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Abstract: Lithium metal batteries have attracted much attention due to their high energy density.
However, the critical safety issues and chemical instability of conventional liquid electrolytes in
lithium metal batteries significantly limit their practical application. Herein, we propose polyethy-
lene (PE)−based gel polymer electrolytes by in situ polymerization, which comprise a PE skeleton,
polyethylene glycol and lithium bis(trifluoromethylsulfonyl)imide as well as liquid carbonate elec-
trolytes. The obtained PE−based gel polymer electrolyte exhibits good interfacial compatibility with
electrodes, high ion conductivity, and wide electrochemical window at high temperatures. Moreover,
the assembled LiFePO4//Li solid−state batteries employing PE−based gel polymer electrolyte
with 50% liquid carbonate electrolytes deliver good rate performance and excellent cyclic life at
both 60 ◦C and 80 ◦C. In particular, they achieve high specific capacities of 158.5 mA h g−1 with a
retention of 98.87% after 100 cycles under 80 ◦C at 0.5 C. The in situ solidified method for preparing
PE−based gel polymer electrolytes proposes a feasible approach for the practical application of
lithium metal batteries.

Keywords: in situ gel electrolyte; lithium metal battery; polymer electrolyte

1. Introduction

Over the past 30 years, rechargeable lithium−ion batteries have had tremendous
success. With the demand for high energy density, lithium metal batteries have attracted
widespread attention due to the high theoretical specific capacity of lithium as well as its
lowest electrochemical potential [1–5]. However, organic liquid electrolyte−based lithium
metal batteries usually exhibit dendritic structural evolution and continuous parasitic
reactions at the electrode–electrolyte interface, leading to safety issues and low coulombic
efficiency [6–10]. Significant efforts have been made to overcome these challenges, of which
the exploration of safe and stable electrolytes compatible with lithium metal is particularly
critical and indispensable [11–17]. Solid−state electrolytes with high stability have been
considered as optional alternatives to conventional liquid electrolytes for achieving safer
and more stable energy storage systems [18–20].

Among various solid electrolytes, gel polymer electrolytes with liquid organic elec-
trolytes possess high ionic conductivity under room temperature and can form a flexible
interface with the electrode [21–24]. Generally, the polymer films of gel polymer electrolytes
are prepared by an ex situ method and then immersed in a liquid electrolyte for gelation.
However, the gel polymer electrolyte only contacts with the top of the electrode and there-
fore the entire mass of active material cannot be directly utilized. Thus, additional liquid
electrolyte is still required to ensure interfacial wettability when utilizing ex situ prepared
gel polymer electrolytes [25,26].
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In situ preparation of gel polymer electrolytes is considered a feasible method to ad-
dress the aforementioned interfacial problems and active material utilization issues [27–32].
Gelation could be achieved in the presence of liquid electrolyte−containing monomers
injected into the battery. This method takes advantage of low viscosity, ease of handling,
and good wettability, which enable gel polymer electrolytes with enhanced interfacial
contact with electrodes, creating well−connected pathways for ionic transport [27,29,31].

Herein, we present polyethylene (PE)−based gel polymer electrolytes composed of
PE skeleton, polyethylene glycol (PEG), lithium bis(trifluoromethylsulfonyl)imide and liq-
uid carbonate electrolyte (LCE) for high temperature solid−state lithium metal batteries.
Poly(ethylene glycol) methyl ether acrylate (PEGMEA) is used as the monomers for in situ
polymerization due to the formed PEG possessing good compatibility with lithium metal as
well as high ionic conductivity [19], which enables the obtained gel polymer electrolyte to
possess both good chemical stability and high ion conductivity at high temperatures. The
PE−based gel polymer electrolyte with 50% liquid carbonate electrolytes (PE−50%LCE@PEG)
shows a high ionic conductivity of 1.73 × 10−4 S cm−1 under 60 ◦C and good electrochemical
stability with the lithium metal anode. The PE−50%LCE@PEG−based Li–Li symmetrical
battery exhibits cycling stability for 1200 h at 0.1 mA cm−2 and 0.1 mAh cm−2 at 60 ◦C.
Furthermore, the LiFePO4/PE−50%LCE@PEG/Li cell exhibits excellent cyclic performance
with no capacity decay over 150 cycles at 0.5 C under 60 ◦C. In addition, the cell shows a
high initial reversible capacity of 160.3 mA h g−1 under a higher temperature of 80 ◦C at
0.5 C and delivers excellent cycling stability for 100 cycles. This in situ solidified PE−based
gel polymer electrolyte exhibits promising potential application in lithium metal batteries.

2. Experimental Section
2.1. Synthesis of PE−Based Gel Polymer Electrolytes

Lithium bis(trifluoromethylsulfonyl)imide (LiTFSI, Sigma) and polyethylene glycol
methyl ether acrylate (Sigma, 480 g mol−1) monomer with dibenzoyl peroxide (Aladdin)
initiator were mixed to form a homogeneous solution. The EO:Li ratio was controlled at
18:1 and the mass of initiator was 0.2% of PEGMEA. At the same time, a LCE solution of
1 M LiPF6 in EC/DMC/EMC (1/1/1, v/v/v) was also prepared. The gel polymer electrolyte
liquid precursor solutions were prepared by mixing different amounts of LCE (x = 40%,
50%, 60%) with the PEGMEA/LiTFSI solution, where x is the mass percent of PEGMEA.
Then, the above liquid precursor solutions were incorporated into PE separator and then
heating cured at 60 ◦C for 12 h, resulting in PE−x%LCE@PEG (x = 40, 50, and 60) gel
polymer electrolytes.

2.2. Physical Characterization

Scanning electron microscopy (SEM, Hitachi S−4800) was used to observe the mi-
crostructure of the samples. A Nicolet 6700 spectrometer was used to collect Fourier
transform infrared spectroscopy (FT−IR) spectra of the PEGMEA precursors and different
electrolytes. Thermogravimetric analysis (TG209F1) was carried out under N2 atmosphere
with a heating rate of 10 ◦C min−1.

2.3. Electrochemical Measurements

A Solartron 1470E electrochemical workstation was used to test electrochemical
impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and direct current polar-
ization. EIS experiments were used to determine the ionic conductivity of the electrolytes
using stainless steel (SS)/gel polymer electrolytes/SS symmetric cells and calculated based
on Equation (1):

σ = L/(S · R) (1)

where L is the thickness, R represents the bulk resistance, and S represents the area.
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The activation energy (Ea) of the electrolytes was obtained by the Arrhenius Equation (2):

σ(T) = A exp
(
−Ea

RT

)
(2)

where σ is the ionic conductivity, A is the frequency factor, R is the molar gas constant,
and T is the absolute temperature. The electrochemical stability window of SS//Li cells
was ascertained by linear scanning voltammetry (LSV) with a scan rate of 1 mV s−1 within
3~6 V. The Li+ transference number (tLi+ ) of the polymeric solid electrolyte was determined
by direct−current polarization on a Li//Li symmetric cell and calculated from the Bruce–
Vincent–Evans Equation (3):

tLi+ =
Iss(∆V − I0R0)

I0{∆V − IssRss}
(3)

where ∆V is the polarization voltage of 10 mV, I0 is the initial current, Iss is the steady−state
current. R0 and Rss are the initial and steady−state interfacial resistance after the polar-
ization process. Additionally, Li//Li symmetric batteries with various electrolytes were
assembled to test the stability with lithium anode on commercial battery testing equipment
(LAND Wuhan Electronics Co., Ltd., Wuhan, China).

2.4. Battery Fabrication and Evaluation

LiFePO4, PVDF/LiClO4 and Super p were mixed together with a mass ratio of 8:1:1 in
N−methyl−2−pyrrolidone to prepare cathode slurry, which was coated on aluminum foil
and vacuum dried at 60 ◦C for 24 h to obtain the cathode. The specific area capacity of the
cathode was about 0.3 mAh cm−2. The PE separator was sandwiched between the cathode
and lithium metal. The gel polymer electrolyte liquid precursor solutions were injected into
the cell and direct in situ solidified at 60 ◦C for 12 h to fully form PE−based gel polymer
electrolytes in the battery. The charging–discharging of assembled LiFePO4//Li cells were
tested by the commercial battery testing system (Wuhan LAND Electronics Co., Ltd.) from
2.8–3.8 V at 30 ◦C, 60 ◦C and 80 ◦C, respectively.

3. Results and Discussion

The flowable precursor solutions containing PEGMEA, LiTFSI, different amounts
of LCE (x = 40%, 50%, 60%) and initiator can be directly polymerized and transformed
into solid−state LCE@PEG after thermally cured (Figure S1). Figure 1a displays the
preparation schematic diagram of the PE−x%LCE@PEG (x = 40%, 50%, 60%) gel polymer
electrolytes. A 16 µm−thick PE separator is selected as skeleton, which can be completely
infiltrated by the transparent and flowable precursor solution. After in situ thermal curing,
PE−x%LCE@PEG solid electrolytes formed. Figure 1b exhibits the FT−IR absorption spec-
tra of PEGMEA, PEGMEA@LCE, PEG, PE−x%LCE@PEG (x = 40, 50, and 60) electrolytes.
Clearly, the C=C stretching vibration of acrylate group in PEGMEA at 1600~1690 cm−1

disappears after in situ polymerization. Moreover, the C=O in the gel membrane guarantees
a strong interaction with the liquid electrolyte. Figure 1c shows the TG curves of PEG,
PE, PE@PEG, PE−50%LCE@PEG and LCE. The LCE evaporates rapidly at relatively low
temperature and the weight loss reaches up to 41.88% when the temperature increases to
100 ◦C. In contrast, the weight loss of PE−50%LCE@PEG is nearly zero at 100 ◦C, indi-
cating that the liquid electrolytes have been effectively immobilized in the polymerized
PEG matrix and become thermally stable. Furthermore, PEG is thermally stable and its
decomposition temperature can reach about 300 ◦C. By further incorporating with the PE
separator, the PE−50%LCE@PEG gel polymer electrolyte exhibits good thermal stability at
high temperature.
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fore heating curing. After in situ polymerization, the pores in PE separator store 
LCE@PEG well to form a gel polymer electrolyte, and the surface of the electrolyte is uni-
form and flat (Figures 2b and S2). The thickness of the PE−50% LCE@PEG electrolyte is 
about 18 μm with a dense structure (Figure 2c). 

Figure 1. (a) Schematic diagram of the preparation process of PE−x%LCE@PEG via in situ polymer-
ization. (b) FT−IR adsorption spectra of monomers and polymers. (c) TGA curves of monomers
and polymers.

The morphology of PE and PE−x%LCE@PEG (x = 40, 50, and 60) gel polymer elec-
trolytes were observed by SEM. As shown in Figure 2a, the surface of the pristine PE
separator shows a porous structure, which can well accommodate the precursor solu-
tion before heating curing. After in situ polymerization, the pores in PE separator store
LCE@PEG well to form a gel polymer electrolyte, and the surface of the electrolyte is uni-
form and flat (Figure 2b and Figure S2). The thickness of the PE−50% LCE@PEG electrolyte
is about 18 µm with a dense structure (Figure 2c).

The ionic conductivity of gel polymer electrolytes is measured by EIS tests (Figure S3),
showing 1.21 × 10−4, 1.73 × 10−4, and 2.11 × 10−4 S cm−1 for PE−x%LCE@PEG
(x = 40, 50, and 60) at 60 ◦C, respectively. The activation energies of PE−x%LCE@PEG
(x = 40, 50, and 60) are calculated to be 0.286, 0.281, and 0.22 eV, respectively (Figure 3a).
Based on LSV testing (Figure 3b), no obvious oxidation peak for the PE−x%LCE@PEG was
observed until 4.3 V vs. Li/Li+, which is slightly higher than that of the liquid carbonate
electrolyte at 4.1 V (Figure S4). The higher electrochemical window can be ascribed to the
strong interaction between the C=O groups of PEGMEA and the anions in the electrolytic
salt [19,33]. Moreover, the tLi+ values for PE−x%LCE@PEG (x = 40, 50, and 60) gel polymer
electrolytes are 0.415, 0.425, and 0.5, respectively (Figures 3c and S5), exceeding those of
commercial liquid electrolytes (0.2–0.4) [34]. The high tLi+ could be due to the C=O groups
in the PE−x%LCE@PEG (x = 40, 50, and 60) gel polymer electrolytes limiting the movement
of anions, which could further reduce the concentration polarization and improve the
performance of the cells [35–37]. The electrochemical stability of gel polymer electrolytes
with lithium metal anode is further investigated in Li/Li symmetric cells. The critical
current densities of PE−x%LCE@PEG (x = 40, 50, and 60) are 1.1, 1.1, and 0.9 mA cm−2,
respectively (Figure 3d), indicating the PE−x%LCE@PEG (x = 40, 50, and 60) gel poly-
mer electrolytes possess good ability to inhibit lithium dendrites [38]. In addition, the
long−term cyclic performances of Li//Li symmetric cells employing PE−x%LCE@PEG
(x = 40, 50, and 60) and LCE are shown Figure 3e and Figure S6. Clearly, PE−50%LCE@PEG
gel polymer electrolyte displays the best cycling stability up to 1200 h at 0.1 mA cm−2

and 0.1 mAh cm−2. The symmetrical cell with LCE suffers a short circuit after 875 h. The
excellent interfacial stability is due to the confinement of polymer to the liquid phase,
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which reduces the interfacial reactions between lithium metal and reactive electrolyte
components [39].
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To demonstrate the feasibility of PE−x%LCE@PEG (x = 40, 50, and 60) gel polymer
electrolytes in rechargeable lithium metal batteries, LiFePO4//Li cells were assembled
employing PE−x%LCE@PEG (x = 40, 50, and 60) and LCE, as shown in Figures 4a and S7.
The PE−50%LCE@PEG cell shows excellent cycling stability over 150 cycles with no
capacity decay at 0.5 C under 60 ◦C. However, the LCE−based cell shows dramatic decrease
in capacity after 30 cycles under the same conditions. Furthermore, the rate capabilities of
LiFePO4/PE−50%LCE@PEG cells were assessed at various current densities from 2.8–3.8 V
(Figure 4b). The reversible capacities for PE−50%LCE@PEG cells are 164.8, 165, 160, 157,
152, 142, 63.6 mA h g−1 at 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, 3 C, and 5 C, respectively. The
corresponding charge–discharge curves are presented in Figure 4c. With the increase of
current density, the discharge voltage plateau decreases slowly without serious polarization
until 3 C.
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Figure 3. (a) Arrhenius plots of PE−x%LCE@PEG (x = 40, 50, and 60) gel polymer electrolytes.
(b) Linear sweep voltammetry of PE−x%LCE@PEG (x = 40, 50, and 60) gel polymer electrolytes.
(c) Li+ transference number comparison of LCE and PE−x%LCE@PEG (x = 40, 50, and 60) gel
polymer electrolytes. (d) Critical current density test of Li/PE−x%LCE@PEG (x = 40, 50, and 60)/Li
cells at 60 ◦C. (e) Long−term cyclic performances of Li//Li symmetrical cells using the LCE and
PE−50%LCE@PEG gel polymer electrolytes at 0.1 mA cm−2 and 0.1 mAh cm−2 under 60 ◦C.

In addition, the cyclic performances of LiFePO4/PE−x%LCE@PEG/Li cells and
LiFePO4/LCE/Li cells at 0.5 C under 80 ◦C are also evaluated, as shown in Figures 4d and S8.
For the commercial liquid electrolyte−based cell, it is difficult to operate at a high tem-
peratures of 80 ◦C for a long cycle life [40]. Nevertheless, the PE−50%LCE@PEG based
cell can stably cycle for 100 cycles at 0.5 C under 80 ◦C, exhibiting a reversible discharging
specific capacity of 158.5 mA h g−1 at the 100th cycle with a capacity retention of 98.87%.
Moreover, the LiFePO4//Li battery with the PE−50%LCE@PEG electrolyte also possesses
outstanding electrochemical performances under 0.5 C at 30 ◦C, showing a comparable
performance with LCE−based cell (Figure S9). Furthermore, the lithium anode of the
LiFePO4/PE−50%LCE@PEG/Li cell after cycling shows a smooth and compact surface
without cracks, and few lithium dendrites are observed (Figure S10). However, after cycling,
the lithium anode of LiFePO4/LCE/Li cell becomes rough and full of dendrites.
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Figure 4. (a) Cyclic performances of the LiFePO4//Li cells using PE−50%LCE@PEG and LCE under
0.5 C at 60 ◦C. (b) Rate capability of the LiFePO4//Li batteries using PE−x%LCE@PEG (x = 40, 50,
and 60) electrolytes at different rates at 60 ◦C. (c) Charge−discharge voltage profiles of LiFePO4//Li
battery using PE−50%LCE@PEG electrolyte at different rate under 60 ◦C. (d) Cyclic performances of
the LiFePO4//Li batteries using PE−50%LCE@PEG and LCE electrolyte under 0.5 C at 80 ◦C.

Furthermore, a series of flexibility and safety tests were performed on the LiFePO4/
PE−50%LCE@PEG/Li pouch cells. As shown in Figure 5, the pouch batteries with
PE−50%LCE@PEG can continuously light up the yellow LED in the flat state, folded state,
several fold and even cut, which displays the good reliability and safety of PE−50%LCE@PEG
for flexible solid−state lithium batteries.
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Figure 5. Optical images of the LED lamp powered by the pouch cell in various states: (a) flat state;
(b) folding state; (c) several fold; (d) cutting state.

4. Conclusions

A series of PE−x%LCE@PEG (x = 40, 50, and 60) gel polymer electrolytes were success-
fully synthesized to realize high−temperature solid−state lithium batteries. The PE−50%
LCE@PEG gel polymer electrolyte shows a high ionic conductivity of 1.73 × 10−4 S cm−1

at 60 ◦C with a high Li+ transference number of 0.425. The critical current density of
PE−50%LCE@PEG gel polymer electrolyte−based Li/Li symmetric cell is up to 1.1 mA cm−2,
and the cell exhibits cycling stability for 1200 h at 0.1 mA cm−2 and 0.1 mAh cm−2. The
assembled LiFePO4/PE−50%LCE@PEG/Li solid−state batteries show outstanding cycling
stability with no capacity decay over 150 cycles at 0.5 C under 60 ◦C. In addition, the cell
exhibits a high initial reversible capacity of 160.3 mA h g−1 under a higher temperature
of 80 ◦C at 0.5 C and exhibits excellent cycling stability for 100 cycles, demonstrating
promising potential application for high−temperature solid−state lithium metal batteries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries9010028/s1, Figure S1: Optical images of PEGMEA,
LiTFSI and initiator with varied amounts of LCE before (a) and after (b) the polymerization pro-
cess. Figure S2. SEM images of (a) PE−40%LCE@PEG and (b) PE−60%LCE@PEG gel polymer
electrolytes. Figure S3. EIS plots of PE−x%LCE@PEG (x = (a) 40, (b) 50, and (c) 60) gel poly-
mer electrolytes at different temperatures (20~100 ◦C). Figure S4. Linear sweep voltammetry of
LCE. Figure S5 Chronoamperometry of (a) Li/PE−40%LCE@PEG/Li, (b) Li/PE−50%LCE@PEG/Li,
(c) Li/PE−60%LCE@PEG/Li symmetric cells at ambient temperature. The insets are the alternate
current impedance spectra before and after polarization. Figure S6. Long−term cycling of symmetri-
cal Li cells using the PE−40%LCE@PEG and PE−60%LCE@PEG electrolytes at 0.1 mA cm−2 and

https://www.mdpi.com/article/10.3390/batteries9010028/s1
https://www.mdpi.com/article/10.3390/batteries9010028/s1


Batteries 2023, 9, 28 9 of 11

0.1 mAh cm−2 under 60 ◦C. Figure S7. Cyclic performances of the LiFePO4//Li batteries assembled
with PE−40%LCE@PEG and PE−60%LCE@PEG under 0.5 C rate and 60 ◦C. Figure S8. Cyclic perfor-
mances of the LiFePO4//Li batteries assembled with PE−40%LCE@PEG and PE−60%LCE@PEG
under 0.5 C rate and 80 ◦C. Figure S9. Cyclic performances of the LiFePO4//Li battery with LCE and
PE−x%LCE@PEG (x = 40, 50, and 60) electrolytes under 0.5 C rate and 30 ◦C. Figure S10. SEM images
of the Li metal taken from (a) bare lithium, (b) LiFePO4/PE−50%LCE@PEG/Li cell after 100 cycles
under 0.5 C at 60 ◦C, (c) LiFePO4/LCE/Li cell after 25 cycles under 0.5C at 60 ◦C.
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