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Abstract: Participation in the electricity market requires making commitments without knowing
the real generation or electricity prices. This is problematic for renewable generators due to their
fluctuating output. Battery energy storage systems (BESSs) integrated with renewable sources in a
hybrid farm (HF) can alleviate imbalances and increase power system flexibility. However, the impact
of battery degradation on long-term profitability must be taken into account when choosing the
correct market participation strategy. This study evaluates the state-of-the-art on energy management
systems (EMS) for HFs participating in day-ahead and intraday markets, incorporating both BESSs’
calendar and cycling degradation. Results suggest that efforts to attain additional profits in intraday
markets can be detrimental, especially when the degradation effect is considered in the analysis.
A new market participation strategy is proposed that aims to address the limitations of market
overlapping and forecasting errors. The results demonstrate that the proposed method can enhance
long-term benefits while also reducing battery degradation.

Keywords: BESS; optimization; degradation; markets

1. Introduction

Renewable energy systems face uncertainty in resource availability, which can create
challenges in participating in electricity markets that require prior commitments. Energy
storage systems (ESS) can mitigate this uncertainty by storing energy for later use [1].

The energy commitment for the day-ahead market is made by submitting offers to
the market operator the day before delivery. Forecasting techniques are applied to predict
electricity prices and resource availability [2], using techniques such as the SARIMA model,
which can capture seasonal correlations in historical data. The authors in [3] demonstrate
how a SARIMA model can outperform deep-learning techniques. In this work, SARIMA
models are used to forecast both electricity prices and wind speeds, and have been shown
to outperform deep-learning techniques in previous studies.

An offering strategy for energy commitment is typically formulated as a constrained
optimization problem [4]. The decision vector includes offers for each hour of the mar-
ket, and the objective is to maximize revenue during the session. Constraints include
physical parameters of the plant and market rules, which heavily influence the feasible
solution space.

Multi-market participation, which includes day-ahead and intraday market sessions,
cannot be formulated as a single optimization problem due to the different timeframes of
each market. A progressive optimization approach, as proposed by the authors in [5], is
used in this work.

Intraday markets can be utilized to increase profits through revenue stacking, which
typically involves combining energy and power services. Studies such as [6] demonstrate
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that combining frequency response and arbitrage can increase revenue by up to 25%. Similar
results are found in studies such as [7], which consider multiple spot market participation.
This is also proposed by the authors in [7]. These approaches are compared in this work.

The aforementioned studies do not model the forecast generation and market offering
processes. Generated forecasts at different times of the day can contradict each other and
lead to issues when various markets overlap. This work addresses this issue.

Balancing mechanisms in electricity markets, such as penalties for deviations, can be
used to address deviations caused by forecasting errors. Intraday markets can be used to
correct errors [8], but require prior commitments. An alternative solution is to use energy
storage systems for real-time corrections through a service called capacity firming (CF) [9].

Capacity firming has received increasing attention in recent literature as a service
provided in real-time as opposed to arbitrage. Studies such as [10] propose energy conser-
vation methods for control schemes of BESSs integrated with a PV system. Other works,
such as [11], show how a simple control algorithm can achieve capacity firming in a BESS
combined with a wind farm, although the storage system is only used for this service.

The Iberian electricity markets are used as an example in this work since, like many
other systems, they have day-ahead and intraday spot markets. Market operator rules are
incorporated into the optimization algorithm and the calculation of net benefits. Partici-
pation in intraday markets and the use of the CF service are compared, and the revenue
stacking of different services is evaluated. This work also considers the effect of degradation
on long-term profits, an approach that has not been considered in the previous literature.

A HF model consisting of a Gamesa G128 Wind Turbine Generator (WTG) and a
BESS is presented. Unlike a virtual power plant (VPP), the system components are not
distributed; thus, they share a point of common coupling (PCC). The SARIMA forecasting
model uses wind historical data from the Sotavento experimental wind farm [12] and
electricity prices from the Iberian market as inputs for the EMS.

The results show that participating in all markets may be counter-productive due
to market overlap. The best results in terms of profits per degradation are obtained by
allowing the BESS to participate only in the day-ahead market and performing capacity
firming in real time.

The work proposes a new service called SOC Emptying (SE), which involves dividing
the BESS into two virtual energy storage systems (VESS). One VESS provides regular
services, while the other is used to empty the BESS whenever the combined state of charge
(SOC) exceeds a specific threshold. This service aims to reduce upward deviations and give
the BESS more maneuverability. The inclusion of this service further improves the results,
resulting in increased profits per percentage of capacity loss and higher net present values
when extrapolating the results for the entire project.

The contributions of this work are outlined as follows:

• A formulation for a progressive optimization algorithm for hybrid farm multi-market
participation that takes into account degradation effects caused by operation.

• The implementation of a real-time BESS degradation model that assesses capacity and
power losses in a simulation framework to evaluate different market participation strategies.

• Evidence shows that using the BESS in all markets does not necessarily result in a
better income after comparing different simulation scenarios.

• A proposed service that enhances the BESS utilization efficiency and increases the
project’s net present value (NPV).

The paper is structured as follows: Section 2 provides an overview of the Iberian
electricity market rules. Section 3 describes the HF model used in the study. The day-ahead
and intraday market offering optimization models are analyzed in Section 4. Section 5
presents the simulation use cases and results. Conclusions and future research directions
are discussed in Section 6.
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2. Iberian Market’s Rules

Before each market session opening time, the EMS must have forecasted data of prices
and wind power generation. It is therefore necessary to know when each market session
takes place and which hourly delivery periods are negotiated, both for forecasting and
optimization problem definition. To obtain real benefits, this study follows the regulations
of the Iberian markets, which take into account deviation costs.

This section introduces the rules of the Iberian markets, starting with the day-ahead
market, followed by the intraday markets, and finally, the deviation rules are described,
which consider four different deviation costs.

2.1. Day-Ahead Market

The majority of energy traded in the Iberian wholesale markets is conducted through
the day-ahead market. In 2020, it accounted for 74% of the total energy traded [13].
Therefore, it is the most important market for arbitrage operations. The Iberian day-ahead
market session takes place every day of the year at 12:00 CET.

The price and volume of energy is determined for each hour of the following day
by the intersection of demand and supply. Market agents submit their offers through
the market operator OMIE [14]. As a result, the EMS has to submit 24-hourly offers for
the following day, using price and generation forecasts generated 12 to 36 hours prior to
delivery time.

2.2. Intraday Markets

After the day-ahead market, intraday markets accounted for 14% of the energy traded
in 2020 [13]. Since intraday spot markets had six times more energy than continuous
intraday markets, this work only considers the former. In Table 1, the closing times and
delivery hours of the market sessions are shown.

Table 1. Intraday market sessions in 2018.

Session 1 2 3 4 5 6

Closing time 18:50 21:50 1:50 4:50 8:50 12:50
Delivery hours 22(D-1)–23 0–23 4–23 7–23 11–23 15–23

The closing times in Table 1 are the deadlines for submitting offers to the market
operator. Decisions must be made before this time. The delivery hours in the table are the
hours during which the energy negotiated in each intraday market session will be delivered
on day D.

Since Sessions 1 and 2 cover the same hours, Session 1 is neglected as Session 2 has a
closer opening time to the delivery. Intraday markets allow agents to correct their schedules
in the day-ahead market. This can be performed by purchasing energy during hours when
a deviation from the day-ahead program is expected. Arbitrage can also be performed to
gain additional liquidity. Both options are considered in the simulation cases.

2.3. Adjustment Mechanism

Four different deviation costs need to be considered in the Iberian market:

• Positive deviation costs for upward deviations that have a negative impact on the system;
• Positive deviation costs for upward deviations that have a positive impact on the system;
• Negative deviation costs for downward deviations that have a negative impact on

the system;
• Negative deviation costs for downward deviations that have a positive impact on

the system.

A deviation during an hourly period h is calculated as follows:

λ(h) = |Ed(h)− Ec(h)|, (1)
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where the following apply:

• λ(h): Deviation during hour h (MWh).
• Ed(h): Delivery during hour h (MWh).
• Ec(h): Commitment during hour h (MWh).

If the deviation is upwards and in favor of the system, the additional energy is
remunerated at the day-ahead price during hour h; therefore, the bonus is calculated as:

β(h) = λ(h) ∗ΠdM(h), (2)

where the following apply:

• β(h): Bonus obtained during hour h (EUR).
• ΠdM(h): Day-ahead price during hour h (EUR/MWh).

If the deviation is upwards and against the system, the energy excess is remunerated
at less than the day-ahead price during hour h. This bonus is calculated as:

β(h) = λ(h) ∗ΠdM(h) ∗ (1− λcoe f (h)), (3)

where the following applies:

• λcoe f (h): Coefficient for deviations against the system during hour h.

If the deviation is downwards and in favor of the system, the energy deficit is
charged at the same price as the day-ahead price during hour h; therefore, the penalty is
calculated as:

ρ(h) = λ(h) ∗ΠdM(h), (4)

where the following applies:

• ρ(h): Penalty during hour h (EUR).

If the deviation is downwards and against the system, the energy deficit is charged at
a rate surpassing the day-ahead price during hour h; therefore, the penalty is calculated as:

ρ(h) = λ(h) ∗ΠdM(h) ∗ (1 + λcoe f (h)). (5)

The total deviation cost is formulated as follows. As can be seen, it can be negative
when more energy is available than committed:

λcost(h) = ρ(h)− β(h) (6)

where the following applies:

• λcost(h) : Deviation costs during hour h (EUR).

The coefficient λcoe f (h) represents the system’s vulnerability to deviations against it. A
higher coefficient means that a higher penalty will be paid. As seen in (3), if the coefficient
is greater than 1, the bonus for upward deviations can be negative, which implies a penalty.
During the same hourly period, if downward deviations are against the system, upward
deviations are in favor of the system, and vice versa. The deviation coefficient is determined
by the system operator and is the same for both types of deviations.

3. Hybrid Plant Model Overview

The model consists of the physical systems and their control architecture. In this
section, the model inputs’ generation is described for both wind speed and market prices.
Afterwards, the plant model and its control architecture are introduced. Lastly, the daily
earning calculation is formulated.

3.1. Model Inputs
3.1.1. Wind Power

Wind power is obtained through a two-stage approach, as in [15]. First, hourly
wind speed is forecasted using a SARIMA; then, forecasted data are fed into a function
that expresses a Gamesa G128 wind turbine power curve. The optimization and energy
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management system (EMS) models directly receive the forecasted and real wind power
hourly values.

Wind speed historical data are obtained from Sotavento experimental park in Galicia,
Spain [12]. This source was chosen due to its publicly available data and its location within
the Iberian market region. The data have a resolution of one hour, and the measured wind
speed for the year 2018 is presented in Figure 1.

Figure 1. Hourly wind speed historical data for the year 2018.

Hourly wind speed forecasts are required during the opening hours of market sessions.
The first forecast is at 12:00 h, when the day-ahead market commences, and subsequent
forecasts are generated during the opening hours of intraday market sessions. For real-time
operations, actual measured wind speed data are utilized. The SARIMA model utilized in
this work has an order of (2, 0, 3)(2, 1, 3)12, obtained from [16]. The configuration process
for the model is not covered in this work. Figure 2 illustrates the 2018 average mean
absolute percentage error (MAPE) of the wind speed forecasts generated during different
market sessions. It is observed that the prediction error tends to decrease.

Figure 2. Average MAPE of each wind speed forecast for 2018.
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3.1.2. Electricity Price Forecasts

The 24-hourly prices for the next day are predicted at 12:00 h on the previous day. A
SARIMA model of order (2, 1, 3)(1, 0, 1)24 was obtained from [16]. In Figure 3, the predicted
and real day-ahead prices for April the 16th are shown. Intraday prices are considered as
known beforehand for simplicity.

Figure 3. Day-ahead market price forecast for April the 16th.

3.1.3. Deviation Prices

The hourly deviation coefficients derived from 2018 historical data are used to calculate
the final deviation costs. However, a deviation coefficient is required for the optimization
model of intraday market offerings. Since deviation coefficients are only known after the
delivery period has ended, a forecasting technique for predicting the direction (favorable
or unfavorable) of deviation is required, but it is outside the scope of this paper. Therefore,
a deviation coefficient of 21%, the average of 2017, is considered when participating in the
intraday market.

3.2. Plant Model Components

The HF model consists of a wind turbine generator and a BESS.

3.2.1. Wind Turbine Generator

The generation system is a single Gamesa G128 WTG with a nominal power of 4.5 MW.
The power curve is taken from [17]. Only a WTG is considered for convenience. Generator
converter efficiency is considered part of the power curve characteristic.

3.2.2. Battery Energy Storage System

The storage system is composed of a 10 MWh/2.5 MW lithium iron phosphate (LFP)
battery, whose round-trip efficiency is assumed to be constant at 90%, as in [18]. A cycling
degradation model, based on depth of discharge (DOD) is implemented, sourced from a
finalization of the degradation curve presented in [19]. The model calculates degradation
by using rainflow counting of the cycles performed during the day and determines the
State of Health (SOH) lost based on the DOD of these cycles, in accordance with the curve
shown in Figure 4.
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Figure 4. Cycling degradation model.

A calendar degradation model, sourced from [20], is incorporated into the plant model.
This model is based on tests conducted on different LFP batteries over 899 days, where
they were maintained at various SOCs and temperatures. The test results for 25 ◦C were
selected and are presented in Table 2.

Table 2. Calendar degradation results at 25 ◦C [20].

SOC (%) Capacity Lost (%)

0 0.002
50 0.0055

100 0.012

As depicted in Table 2, daily calendar degradation can be represented as a linear
function of SOC. Since it is also considered linear with respect to time, the following
expression has been obtained from the table:

Degcal(h) = SOC(h)× 1.2× 10−4

24
(7)

where the following apply:

• Degcal(h): Calendar degradation during hour h (%).
• SOC(h): SOC at the end of hour h (%)

3.3. Control Architecture

The EMS operates on three levels. The tertiary level operates in advance, and is
responsible for formulating strategies for offerings in various energy markets. It receives
as inputs the predicted prices, generation, and the real-time SOC for the intraday market
and SE optimization models, which are executed at this control level. It then sends market
commitments to the secondary level.

The secondary control level operates in real-time and generates the setpoints for the
BESS based on the difference between generation and commitments generated on the third
level. The BESS setpoints are calculated as follows:

PESS(h) = PCom(h)− PGen(h), (8)

where the following apply:

• PESS(h): BESS setpoint during hour h (MW).
• PGen(h): Generation during hour h (MW).



Batteries 2023, 9, 483 8 of 19

• PCom(h): Commitment during hour h (MW).

As shown, when an upward deviation is anticipated, the BESS will receive a setpoint
to charge the excess. Conversely, when a downward deviation is expected, a discharging
setpoint is generated.

The primary control level manages the energy storage system; it receives charge–
discharge setpoints from the secondary level and adjusts them based on the real-time
SOC. If the BESS does not have enough energy to cover the missing energy, a downward
deviation will occur during that hour. If the BESS is unable to store the excess energy, then
an upward deviation will occur.

A sketch of the EMS control architecture is illustrated in Figure 5.

Primary level

Secondary level

Tertiary level

ESS

Predicted prices

Predicted generation
Plant setpoints

ESS setpoints

Allowed ESS setpoints Real time SOC

Figure 5. EMS control levels.

3.4. Daily Profits Calculation

The daily profits are calculated as the sum of the hourly profits. In Equation (9), the
calculation of daily earnings is depicted. The daily losses are formulated as in Equation (10).

Earnings =
24

∑
h=1

(
EDM,C(h) ·ΠDM(h) + EID,C(h) ·ΠID(h)

)
. (9)

Losses =
24

∑
h=1

(
Pϕ(h) ·ΠID(h) + λcost(h)

)
. (10)

where the following apply:

• Earnings: Daily earnings (EUR).
• EDM,C(h): Energy commitment in day-ahead market during hour h (MWh).
• ΠDM(h): Day ahead market real price during hour h (EUR/MWh).
• EID,C(h): Energy commitment in intraday markets during hour h (MWh).
• ΠID(h): Intraday market real price during hour h (EUR/MWh).
• Losses: Daily losses (EUR).
• Pϕ(h): Power purchased in intraday market during hour h (MW).

Downward deviations can be corrected in intraday markets in two ways:

• By purchasing the expected energy deficit in the intraday market (Pϕ(h)).
• By using stored energy to cover the imbalance.

The optimization algorithm chooses how to correct expected deviations depending on
the intraday market prices and deviation costs at each hour.
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4. Optimization Problems for Market Participation

In this work, market scheduling strategies are formulated as mathematical optimiza-
tion problems. The progressive optimization approach, similar to the one described in [5], is
employed. The day-ahead market scheduling problem is first solved to generate an hourly
power schedule vector PSch. This vector is updated and sent to the secondary control level
in real-time throughout the day. The process is illustrated in Figure 6.

DM

SE

ID2 ID2

SE

ID3
ID3

SE

ID4 ID4

SE

ID5 ID5

SE

ID6 ID6

�ID2

P21:00

�ID3

P1:00

�ID4

P4:00

�ID5

P9:00

�ID6

P12:00

�ID2

P21:00

�cost

�ID3

P1:00

�cost

�ID4

P4:00

�cost

�ID5

P9:00

�cost

�ID6

P12:00

�cost

�DM

P12:00

PSch

Figure 6. Daily optimization process.

This section presents the formulation of the optimization problems. The day-ahead
market offering is explained first, followed by the intraday market offering, and finally the
proposed SE service optimization is described as a separate problem.

4.1. Day-Ahead Market Offering

The inputs for the day-ahead market offering include the price and power generation
forecasts for the next day generated at 12:00 PM and the plant assets’ parameters. The
optimization problem is subject to the following constraints:

1. The charge power cannot be higher than the nominal value:

Pch(h) ≤ Pnom,BESS · φd(h), (11)

where the following apply:

• Pch(h): Charging power during hour h (MW).
• Pnom: Nominal power (MW).
• φd(h): A binary variable that equals 1 when the battery is not discharging during

hour h.
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2. The discharge power cannot be higher than the nominal value:

Pdis(h) ≤ Pnom,ESS · φc(h), (12)

where the following apply:

• Pdis(h): Discharging power during hour h (MW).
• Pnom: Nominal power (MW)
• φc(h): A binary variable that equals 1 when the battery is not charging during

hour h.

3. The charging power is always positive:

Pch(h) ≥ 0. (13)

4. For optimization algorithm simplicity, the discharge power is also always positive:

Pdis(h) ≥ 0. (14)

5. The simultaneous charge and discharge is not possible:

φc(h) + φd(h) ≤ 1. (15)

6. The energy stored at the end of each period is calculated as follows:

E(h) = E(h− 1) +
(

Pch(h) · ξ −
Pdis(h)

ξ

)
, (16)

where the following apply:

• E(h): Energy stored in the battery at the end of hour h (MWh).
• ξ: Efficiency (%)
• E(h − 1): Energy stored on the battery at the beginning of hour h, which is

considered to be 0 at the first hour.

7. The stored energy cannot have a negative value:

E(h) ≥ 0. (17)

8. The BESS cannot discharge if its participation in the day-ahead market is disabled;
this constraint is activated depending on the case of study:

Pdis(h) = 0. (18)

9. The power flow of the plant is defined as follows:

Pgen(h) = Ps(h) + Pch(h), (19)

where the following apply:

• Pgen(h): Total generation power during hour h (MW).
• Ps(h): Generation power sent directly to the grid during hour h (MW).
• Pch(h): Generation power sent to the storage system during hour h (MW).

The following objective function seeks to maximize the income:

Max

{
24

∑
h=1

ΠDM(h) ·
(

Ps(h) + Pdis(h)
)}

. (20)

The objective of this function is to maximize profits through the generation of the
optimal schedule based on forecasted energy and prices. Deviations are not accounted for
in this optimization problem and are addressed in the intraday market optimization. The
output of this offering strategy is the hourly schedules for the following day, which serve
as input for the next optimization problems.
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As it can be seen, the BESS does not purchase energy from the market. As per the
regulations of the Renewable Energy Economic Regime [21], a BESS is not allowed to
purchase energy from electricity markets when operating in hybrid plants.

4.2. Intraday Market Participation

The intraday market participation aims to adjust the hourly schedule in the case of
expected deviations. It does so through two means: selling expected excess energy if
enabled and purchasing energy in case of expected downward deviation. The optimiza-
tion function takes the following inputs: committed hourly schedules, generated power
prediction, deviation costs, intraday market prices, and the expected state of charge at the
beginning of delivery.

Each intraday market session occurs three hours before delivery, as shown in Table 1.
The expected SOC at the start of delivery is communicated by the tertiary control level. The
constraints for this optimization are the same as those for the day-ahead market scheduling
problem, with the addition of the following constraints:

1. The upward deviations are

λ↑(h) = PPCC(h)− Psch(h), (21)

where the following apply:

• λ↑(h) : Upward deviation during hour h (MW).
• PPCC(h) : PCC power during hour h (MW).
• Psch(h) : Scheduled power during hour h (MW).

2. The downward deviations are

λ↓(h) = Psch(h)− PPCC(h), (22)

where the following applies:

• λ↓(h) : Downward deviation during hour h (MW).

3. The downward deviations are considered always positive, for simplicity purposes:

λ↓(h) ≥ 0. (23)

4. The same happens with upward deviations:

λ↑(h) ≥ 0. (24)

As can be seen, when one type of deviation takes place, the other is equal to zero.
5. The hourly deviation costs are

λcost(h) = λ↓(h) · ρ(h)− λ↑(h) · β(h), (25)

The deviation penalty and bonuses are calculated from expressions (3) to (5). The
intraday optimization uses real day-ahead market prices, available at the time of
the intraday market. The deviation coefficient is set at 21% and the average is from
2017, and it is used only as an assumption at this stage, while historical deviation
coefficients are used later to calculate real benefits.

6. The internal power flow constraint depicted in (19) is modified:

Pgen(h) = Ps(h) + Pch(h) + Pdel(h) + Pcurt(h), (26)

where the following apply:

• Pdel(h): Generated power used to cover deviations during hour h (MW).
• Pcur(h): Generation power curtailed during hour h (MW).

The generated power is allocated to either cover expected deviations or to maximize
profits in the intraday market.
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7. The constraint regulating stored energy is a modification of (16) as follows:

E(h) = E(t− 1) +
(

Pch(h) · ξ −
Pdis(h) + Pdis,s(h)

ξ

)
, (27)

where the following applies:

• Pdis,s(h): BESS power sold during hour h (MW).

This division of discharged power into two parts—one used to cover deviations and
one used for arbitrage—is similar to the division of generated power.

8. If arbitrage in the intraday market is disabled, the following constraints are applied:

Pdis,s(h) = 0. (28)

Ps(h) = 0. (29)

9. The PCC output power is computed as follows:

PPCC(h) = Pdel(h) + Pdis(h) + Pϕ(h), (30)

The intraday market purchased power is not physically received by the plant and
serves to fulfill commitments in the day-ahead market in case of deviations. It is
therefore not included in the PCC output power constraint, which measures expected
deviations. The exchanged power is part of the scheduled power vector input for the
subsequent intraday market optimization, as shown in the constraints represented by
expressions (21) and (22).

The objective function is defined in (31) with two goals: minimizing expected devia-
tions and maximizing profits through energy trading.

Max

{
IDlen

∑
h=1

ΠID(h) ·
(

Ps(h) + Pdis,s(h)− Pϕ(h)
)
− λcost(h)

}
, (31)

where the following applies:

• IDlen: Intraday market length.

The hourly commitment vector is updated using the outputs of the intraday market
optimization problem:

PSch,new(h) = PSch,prev(h)− Pϕ(h) + (Ps(h) + Pdis,s(h)) (32)

where the following apply:

• PSch,new(h): New hourly schedule (MW).
• PSch,prev(h): Previous hourly schedule (MW).

4.3. State of Charge Emptying

As previously discussed, the secondary control level sends generated energy to the
grid when the BESS is full and hourly commitments are fulfilled, leading to an upward
deviation. The market operator only pays for excess energy at the day-ahead market price
when the deviation is in favor of the system, as described in Equations (2) and (3). This can
result in a missed opportunity to sell energy at higher prices when the deviation is against
the system.

Moreover, the highest calendar degradation occurs when the BESS is full, as shown in
Table 2. A new operating mode is proposed that involves selling part of the stored energy
on the nearest intraday market when the BESS SOC exceeds a set threshold. This service
differs from intraday market arbitrage in the following ways:

• It operates simultaneously with the intraday market optimization process.
• It only manages energy above a certain threshold, not the entire BESS.
• It is limited to offering energy only in the first hours of each intraday market, to

prevent overlap with the next one.
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In Figure 7, the operating hours of the proposed service are shown, marked in blue,
over the delivery hours of the intraday market, which are represented as white bars.

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 15:0014:0013:0012:0011:0010:0009:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

INTRADAY 2

INTRADAY 3

INTRADAY 4

INTRADAY 5

INTRADAY 6

Figure 7. SE service operating hours.

This service splits the BESS into two virtual energy storage systems (VESS), one for
profit generation and the other for deviation reduction. The stored energy is divided with
a threshold of 75% set for the SE service. This value was determined through testing
various values in the study and was found to be the optimal balance between profits and
deviation reduction.

SOCi = SOCSE − SOCthr, (33)

where the following apply:

• SOCSE: SOC used for SE service (%).
• SOCthr: SOC threshold (%).

The SE service is managed as an optimization problem identical to the one for intraday
market participation but limited to the first hours of the next intraday market. The variables
used for deviation coverage are disabled as the objective of this service is solely profit
generation. The objective function is as follows:

Max

{
SElen

∑
h=1

ΠID · PSE(h)
)}

, (34)

where the following apply:

• SElen: SE length for the next intraday market .
• PSE(h): Power sold during hour h (MW).

The goal is to sell available energy at the most expensive hours. The scheduled power
vector is updated as in (32).

PSch,new(h) = PSch,prev(h) + PSE(h) (35)

5. Simulations and Results

In this section, the simulation scenarios are presented, each showcasing a different
approach to using the BESS on the HF. Each scenario involves simulating the HF with the
respective approach operating during 2018 in the Iberian electricity markets. The aim is to
compare and assess whether revenue-stacking is more efficient than focusing on individual
services, and the performance of the proposed service.

At the end of each day, the accumulated degradation and SOC serve as initial val-
ues for the following day’s operation. The average daily profits and degradation under
each scenario are used in a full project extrapolation for a comprehensive view of the
different cases.

5.1. Simulation Cases

The simulation cases used are the following:

• Ideal: Perfect foresight of prices and power generation, which operates only in the
day-ahead market.

• DM: Energy sales in the day-ahead and intraday markets to cover deviations.
• DM + SE: Same as DM, but with additional SOC emptying service.
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• DM + ID: Energy sales in day-ahead market and intraday markets to sell excess and
cover deviations.

• ID: Only participates in intraday markets for energy sales and covering deviations.
• SE: Only participates in intraday markets to cover deviations and performs SE service.
• CF: No market participation; covers deviations through capacity firming services

(already provided in previous cases).

5.2. Simulation Results

The simulation was conducted using the same input data in each case. Expected
profits were calculated by summing the earnings from day-ahead and intraday market
commitments and real prices. Real profits were calculated as the difference between daily
earnings (Equation (9)) and daily losses (Equation (10)) using historical data of electricity
prices and deviation coefficients. Figure 8 displays the accumulated profits and costs for
each scenario, and Table 3 shows the numerical results.

Ideal DM + ID ID DM DM + SE SE CF

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

€

×106

Ex ected benefits
Deviation costs/bonus
ID  urchases costs
Real benefits

Figure 8. Simulations results.

Table 3. Numerical results.

Case
Expected

Profits
(EUR M)

Deviation
Costs

(EUR M)

Purchases
Costs

(EUR M)

Real
Profits

(EUR M)

Ideal 0.614 0 0 0.614
DM + ID 1.677 0.031 1.309 0.336

ID 1.671 0.029 1.305 0.338
DM 0.488 −0.277 0.256 0.509

DM + SE 0.581 −0.201 0.276 0.507
SE 0.568 −0.195 0.255 0.508
CF 0.482 −0.27 0.244 0.509

The results indicate that expected profits increase with intraday market arbitrage, as
anticipated. These profits are calculated based on the delivery of all committed energy to
the market, resulting in higher profits in scenarios with intraday market participation as
all expected energy excess can be sold. The worst expected outcomes occur in scenarios
without intraday market participation, and similar results are observed when the BESS
performs capacity firming.

The deviation costs are negative in almost all scenarios, indicating when upward
deviations are more frequent. Purchasing energy in the intraday market effectively avoids
downward deviations. The fewer services the BESS provides, the greater the negative
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deviation costs, suggesting that the BESS tends to be fully charged most of the time, leading
to upward deviations.

Purchases in the intraday market are the primary cause of profitability losses. These
costs are significantly higher with intraday market participation. The fact that intraday
market purchases occur when the BESS cannot cover expected deviations highlights that
increased BESS involvement in markets can have negative effects.

Committing more energy to various markets increases the risk of having to make
corrections by purchasing energy in the intraday market. The best results seem to be
achieved by letting the BESS operate solely in the day-ahead market or providing capacity
firming services. As shown in Figure 9, intraday market participation has resulted in the
need to cover up to 40% of committed energy through intraday market purchases.

Figure 9. Committed energy covered with purchases in intraday markets.

Figure 10 displays the accumulated degradation. In scenarios where the BESS provides
the most services, it tends to be emptier, which reduces calendar degradation and results in
lower overall aging of the BESS.

Figure 10. Degradation in each case.
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Figure 11 shows the comparison between real profits and degradation. It reveals that
reserving the BESS for SOC emptying and capacity firming yields the best outcome when
profits are compared to capacity loss, which indicates a more efficient usage of the BESS.
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Figure 11. Real profits per 1% of capacity lost.

5.3. Full Project Extrapolation Results

The trade-off between maximizing short-term profits and stretching the life of the en-
ergy storage system is a crucial factor to consider. The NPV is a useful metric that takes into
account future cash flows and discount rates to determine a project’s overall profitability.

In the table, the NPV of each case is calculated, discounting the daily cash flow and
the purchase cost of the BESS. The results show that the best NPV is achieved when the
BESS is reserved for SE and capacity firming. When only participating in the day-ahead
market, the NPV is not very different, but participating in the intraday market significantly
lowers the NPV, indicating lower project profitability.

The results of each simulation scenario are extrapolated for the entire project life. The
average daily cash flow is determined from the average daily results of 2018, and daily
degradation is similarly calculated to estimate project completion. The project ends when
the accumulated degradation of the BESS reaches 20%, a commonly used value in the
relevant literature (e.g., [22,23]). The average values and estimated project lifetimes for
each case are presented in Table 4.

Table 4. Project extrapolation under each case.

Case
Average Daily
Capacity Loss

(%)

Average Daily
Profits
(EUR)

Lifetime
(Years)

Ideal 2.08× 10−3 1682.28 26.31
DM + ID 7.48× 10−3 921.44 7.32

ID 7.56× 10−3 925.11 7.25
DM 1.06× 10−2 1394.37 5.12

DM + SE 1.02× 10−2 1389.89 5.36
SE 1× 10−2 1392.7 5.48
CF 1.05× 10−2 1394.74 5.18
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It is worth noting that the BESS is not operated in the ideal scenario. In this case, the
BESS is only utilized for allocating generated energy when prices are the highest. However,
due to the degradation costs and the BESS efficiency, this operation is not profitable.

The SE has lower daily profits but a higher NPV compared to the case with CF. The
NPV of each project is calculated using a 7.5% discount rate and is presented in Table 5.
The results show that using the BESS for the SE service and capacity firming provides the
highest NPV.

Table 5. NPV under each case.

Case NPV (EUR M)

Ideal 7.226
DM + intraday market 1.912

Intraday market 1.905
DM 2.179

DM + SE 2.253
SE 2.299
CF 2.2

6. Conclusions

A three-level EMS for a HF to participate in the Iberian electricity market has been
presented. The day-ahead and intraday market offering strategies are formulated as linear
programming problems, with generation and price forecasts at the start of each market
session as inputs. The model has incorporated adjustments based on Iberian market
regulations to account for committed power correction impacts. It also includes a real-time
degradation model of the BESS to assess capacity and power losses.

A simulation framework has been proposed to assess various BESS market partici-
pation strategies. The results indicate that participating in both day-ahead and intraday
wholesale markets generates the highest expected profits, but actual profits are lower com-
pared to other strategies. The proposed optimization algorithm and results of the study can
be applied to any electrical system that operates with concurrent day-ahead and intraday
spot markets, which is a common practice in many countries. This can be used as a guide
for agents trying to optimize their plants.

The results show that using the BESS in all markets does not necessarily result in a
higher income, challenging the common belief that utilizing the BESS in all markets leads
to the best outcome. The proposed SE service enables participation in intraday markets
without the drawback of market overlap, enhancing the BESS utilization efficiency and
increasing the NPV of the project. Moreover, it highlights the crucial role of adjustment
mechanisms on actual income and the importance of modeling them thoroughly. Lastly, it
is worth remarking that the plant proposed in this work is considered a price-taker; the
effect of a plant or a number of plants large enough to impact electricity market prices is
proposed as a future work.
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Abbreviations
The following abbreviations are used in this manuscript:

BESS Battery energy storage system
HyF Hybrid farm
EMS Energy management system
DOD Depth of discharge
SOC State of charge
SOH State of Health
NPV Net present value
EOL End of life
MILP Mixed-integer linear program
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