becomes obvious. As soon as one of the
consistency values (Jnis or JNggs) is minimized, both the other one as well as the estimation
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error Jrrvse become large. The controversial behavior is also observable in Figure 6, where
the entries of process noise matrix are plotted decadic logarithmized over the individual
consistency optimization objectives. For example, [nis in Figure 6a rises for higher Q1 and
Q4 values while nggs in Figure 6b decreases. Please note, that Q; and Qg are the variances
of the SOC and Ry, respectively. The trend lines displayed with different colors indicate
that the parameters are not changing arbitrarily. Regardless of two outliers in Figure 6b,
the sensitivity of the entries to the consistency measures is limited. A small change in the
parameterization usually leads to only a small change in consistency. Furthermore, while it
is possible to reach [njs values smaller than 0.02, it is harder to minimize Jyggs with values
always greater than 0.13. In our case, we choose the individual with the smallest euclidean
distance to the origin of the coordinate system in the objective space with Jrrmsg = 0.12,
JNEEs = 0.21 and Jnis = 0.17 corresponding to the red dashed lines in Figures 5 and 6.
The resulting process noise is

= diag{10~7% 107%Y 107°2 1078 10788 10777 27)
8

For validation the optimized process noise is used to estimate the states and param-
eters for the UDDS cycle. Figure 7 shows in blue the error of all states and parameter
and in orange the corresponding +3 - \/P confidence bounds over time. Especially the
errors of SOC, v, and R, are outside the confidence interval for the first 310s or 105s,
respectively. Afterwards, the estimation error and the confidence interval are in good
agreement. The resulting RMSEs, according to (26), are for the SOC 0.89%, v; 1.6mV, vp
5.3mV, Ry 2.3mQ), Ry 0.75mQ) and R, 3.2 m(). However, in most cases the error is much
smaller after the transition phase of the KF.

0.5 X Pareto front
®  Selected solution

0.4 |

0.3

JRRMSE

0.2

0.1
0.5

—

w)‘*} -y ot

0.25

0.5
0.25

JIN1s 00 JNEES

Figure 5. Pareto front (blue) and the selected solution (red) in the objective space for the simula-
tive case.
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o) ] °(500) 1%

e(vy) [mV]

— — — Selected solution X Qe X Q4 X Qg
x @ Qs x Qs

0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
JNEES
(b)

Figure 6. Dependence of the (a) s and (b) JNggs values on the logarithm of the process noise.

0 450 900 1350 180 0 450 900 1350 1800
t [s] t [s]

Figure 7. Illustration of the error (blue) of the states and parameters with the corresponding +3 - v/P
bound (orange) in the simulative study using the UDDS cycle.

In phases, where the current becomes zero, the estimation of the polarization voltages
is very good and the confidence interval shrinks significantly. As an example, Figure 8a
emphasizes this in the gray area for the time 1484 s until 1522s. This can be explained
by considering the behavior of the polarization voltages when the current becomes zero.
From a certain point in time fy, when the current becomes zero, the progression of the
polarization voltages can be modeled as follows:

t—t

Om(t) = om(ty) e~ . (28)
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e(vy) [mV]

1440 1460 1480 1500 1520 1540 1560 1580
t [s]

—— Error —— 43P
(a)
20 C T T T T T ]

(§] (Ro) [mQ]

—20 C 1 1 1 1 1 .
1440 1460 1480 1500 1520 1540 1560 1580
t [s]

+3-vP

Error

(b)

Figure 8. Zoomed illustration of the estimation error (blue) and the corresponding +3 - v/P bound

(orange), when the current becomes zero for (a) the state v; and (b) the parameter Ry.

With increasing time not only the polarization voltages, but also the slope will decrease.
This leads to smaller entries in the linearized system matrix A and to a decrease of the
corresponding values in Py (see Algorithm 1).

In contrast, the parameters behave in opposite ways. When the current becomes
zero, the confidence interval increases significantly, and the estimation cannot be trusted.
As highlighted in Figure 8b, this is the case especially for Rg. Without current flow, the input
u is also zero and the parameters do not have any influence on the measured terminal
voltage. Therefore, it is not possible to draw conclusions about the parameters (they are
not observable), which leads to an increase of the confidence intervals.

4.2. Experimental Study

In the experimental study, the GA optimization converges after around 67 generations.
However, when analyzing the resulting Pareto front in Figure 9, there is no clear trade-
off visible between the three optimization objectives. It is not possible to reduce both
consistency criteria at the same time. At least one is close to the upper limit of 0.5. Since
the true state vector is not known and JNggs strongly depends on the simulated reference
state vector, this criterion should not be over-rated. A closer examination of the model
error reveals an RMSE of 6.5 mV indicating errors in the state vector and therefore results in
errors when calculating Jrrmsg and JNggs. Hence, a lower Jnis value should be preferred
over a low J\ggs.
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Figure 9. Pareto front (blue) and the selected solution (red) in the objective space for the experimen-
tal case.

As in the simulative study, the solution with the smallest euclidean distance in the
objective space is chosen as the most suitable solution. This leads to a very high JNggs of
0.46 with Jrrmse = 0.20, Jnis = 0.24, and the process noise is

Q = diag{10~77 10-77 107%> 10772 10786 10781} (29)

In comparison to the simulative study, all optimization objectives are worse, and the
process noise entries corresponding to the polarization voltages increase significantly due
to inaccuracies of the proposed model. The validation results in Figure 10 based on the
UDDS cycle show similar values for the fitness functions (JrRrmsg = 0.34, nggs = 0.50
and Jnis = 0.23) and hence prove the feasibility of the procedure. The RMSE value is
for the SOC 1.3%, v 2.0mV, v, 8.2mV, Ry 1.8 mQ), R; 1.0mQ) and R, 1.4mQ). All errors
are reasonably small and the confidence intervals are in the same order of magnitude.
For example, Wang et al. [13] achieved an RMSE of less than 1.5% for SOC using a Dual
Sigma point Kalman filter that is also tuned with GA, but no values for other states and
parameters or consistency are reported. Ref. [33] archived an RMSE of 1.9% for the SOC
with an augmented unscented Kalman filter. Furthermore, when the current becomes zero,
the estimator has a similar behavior as in the simulative study.

The experimental results demonstrate applicability with a considerable high computa-
tional effort. However, the large optimization space becomes a manageable set of optimal
Pareto solutions decreasing significantly the required hands-on work of an experienced
application engineer.
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Figure 10. Illustration of the error (blue) of the states and parameters with the corresponding +3 - /P
bound (orange) in the experimental study using the UDDS cycle.

5. Conclusions

Determining the process noise of a KF algorithm appropriately is difficult and a very
time consuming task without a suitable procedure. Hence, a traceable offline optimization
procedure was developed to parametrize an EKF. It uses a multi-objective GA not only
to minimize the estimation error, but also to design a consistent filter, which leads to a
comprehensible set of optimal Pareto solutions. For identifying the consistency, the NEES
and NIS distribution were evaluated. In this contribution, the procedure was applied to an
EKEF, which estimates the states and parameters of an NCA /graphite lithium-ion cell type.
While the simulative data shows a good trade-off between the specified objectives, in the
experimental case the NEES consistency measure must be neglected, since the reference
data are subject to errors. Even in the experimental case, considerable small errors were
archived with a suitable estimated covariance. This proceeding helps to determine the
process noise in a convenient and comparable way. The conducted studies show the
feasibility of the proposed methodology with a one time offline computational effort.
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