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Abstract: Lithium-ion batteries, known for their high efficiency and high energy output, have gained
significant attention as energy storage devices. Monitoring the state of charge through battery man-
agement systems plays a crucial role in enhancing the safety and extending the lifespan of lithium-ion
batteries. In this paper, we propose a state-of-charge estimation method to overcome the limitations
of the traditional open-circuit voltage method and electrochemical impedance spectroscopy. We
verified changes in the shape of the voltage relaxation curve based on battery impedance through
simulations and analyzed the impact of individual impedance on the voltage relaxation curve using
differential equations. Based on this relationship, we estimated the impedance from the battery’s
voltage relaxation curve through curve fitting and subsequently estimated the state of charge using a
pre-established lookup table. In addition, we introduced a partial curve-fitting method to reduce the
estimation time compared to the existing open-circuit voltage method and confirmed the trade-off
relationship between the estimation time and estimation error.

Keywords: Li-ion battery; state of charge; voltage relaxation curve; open-circuit voltage

1. Introduction

As part of the global carbon neutrality effort, the utilization of renewable energy has
grown, leading to an increased interest in energy storage systems (ESSs) to compensate
for the intermittency of renewable energy generation. In addition, the EV (electric vehicle)
market is expanding due to the transition from existing internal combustion engine trans-
portation to electricity-powered transportation. EV power devices and ESSs store electrical
energy through battery packs comprising a combination of battery cells, and it is important
to select the appropriate cell according to the purpose of use. Lithium-ion batteries (LIBs)
are more suitable for energy storage than other batteries due to their high energy density,
low self-discharge rate, and long cycle life [1]. Despite these advantages, LIBs have stability
issues that can cause the battery to overheat and explode or catch fire if over-charged
or over-discharged [2–4]. Therefore, proper management of the battery is essential and
can be realized through a BMS (battery management system). BMS contributes to the
improvement of battery life and reliability through continuous monitoring of the battery,
and the factors monitored by BMS are the state of charge (SOC), state of health (SOH), and
state of power (SOP).

The SOC is one of the key metrics in a BMS that indicates the remaining capacity
of a battery. It plays a similar role to the fuel gauge in an internal combustion engine
car, providing the user with information about the available capacity so that the user
can make a reasonable judgment. In addition, monitoring the SOC can improve battery
reliability by preventing over-charging or over-discharging. Since the SOC is difficult to
estimate directly, it is often estimated indirectly via measuring the current, voltage, and
impedance [5,6]. Representative methods include Coulomb counting (CC), open-circuit
voltage (OCV), and electrochemical impedance spectroscopy (EIS). Coulomb counting
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is a method that calculates the remaining charge capacity of a battery by continuously
monitoring the current flowing through the battery during charging and discharging. The
SOC can be estimated by setting the charging current direction to + and the discharging
current direction to—and calculating the current flowing in and out of the battery. It is a
simple and intuitive method that can calculate the SOC directly through the current sensor,
and it has the advantage of measuring the current in real time to estimate the SOC during
device operation.

However, since the SOC estimate is determined by the initial SOC, the charge/discharge
current, and the total capacity of the battery, it is subject to error due to the error of the
current sensor and the decrease in capacity due to battery aging. With the increasing usage
time of the battery, the errors accumulate, and if they are not corrected, the SOC estimation
error will increase. Therefore, the Coulomb counting method is being researched for its
potential to be combined with other SOC estimation techniques or algorithms to calibrate
the initial SOC value, aiming to enhance the accuracy [7–9]. The OCV refers to the voltage
of the battery when it is not connected to any load or charging terminal, and it is closely
associated with the EMF (electromotive force). A battery is a device that converts electrical
energy into chemical energy and stores it, and its voltage varies due to internal chemical
reactions when it is charged or discharged. However, when the circuit is opened, the
internal chemical reaction stops, and the battery voltage gradually stabilizes. The graph
showing the terminal voltage as a function of time after stopping the charge and discharge
current is called the voltage relaxation curve, as shown in Figure 1, and the battery voltage
is usually called the OCV when it has achieved internal equilibrium through a sufficient
stabilization period. At internal equilibrium, the OCV has the same meaning as the EMF
and has a one-to-one correspondence with the SOC [10]. Therefore, the OCV method works
by measuring the battery OCV and estimating the current SOC through a pre-established
SOC-OCV curve and is frequently used due to the ease of the estimation that the SOC can
be directly obtained from the SOC-OCV relationship.
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EIS is used to analyze the health of electrochemical systems, such as batteries, by
applying a constant alternating voltage to the battery and varying the frequency in steps
to measure the voltage response. The Nyquist plot is a graph that expresses the voltage
response on a complex plane according to the frequency, through which the electrical
characteristics and status of the battery can be identified. By analyzing the internal bat-
tery characteristics such as the internal resistance, ion transfer resistance, and electrolyte
resistance through a Nyquist plot, the battery status can be precisely identified, and SOC
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estimation research is being conducted using this [11,12]. EIS provides information on the
internal chemical reactions of the battery, enabling high-accuracy SOC estimation compared
to other methods. However, EIS requires specialized equipment for measuring voltage
responses across various frequencies and has a high computational complexity due to
the use of electrochemical models [13]. Consequently, EIS is recognized as a relatively
time-consuming and costly method, so it is rarely used directly to estimate the SOC in
practical applications and is mainly used in research or battery performance evaluation
where accuracy is required. In practical applications, the OCV method is more frequently
used than EIS for SOC estimation due to its simplicity. However, as shown in Figure 1, a
long battery relaxation process is required to obtain the OCV, typically taking from several
hours to tens of hours. For this reason, the OCV method cannot provide real-time SOC
estimation for an operating device. Therefore, prior research has been conducted to reduce
the estimation time through OCV prediction [1] and to enable real-time estimation through
ECM-based OCV computation methods [14,15].

In this paper, we propose an SOC estimation method using a voltage relaxation curve
to address the limitations of the EIS and OCV methods. Internal battery reactions like
polarization and charge transfer occur over extended periods, and the voltage relaxation
curve can be obtained through recording the terminal voltage over time. Figure 1 shows
the voltage relaxation curve when charging is stopped. As the battery is charged, the
internal electromotive force and OCV increase as energy is accumulated, which leads to
a rise in the terminal voltage. When the charging current is stopped at the Toff point in
Figure 1, the terminal voltage gradually decreases and converges to the OCV as internal
chemical reactions reach equilibrium, and the OCV has a constant value. The time after
Toff is referred to as the relaxation period, split into the Rs-Rp region and Rp-Cp region.
The Rs-Rp region is caused by ohmic resistance and shows a sharp change immediately
after stopping the charging current. After that, the Rp-Cp region is caused by polarization
resistance and capacitance and converges to the OCV exponentially, so most of the time of
OCV measurement is spent in this region. The voltage relaxation curve is influenced by
temperature and battery impedance (ohmic resistance, polarization capacitor, resistance),
and understanding the relationship between the voltage relaxation curve and these factors
provides information for battery state estimation, leading to ongoing research in this
field. In Ref. [16], a study was conducted to reduce the SOC estimation time by using
an interpolation to estimate the OCV utilizing the rapid change characteristics of the
voltage relaxation curve in the early stage. Refs. [17–19] improves the practicality of
the OCV method by focusing on a voltage relaxation model for the prediction of the
OCV. Furthermore, Ref. [20] identifies key parameters related to the ohmic depolarization,
activation depolarization, and concentration depolarization processes and evaluates the
SOH through simulations on the voltage relaxation curve. In this paper, we investigated
the relationship between the battery impedance and voltage relaxation curves based on
simulations and differential equations. Using the established relationship, we identified the
battery impedance from the voltage relaxation curve through curve fitting. We estimated
the SOC using a lookup table method. Furthermore, to reduce the estimation time, we
performed the partial fitting of the initial range of the voltage relaxation curve for SOC
estimation and analyzed SOC estimation errors associated with the partial fitting range.

The paper is organized as follows. Section 2 presents the simulation results of the
relationship between the voltage relaxation curve and battery impedance using an ECM
(equivalent circuit model). Section 3 describes the experimental data measurements of
the voltage relaxation curve and discusses the curve-fitting method for battery impedance
estimation. Section 4 details the proposed SOC estimation method, and Section 5 addresses
the SOC estimation error and discusses the validity and effectiveness of the proposed
method. Section 6 concludes the paper.
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2. Battery Model

Battery modeling methods include empirical models, ECM, electrochemical models,
and data-driven models, depending on the purpose of use. Among them, the ECM has Rint,
Thevenin, and DP (dual-polarization) models depending on the degree of representation of
the internal characteristics of the battery. In this paper, the Thevenin model, which has a
low computational complexity and can represent the relaxation process, is used for rapid
SOC estimation and is shown in Figure 2. Voc is the OCV as a function of the SOC. Rs
corresponds to the internal resistance of the battery, and Rp and Cp are connected in parallel
to represent the polarization characteristics of the battery. Vt is the battery terminal voltage,
and the voltage relaxation curve is obtained through measuring the terminal voltage Vt
during the relaxation period.
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Figure 2. The circuit configuration for the simulation of the charging and relaxation process. The
Thevenin model represents the battery, whereas the switch and external DC source simulate the
charging and relaxation.

The relationship between the battery impedance (Rs, Rp, Cp) of the ECM and the
voltage relaxation curve was investigated through simulation. Since the battery is modeled
through the ECM, the transients of the ECM can explain the voltage relaxation curve
of the battery. To model the battery charging and discharging process, a switch and an
external DC voltage source were connected to the Thevenin model, as shown in Figure 2.
While charging through the external DC voltage source, the voltage relaxation curve was
measured when charging was stopped via opening the switch. The shape of the voltage
relaxation curve was changed via adjusting the individual impedance values. The effect of
individual impedance on the voltage relaxation curve was verified.

Figure 3 shows the simulation results for the change in the shape of the voltage
relaxation curve with individual impedance. The simulation results can be analyzed from
the transients for Vt in Figure 2. Voc and Vs. are assumed to be constant, and the charging
currents flowing through I1, Rp, and Cp are called I2 and I3, respectively, and the back end
of the Rp and Cp parallel circuits is called Vt. At t > 0, the charging current I1 was cut off to
calculate the transient response of Vt. To calculate the initial condition of I1, we assume
that Cp is fully charged before the switch is opened. The current flows through Rs and Rp,
and the initial condition of I1 is as follows:

I1
(
0−
)
= I2

(
0−
)
=

Vs − VOC

Rs+Rp
(1)
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Figure 3. The variation in voltage relaxation curve with impedance adjustment. An increase in Rs

(a) and a decrease in Rp (b) contribute to an increase in the size of the Rs-Rp region, and increases in
Rp and Cp (c) contribute to a decrease in the speed of convergence to the OCV.

The process to find the transient response of the terminal voltage Vt is as follows. The
equation obtained through the application of Kirchhoff’s current law is presented as:

I1(t) = I2(t) + I3(t) (2)

Since the voltages across Rp and Cp are equal, the following equation holds true:

RpCp =
1

Cp

∫
I3(t)dt (3)

As I1 becomes 0 upon current interruption, and I2 gradually converges to 0 due to the
discharge of the capacitor, the transient response of I2, calculated from (1), (2), and (3), can
be expressed as follows:

I2(t) =
Vs − VOC

Rs+Rp
e
− t

RpCp (4)

Since I1 (t) is zero at t > 0, the voltage across Rs becomes zero as the current is cut off,
so the transient response of the terminal voltage can be calculated as follows:

Vt(t) = VOC +
(V s − VOC)Rp

Rs+Rp
e
− t

RpCp (5)

The influence of impedance on the voltage relaxation curve is divided into two regions.
The first is the Rs-Rp region, which corresponds to the initial voltage variation, and the
second is the Rs-Rp region, which gradually converges. The impact of each impedance can
be understood from (5), which is the transient of the terminal voltage. The transient is
shown to converge to Voc by decreasing polarization as time increases, according to (5). The
second term of (5) is for the Rp-Cp region, which represents the polarization of the battery.
Since Vs and Voc are constants, the sum of the Rs-Rp region and the Rp-Cp region is constant.
Therefore, the influence of impedance on the initial voltage variation can be determined
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from the Rp-Cp region. As the internal resistance Rs increases, the Rp-Cp region decreases,
which means that the initial voltage variation increases. Conversely, an increase in the
polarization resistance Rp increases the Rp-Cp region, which decreases the initial voltage
variation. Next, the influence on the Rp-Cp region can be determined through the time
constant τ = RpCp in the second term of (5). With increasing values of Rp and Cp, the time
constant τ increases, requiring more time for the polarization to disappear, consequently
resulting in a gentler slope of the voltage relaxation curve. The simulations performed
show a direct relationship between the relaxation curve and the impedance, indicating
the possibility of estimating the battery impedance from the voltage relaxation curve of a
particular SOC. Based on the results of this study, the SOC was estimated via identified
impedance, which is described in the next section. This approach enables the estimation of
battery impedance without the need for specialized equipment in EIS.

3. Research Setup

The equipment used to measure the experimental data of the voltage relaxation curve
is shown in Figure 4. The battery was an ICR 14,500 Li-ion battery with a rated voltage of
3.7 V and a rated capacity of 800 mAh. The cells were pre-discharged to 2.75 V, the voltage
at 0% SOC, and charged using a constant voltage (CV) method. Charging was interrupted
at 10% intervals over an SOC range from 20% to 80% to measure voltage relaxation at seven
SOCs. The charging current was monitored via a current sensor to calculate the reference
SOC and, from the calculated SOC, the charging interruption time was determined. After
the charging interruption, the relaxation period was set to 600 s, and we verified that the
voltage varied less than 0.02% after 600 s of relaxation across the seven SOCs. The voltage
at the end of the relaxation period was set to the OCV of the corresponding SOC, and the
sampling time for building the voltage relaxation curve was 1 s. Figure 5 shows the voltage
profile when the battery is charged and relaxed to obtain the voltage relaxation curve.
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The process of deducing the impedance from the voltage relaxation curve was per-
formed via curve fitting. If the simulated voltage relaxation curve is matched to the
measured voltage relaxation curve via adjusting the impedance, then the impedance at that
SOC can be obtained. Although impedance variation with an SOC is common, according
to [21], the internal resistance Rs varies only slightly with the SOC. Therefore, when adjust-
ing the impedance for curve fitting, Rs was fixed at 2.609 Ω, and Rp and Cp were adjusted
to match the voltage relaxation curve. The curve fitting of the experimentally measured
voltage relaxation curve was performed on seven SOCs for different fitting ranges. Figure 6
shows an example of the curve-fitting process for the entire relaxation curve, and the
accuracy of the curve fitting is assessed as 0.000925 standard deviation.
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fitting is performed according to the fitting interval for the Rp-Cp region.

The voltage relaxation curve exhibits an initial rapid change, where the voltage across
the internal resistor diminishes quickly as the battery charging current (I1 in Figure 2) ceases.
Subsequently, the current in the RC parallel circuit, induced by Cp, gradually diminishes,
causing the terminal voltage to converge towards the OCV. Since these characteristics are
due to the battery impedance, the impedance can be deduced from the voltage relaxation
curve. Therefore, if the impedance is estimated via curve fitting to the initial voltage
relaxation curve instead of the long relaxation period of the existing OCV method, the SOC
estimation time can be shortened. To demonstrate the validity of this method, the SOC
estimation error via curve fitting was compared in various fitting ranges. The fitting range
was set to the time to reach a certain percentage of the Rp-Cp region. For each of the seven
SOCs, we calculated the size of the Rp-Cp region, measured the time it took to reach 20–70%
of its size, and calculated the average for each SOC. As shown in Table 1, the six calculated
average times were set as the fitting ranges for the experiment.

Table 1. The fitting range calculated as the arrival time to the ratio of the Rp-Cp region.

Rp-Cp Region (%) 20 30 40 50 60 70

Measurement Time(s) 8.28 20.57 32.86 46.57 77.14 108.86

4. Proposal Method

SOC estimation is conducted via comparing the impedance estimated through curve
fitting with a pre-established lookup table. Therefore, the creation of the lookup table must
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precede this process. The fitting range is then set according to the device operating environ-
ment and allowed SOC estimation error. The fitting range means the actual downtime of
the device for the voltage relaxation measurement, which varies depending on the device’s
usage environment. In addition, the SOC estimation error and the length of the fitting
range have a trade-off relationship, so the fitting range is set via considering the device’s
operating environment and tolerance range. According to the fitting range, the estimated
impedance is calculated through curve fitting for the given voltage relaxation curve, and
finally, the SOC is estimated through the SOC estimation algorithm. In this paper, we set
the fitting range for the six ranges shown in Table 1 to estimate the SOC. The lookup table
for the seven SOC segments was created via curve fitting to the relaxation curve of 600 s
and is shown in Table 2.

Table 2. The impedance (Rp, Cp) lookup table calculated via the SOC.

SOC (%) 20 30 40 50 60 70 80

RP (Ω) 0.459 0.509 0.548 0.569 0.459 0.449 0.559

Cp (F) 147.5 307.0 227.5 146.0 167.9 254.6 127.8

Figure 7 represents the estimated impedance according to fitting ranges, enabling the
verification of impedance estimation errors. Since Rs is fixed, Rp determines the width
of the initial voltage variation, i.e., the starting point of the gradual convergence region.
Since the starting point of the Rp-Cp region is independent of the length of the fitting range,
the estimated Rp is less correlated with the length of the fitting range. However, the slope
of the fitting graph changes as the fitting region increases. Since Rp is fixed for fitting
the starting point, the slope is determined by Cp, which means that the SOC estimation
error along the fitting range is highly dependent on Cp. The algorithm for estimating the
SOC from impedance estimated through partial fitting is divided into two stages: the
first estimation and the second estimation. The first estimation step estimates a rough
SOC range, whereas the second estimation step estimates a more detailed figure. The first
estimation compares the estimated impedance to a lookup table to find the most similar
impedance and sets that SOC as the estimated range. To do this, the deviation is calculated
using the following formula:

dev =

√√√√(Rp, actual − Rp, estimated

Rp, estimated

)2

+

(
Cp, actual − Cp, estimated

Cp, estimated

)2
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As can be seen in Figure 7, the impedance has a non-linear relationship with the SOC,
so there were cases where the region where deviation was minimized did not cover the
actual SOC. To address this, we introduced the voltage just before charge interruption to
establish three candidate SOCs in order of decreasing deviation, and then set the estimation
range around the SOC that is closest to the voltage just before charge interruption. In this
paper, we set the estimation range to ±10% of the center SOC.

The second estimation computes the SOC estimate between the center SOC and the
neighboring SOCs in the estimation range as the ratio of Rp, Cp. Since there are two
neighboring SOCs in this process, the estimation range must be determined from two
ranges between the center SOC and the neighboring SOCs. In the case of linearity, such as
20–40% in Figure 7a, it is easy to determine which range the actual SOC is in. However,
if it is non-linear, such as 40–60%, a new criterion is needed to select the range. In such
situations, like the primary estimation, we introduce the voltage just before the charge
interruption as a deciding factor. We choose the range of the SOC of the adjacent SOC
with a closer voltage to the voltage just before charge interruption. Then, we calculate the
percentage of the estimated Rp and Cp from the center SOC’s Rp and Cp to the neighboring
SOC’s Rp and Cp, and estimate the final SOC by averaging the SOC estimate calculated
from Rp and the SOC estimate calculated from Cp.

5. Results and Discussion

In this study, the SOC was estimated via the identification of the battery impedance
through the voltage relaxation curve. To evaluate the SOC estimation performance of the
proposed method, SOC estimates were calculated for the different curve-fitting intervals
in Table 1. Curve fitting was performed on the voltage relaxation curves measured at
20–80% SOC, and 42 impedance estimates were calculated for each. Based on the estimated
impedance, the SOC was estimated, and Table 3 shows the comparison between the
estimated SOC and the actual SOC during curve fitting for the 70% section. The SOC
showed an estimation error of up to 5.00% and an average of 1.67%.

Table 3. Comparison of the actual and estimated SOC values for a fitting range of 70%.

Actual SOC (%) 20 30 40 50 60 70 80

Estimated SOC (%) 20.0 35.0 38.0 50.0 62.0 66.7 80.0

The SOC estimation errors for the six fitting ranges were averaged over the seven
SOCs. We found that the accuracy of SOC estimation increased as the curve-fitting range
increased, i.e., as the voltage measurement time increased. The maximum value of the
estimation error decreased to 15%, 15%, 15%, 15%, 7%, 6%, and 5%, depending on the
fitting range. As a comparison group to evaluate the performance of the proposed method,
the estimation time of the conventional OCV method was set. The time for the terminal
voltage to reach 99.9% of the Rp-Cp region of the voltage relaxation curve was measured for
seven SOCs, and the average value was calculated to be 530.14 s. This value was set as the
estimation time of the OCV method, and the measurement time reduction rate compared
to the existing OCV method was calculated for the six fitting ranges in Table 1, and it is
shown in Figure 8 along with the average SOC estimation error. From Figure 8, we can
see that the shorter the fitting range, the greater the reduction in the SOC estimation time,
and the higher the estimation error. From the SOC estimation results in Figure 8, we can
see the relationship between the estimation time and the estimation error, which means
that the proposed SOC estimation method is valid. From this relationship, we can predict
the minimum estimation time required depending on the tolerance of SOC estimation,
which can be used as an indicator to judge the applicability of the proposed SOC estimation
algorithm in devices that can be stopped briefly, such as electric vehicles.
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6. Conclusions

In this paper, we propose a novel SOC estimation method based on a voltage relaxation
curve and verify its effectiveness. The relationship between the voltage relaxation curve
and the individual battery impedance was investigated via the simulation of the voltage
relaxation curve. Based on the investigated relationship, the battery impedance was
identified via curve fitting from the measured battery voltage relaxation curve, and the
SOC was estimated using a lookup table from the estimated impedance. The estimation
time was reduced via the curve fitting of a part of the voltage relaxation curve, and it was
confirmed that the estimation error increased with the reduction in the estimation time.
Our future research direction will be focused on increasing the robustness of the proposed
SOC estimation method, considering its real-world applicability. In practical settings, the
voltage relaxation curve is affected by factors such as the C-rate, temperature, and aging,
all of which can influence the accuracy of SOC estimation. Therefore, our plan is to explore
methods that can alleviate the impact of these factors and enhance the precision of SOC
estimation using our proposed approach.
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