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Abstract: This paper investigates the polarization and heat generation characteristics of batteries
under different ambient temperatures and discharge rates by means of using a coupled electric–
thermal model. This study found that the largest percentage of polarization is ohmic polarization,
followed by concentration polarization and electrochemical polarization. The values of the three
types of polarization are generally small and stable under normal-temperature environments and
low discharge rates. However, they increase significantly in low-temperature environments and at
high discharge rates and continue to rise during the discharge process. Additionally, ohmic heat
generation and polarization generation also increase significantly under these conditions. Reversible
entropy heat is less sensitive to ambient temperature but increases significantly with the increase
in the discharge rate. Ohmic heat generation and polarization heat generation contribute to the
total heat generation of the battery at any ambient temperature, while reversible entropy heat only
contributes to the total heat generation of the battery at the end of discharge.

Keywords: electric–thermal model; polarization; heat generation; lithium-ion battery

1. Introduction

Currently, electric vehicles powered by lithium-ion batteries face several challenges,
including limited driving range [1], slow charging times [2,3], battery temperature incon-
sistencies [4–6], the risk of thermal runaway [7,8], and short battery life [9,10]. Researchers
have concentrated on increasing the energy density of lithium-ion batteries to tackle the
issue of restricted range. This is achieved through innovations in electrode materials, bat-
tery weight reduction, and pack optimization. The ternary system batteries’ energy density
has already surpassed 200–300 Wh/kg, and further developments such as high nickel
ratio [11–13], silicon carbon cathodes [14–17], and CTP or CTC technology [18] promise
even higher energy densities. Most electric vehicles rely on a 400 V voltage platform and
increasing charging current to achieve faster charging, but this can exacerbate internal
polarization effects leading to reduced chargeable and dischargeable capacity, substance
decomposition, and lithium precipitation [19–21]. These effects are more pronounced at
low temperatures and high charge or discharge rates, indicating a need for further research
in these areas. Therefore, it is imperative to conduct research on the characteristics of
lithium-ion batteries under high current conditions.

The difference between the equilibrium potential and the terminal voltage is known
as polarization, which is more evident at low temperatures and high currents. Temperature
has a significant impact on the performance of lithium-ion batteries as well as the risk of
thermal runaway during charging and discharging [22,23]. Charging or discharging the
battery at a high rate at very low temperatures may cause lithium precipitation, and if the
growing lithium dendrites pierce the battery separator, it might result in thermal runaway
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and an internal short circuit [24,25]. The polarization phenomenon and heat generation
mechanism of the battery are complex and influenced by various factors such as battery
characteristics (internal resistance and entropy thermal coefficient), operating conditions
(ambient temperature and load current), and the scheme, structure, and control strategy of
the battery thermal management system. Therefore, it is essential to investigate changes in
the battery’s internal polarization and heat generation characteristics by using electrical
and heat generation models.

Ohmic, electrochemical, and concentration polarization are the three different forms
of polarization [26,27]. The polarization phenomenon reduces the power density of the
battery, which results in reduced energy conversion efficiency and more energy waste.
It also reduces the cycle stability of the battery and affects the structural stability of the
electrode material and SEI membranes. The polarization phenomenon is influenced by
the temperature and charge–discharge rate of the battery, especially in low-temperature
environments and at high discharge rates, showing sudden changes in load current con-
nection and disconnection and in voltage transient, early termination of discharge, and a
reduction in the discharge plateau period. The highest polarization voltage dips are caused
by concentration and ohmic polarization, with electrochemical polarization producing mi-
nor drops. In numerical models, both the pseudo-two-dimensional (P2D) electrochemical
model and the resistor–capacitance (RC) equivalent circuit model successfully depict the
battery polarization phenomenon. Researchers have also developed new models to study
the polarization phenomenon and improve simulation accuracy. He investigated several
model parameters under varied beginning polarization conditions and current ratios to
examine both short- and long-time scale polarization characteristics [28]. In comparison
with the traditional RC model, the root-mean-square errors of the voltage and current
simulations were reduced by 79.65% and 79.27%, respectively. Lin developed a new po-
larization voltage model based on current and time by using the battery’s electrochemical
mode [29]. Simulation results showed that when charging the battery from a 0% SOC
(state of charge), i.e., 100% DOD (depth of discharge), to the cut-off voltage using a 3C
rate, the discrepancies in terminal voltage and polarization voltage at the cutoff voltage
are 1.4% and 4.9%, respectively. The average errors for the entire process were 1.14% and
4%, respectively. Fan examined the polarization characteristics of lithium-ion batteries
using various charging techniques [30]. They analyzed the time-varying characteristics of
the three polarizations and the relationship between battery voltage, polarization voltage,
and SOC at different constant current charging rates based on the spatial distribution of
battery voltage and electrolyte salt concentration. The findings showed that charge current
and SOC had a direct impact on polarization voltage, which in turn had an impact on
battery voltage. Qiu’s investigation into the polarization characteristics of lithium-ion
batteries during cycling charge and discharge processes using the hybrid pulse power
test indicates that higher charge and discharge rates lead to greater polarization internal
resistance [21]. Lv’s study suggests that the SOC has a substantial impact on the internal
resistance of batteries, with polarization internal resistance having the most significant
influence. However, current research on the polarization characteristics of lithium-ion
batteries mostly focuses on qualitative analyses of various discharge modes, and there is a
scarcity of quantitative analyses regarding environmental temperature and various types
of polarization [31].

Several elements, including heat creation, transport, and dissipation, have an impact
on a battery’s temperature. In 1958, JM Sherfey developed an isothermal calorimeter to
measure the thermal effect of batteries [32]. Bernardi derived the battery heat balance
equation in 1985, which includes four main heat generation components: reversible entropy
heat, ohmic heat, polarization heat, and side reaction heat [33]. As a result, precise determi-
nation of the battery’s heat generation characteristics is essential for battery modeling and
thermal control [34–43].

The current, open-circuit voltage, terminal voltage, temperature, and entropy heat
coefficient can all be used to compute the battery heat generation rate. The rate of battery
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heat generation is frequently determined using this equation. The properties of the bat-
tery’s heat generation can be assessed using methods like differential scanning calorimetry
(DSC) and adiabatic accelerated calorimetry (ARC). The Bernardi battery heat generation
rate calculation equation is commonly used in numerical models. However, to optimize
the efficiency of the coupling calculation of the electric field and the thermal field, some
researchers use the heat generation power of a single battery as a fixed value. This approach
can only reflect heat generation under specific working conditions. Understanding the over-
all impacts of battery heat generation, transport, and dissipation is essential for precisely
modeling and controlling the temperature of batteries [42,44]. Zhu compared the theoretical
calculation results of the Bernardi model with and without considering reversible entropy
heat with experimental results obtained via ARC testing, and better agreement was shown
when considering reversible entropy heat [45]. Chen [46] and Ren [47] both established
electrochemical–thermal coupling models to analyze the effects of electrochemical parame-
ters on heat generation, and proposed models to predict total heat generation at various
discharge rates. Mei introduced an electrochemical–thermal cycling model to assess and
compare the thermal characteristics of lithium-ion batteries. The results indicate that when
charging at a higher rate under constant voltage conditions, more capacity is charged,
and more heat is generated [48]. Xu conducted experimental explorations on the thermal
characteristics and thermal performance of large-capacity commercial lithium-ion batteries
exceeding 100 Ah. The results indicate that the discharge rate has minimal impact on
the entropy coefficient and direct current internal resistance [49]. Joula has developed a
comprehensive electrochemical–thermal battery model to analyze the proposed novel and
reliable battery thermal management system (BTMS). This system ensures the efficient oper-
ation of electric vehicles under extreme temperature conditions [50]. Nevertheless, there is
limited research reporting quantitative analyses of the environmental temperature and heat
generation in lithium-ion batteries. The current research on battery polarization and heat
generation characteristics primarily focuses on the influence of discharge rate, with less
attention given to ambient temperature, different types of polarization, and quantitative
analysis of heat generation. This research uses a coupled electric–thermal model that is
accurate and effective to address this gap. The convective heat coefficient and entropy
heat transfer coefficient were tested in order to determine the model’s main parameters,
allowing for the analysis of the reversible entropy thermal effects under conditions of low
discharge rate and high ambient temperature. To determine the resistance and capacitance
offline parameters of the equivalent circuit model, a pulse discharge test was carried out at
various ambient temperatures. Using the established electric–thermal coupling model, this
study quantitatively examines the polarization and heat generation characteristics of the
battery, analyzes the impact of ambient temperature and discharge rate on three types of
polarization and three types of heat generation, and explores the dominant types under
different operating conditions.

2. Setup and Calibration for the Experiment
2.1. Details of the Battery and Apparatus

A commercial ternary square shell lithium-ion battery was employed for this study,
with graphite as the negative electrode material and Li[Ni8/10CO1/10Mn1/10]O2 as the
positive electrode material, and its key characteristics are presented in Table 1.

A battery charge/discharge test system, a high- and low-temperature humidity test
chamber, a thermocouple, and other pieces of equipment are among the items used in the
battery performance test process. Figure 1 depicts the signal input and output relationships
among the various devices, and Table 2 provides detailed information about the equipment.
During the actual experiment, each condition was repeated three times to ensure accuracy
and consistency.
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Table 1. The parameters of the battery.

Parameter Unit Value

Nominal capacity Ah 104
Nominal voltage V 3.66
Working voltage V 2.8~4.2

Size mm 52 ∗ 148 ∗ 95
Weight kg 1.7

Energy density Wh/kg 220
State of charge window % 5~100
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Table 2. Equipment specification.

Equipment Type Manufacturer Range Accuracy

Battery charge/discharge test
system

CT-8008-5 V 300
A-NTFA

Shenzhen Xinwei
Electronics Co., Ltd.,

Shenzhen, China

0 V~5 V
−200 A~+200 A ±0.05% FSR

High- and low-temperature
humidity test chamber SC2-400-SD-3

Guangdong Sanmu
Technology Co., Ltd.,
Guangdong, China

−70 ◦C~180 ◦C ±1 ◦C

Thermocouple −200~260 ◦C ±1 ◦C

2.2. Determination of the Entropy Heat Coefficient

With varying SOCs, the battery’s reversible entropy heat can exhibit exothermic or
endothermic reactions and directly lower the temperature of the battery. Therefore, it has a
significant impact on the accuracy of the battery thermal model. As the open-circuit voltage
and battery temperature directly affect the entropy heat coefficient, the battery’s open-
circuit voltage was measured at varied ambient temperatures and SOCs for the purpose
of calculating the entropy heat coefficient. Figure 2 illustrates the relationship between
voltage and ambient temperature over time during the entropy heat experiment.
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Figure 2. Test for the entropy heat coefficient involves voltage and the ambient temperature.

After a long period in a shelving state, the battery’s voltage at this point can be
thought of as being equivalent to the open-circuit voltage because it is anticipated that the
battery’s internal physicochemical parameters will stabilize at some point. The entropy
heat coefficients of various SOCs can be calculated based on the open-circuit voltage change
caused by the ambient-temperature change, as shown in Figure 3. With a peak value at
about 40% SOC, the entropy heat coefficient exhibits an increase–decrease–increase trend.
The entropy heat coefficient is negative when the battery capacity is less than 30% SOC,
and the reversible entropy heat term encourages the battery’s overall heat generation,
increasing the battery’s heat generation and temperature. When the entropy heat coefficient
is positive, the irreversible entropy heat is negative, which restricts the battery’s overall
heat generation and results in an endothermic reaction that lowers the temperature of the
battery. Thus, the entropy heat coefficient is of great significance for accurately modeling
heat generation in power batteries.

2.3. Convective Heat Transfer Coefficient Test

A crucial factor in effectively simulating the battery’s heat generation is the convective
heat transfer coefficient, which depicts the battery’s capacity to exchange heat with its
surroundings. To obtain this coefficient, an incubator is used to test the battery’s capacity
to adapt to temperature changes. The test involves two stages: a constant current discharge
stage and a shelving stage. First, the fully charged battery is discharged to the cutoff voltage
under a constant current discharge mode. Second, it is put on hold while the incubator’s
temperature is raised to 5 ◦C until the battery temperature reaches that temperature. In
order to determine the battery surface’s convective heat transfer coefficient, the temperature
change that occurs during the stocking process is recorded.
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The battery temperature can be calculated according to the heat balance equation,
shown as Equation (1):

Cpm
dT
dt

+ hA(T − T∞) = 0 (1)

where Cp represents the battery-specific heat capacity, J/(kg·K); m represents the battery
mass, kg; T is the battery temperature, K; t is the time, s; h is the convective heat transfer
coefficient, W/(m2·K); A is the battery surface area, m2; and T∞ is the final stable battery
temperature, K.

Equation (1) can be transformed to obtain Equation (2):

hA
−Cpm

=
1

T − T∞

dT
dt

(2)

Equation (3) results from the simultaneous integration of both sides.

t∫
0

hA
−Cpm

dt =
T∞∫

T0

1
T − T∞

dT (3)

Equation (4) can be formulated as a result:

T = T∞ + (T0 − T∞)e
−hA
Cpm t

(4)

Figure 4 illustrates the temperature change in the battery when placed in a constant-
temperature chamber at 5 ◦C after 1C-rate discharge at 25 ◦C. A curve fitting using
Equation (4) reveals that h is equal to 20.6 W/(m2·K).
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2.4. Additional Thermophysical and Physical Parameters

There are numerous components that make up the internal structure of lithium-ion
batteries, including separators, current collectors, positive and negative electrode materials,
and others, which can number in hundreds. However, current internal lithium-ion battery
models do not consider the layers of these materials. Instead, it is assumed that the internal
materials are homogeneous and that the physical properties of each layer remain constant.
A weighted average method is used to calculate the battery’s average specific heat capacity
and thermal conductivity. The necessary thermophysical parameter values are presented
in Table 3.

Table 3. Additional thermophysical variables.

Parameter Unit Value

Average specific heat capacity of the battery J/(kg·K) 1020

Thermal conductivity
17.8 (X direction)

W/(m·K) 4.9 (Y direction)
8.8 (Z direction)

Density kg/m3 2353
Surface convective heat transfer coefficient W/(m2·K) 20.6

Positive terminal material - Al
Negative terminal material - Cu

3. Construction of a Model of the Electric–Thermal Connection

This part involves the use of a pulse discharge test scheme to identify and collect the
electrical parameters of the second-order RC model, which is based on the fundamental
principles of the equivalent circuit model. Examination of the connection between the
SOC, surrounding temperature, and the variation rules of open-circuit voltage, ohmic
resistance, polarized internal resistance, and polarized capacitance was performed. The
electric–thermal coupling model for a battery module was then created using COMSOL
5.5 software, and the simulation model was validated via comparing it with the results of
the experiment.
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3.1. Battery Electrical Model

The equivalent circuit model that uses electrical components, such as resistance and
capacitance, has better overall performance compared with the electrochemical model in
terms of model complexity, prediction accuracy, and response time. Hence, it is widely
employed in battery management systems. The electrical characteristics of the battery
are illustrated in this paper using a second-order RC model. The battery’s polarization
characteristics can be accurately represented by the model’s straightforward structure,
exhibiting its nonlinear properties. As shown in Figure 5, the second-order RC equivalent
circuit model consists of an ideal voltage source, two RC circuits, and an ohmic resistance.
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According to Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL),
Equations (5)–(7) can be derived:

dU1(t)
dt

=
I(t)
C1
− U1(t)

R1C1
(5)

dU2(t)
dt

=
I(t)
C2
− U2(t)

R2C2
(6)

UT(t) = UOCV + I(t)R0 + U1(t) + U2(t) (7)

In these equations, UOCV represents the open-circuit voltage of the battery, V; R0 is
the battery’s internal resistance, Ω; R1 and R2 denote the resistance related to concentra-
tion and electrochemical polarization, Ω; C1 and C2 are the capacitance associated with
concentration and electrochemical polarization, C; U1 and U2 denote the voltages across
the corresponding RC components, V; UT is the terminal voltage of the battery, V; and I
represents the current passing through the battery, A, with the convention of positive for
charging and negative for discharging.

If the time constant τ1 = R1C1, τ2 = R2C2, Equations (5) and (6) can be obtained as
Equations (8) and (9), respectively:

U1(t) = U1(0)e
−t
τ1 + I(t)R1(1− e

−t
τ1 ) (8)

U2(t) = U2(0)e
−t
τ2 + I(t)R2(1− e

−t
τ2 ) (9)

In these equations, U1(0) and U2(0) respectively represent the voltages across the two
ends of the corresponding RC circuits at the initial time, V.
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Hence, when the current remains constant, the voltage curve of a lithium-ion battery
adheres to Equation (10):

UT(t) = UOCV − IR0 −U1(0)e
−t
τ1 − IR1(1− e

−t
τ1 )−U2(0)e

−t
τ2 − IR2(1− e

−t
τ2 ) (10)

The above-mentioned electrical parameters change with the battery state of charge
(SOC), which is also called residual power and is the ratio of the remaining capacity of the
battery after a period of discharge to the rated capacity of the battery in the fully charged
state. SOC = 0% means fully discharged, and SOC = 100% means fully charged, and the
SOC can be calculated using Equation (11):

SOC = (1−
η

t
∑
0

Idt

Q
)× 100% (11)

where η is the discharge efficiency of the battery, %; and Q is the rated capacity of the
battery, Ah. I is the current flowing through the battery, A, stipulating that discharging is
negative and charging is positive.

Electrical Parameter Identification Method

1. Determination of the open-circuit voltage in the initial shelving stage:

Figure 6 illustrates the analysis of the battery terminal voltage response properties
during a single-pulse discharge. Since the battery has been left for a long time before
the single-pulse discharge, the open-circuit voltage and terminal voltage of the battery
are typically thought to be numerically equivalent. The battery terminal voltage U(t0) is
therefore taken to be the open-circuit voltage UOCV in accordance with the results of the
pulse discharge test.
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2. Calculation of the ohmic resistance via voltage mutation:

Equation (12) can be used to compute the ohmic resistance value in the state of charge:

R0 =
(U(t0)−U(t1)) + (U(t3)−U(t2))

2I
(12)
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Among these terms, U(t0), U(t1), U(t2), and U(t3) are the battery terminal voltages at
different times t. I represents the absolute value of the current during the pulse current
application process, and the state of charge of the battery does not change at the instant the
current is applied or withdrawn.

3. Identification of RC parameters in the shelving stage:

From t3 to t4 is the shelving period, and the battery terminal voltage meets the zero-
input response condition during this period, as shown in Equation (13):

UT = UOCV −U1(t3)e
−t
τ1 −U2(t3)e

−t
τ2 (13)

Among these terms, U1(t3) and U2(t3) represent the voltages at both ends of the RC
circuit corresponding to the moment when the current is removed. The expressions are
shown in Equations (14) and (15):

U1(t3) = IR1 (14)

U2(t3) = IR2 (15)

In the period between t3 and t4 during a pulse discharge, the least square method is
used to obtain the parameters U1(t3), U2(t3), t1, and t2 from the voltage–time relationship.
C1 and C2 are determined from the relationship between the resistance and capacitance
parameters and the time constant. Given the SOC remains unchanged before and after the
pulse discharge, the open-circuit voltage recorded before the discharge is taken as the SOC
after the discharge, and the values of UOCV, R0, R1, R2, C1, and C2 can be obtained for that
SOC. These parameters are crucial in accurately describing the battery’s electrical character-
istics by using the second-order equivalent circuit model. Among them, R0, R1, R2, C1, and
C2 are closely related to the SOC and are affected by changes in ambient temperature. Thus,
parameter identification is necessary under different SOCs and temperature conditions.

3.2. The Battery’s Thermal Model
3.2.1. Battery Heat Generation Model

Most of the heat generation inside a lithium-ion battery comes from reversible entropy
heat Qr, ohmic heat Qj, polarization heat Qp, and side reaction heat Qs.

(1) Reversible entropy enthalpy Qr: The heat generated during the reversible insertion
and extraction of lithium ions between the positive and negative electrodes in a lithium-ion
battery during normal charging and discharging processes. Its calculation formula is given
in Equation (16):

Qr = IT
∆S
nF

(16)

where I represents the charge–discharge current, A; T is the operating temperature of the
battery, K; ∆S is the change in entropy before and after the chemical reaction, J/(mol·K); n
is the quantity of electron material exchanged in the chemical reaction process, mol; and F
is the Faraday constant with a numerical value of 96,484.5 C/mol.

(2) Ohmic heat Qj: This heat arises from the presence of ohmic resistance in the
internal materials of the battery, generated as electrons or lithium ions pass through the
battery’s internal materials. Because this heat follows Ohm’s law, it can be calculated using
Equation (17):

Qj = I2Rj (17)

where R0 represents the ohmic internal resistance of the battery.
(3) Polarization heat Qp: During the charging and discharging of a battery, polarization

occurs at the electrode surfaces, leading to a deviation between the working voltage and
the open-circuit voltage of the battery. The heat generated by this voltage drop is referred
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to as polarization heat. Polarization heat can be equivalently viewed as the heat generated
by a polarization internal resistance, as expressed in Equation (18):

Qp = I2Rp (18)

where Rp represents the polarization internal resistance of the battery.
(4) Side reaction heat: The heat generated by additional reactions occurring within the

battery’s interior, Qs.
However, side reactions typically do not occur during normal charging or discharging

under normal temperature conditions. Therefore, when calculating the total heat generation,
only ohmic heat, polarization heat, and reversible entropy heat need to be taken into
account, as shown in Equation (19):

Qtotal = Qj + Qp + Qr (19)

The calculating model that is most frequently employed is the Bernardi battery heat
generation rate model [33], which presupposes that the battery’s internal heat supply is
steady and uniform, as indicated in Equation (20):

q =
Qtotal

Vb
=

1
Vb

[(I2Rp + I2Rj) + IT
dE
dT

] =
1

Vb
[(E−UT) + IT

dE
dT

] (20)

where Qtotal is the total heat generation, W; q is the battery volume heat generation rate,
W/m3; I is the battery charge and discharge current, A; Vb is the battery volume, m3; E is
the battery electromotive force whose value is equal to the open-circuit voltage, V; UT is
the battery operating voltage, V; and T is the battery temperature, K.

3.2.2. Battery Heat Transfer Model

Heat conduction and heat convection are the primary modes of heat transfer for
lithium-ion batteries during typical operation. However, heat radiation is typically negligi-
ble due to the low temperatures involved.

The interior of the battery follows the basic equation of solid heat transfer, as shown
in Equation (21):

ρCp
∂T
∂t

= ∇ · (λ∇T) + q (21)

where ρ is the battery density, kg/m3; Cp is the specific heat capacity of the battery, J/(kg·K);
λ is the thermal conductivity of the battery, W/(m·K); and q is the volumetric heat genera-
tion rate of the battery, W/m3.

When the external medium is air, coolant, or other fluids, Equation (22) can be used to
describe the convective heat transfer process on the exterior surface of the battery:

λ∇T = h(Tsur f − Tamb) (22)

where h is the surface convective heat transfer coefficient, W/(m2·K); Tamb is the temperature
of the external heat transfer medium, K; and Tsurf is the battery surface temperature, K.

3.3. Electric–Thermal Coupling Model

Figure 7 illustrates the schematic representation of the electric–thermal coupling
approach. Based on the difference between the battery’s terminal voltage and open-circuit
voltage, current, and battery entropy heat coefficient, the heat generation model calculates
the volumetric heat generation rate of the battery.
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The electrical model accounts for initial SOC, battery current, ohmic resistance, and
open-circuit voltage to estimate the battery’s SOC and terminal voltage while charging
and discharging. The heat transfer model is used to anticipate the battery temperature
using the volumetric heat generation rate of the battery and the ambient temperature as
inputs. To link the electrical and thermal models of the battery in the simulation, the battery
temperature, combined with the SOC, adjusts the ohmic resistance, open-circuit voltage,
and other electrical model parameters associated with SOC and temperature dynamically.

COMSOL Model Building

In this study, the battery heat generation simulation was performed using COMSOL
5.5 Multiphysics software. To avoid excessive consumption of computational resources, a
reasonably simplified geometric model of the battery was used. The stacked pole pieces
were considered as a nonlayered structure, and the battery core, top cover, and shell
were integrated. Additionally, small internal air spaces and safety valves, as well as the
chamfering of the pole and the insulating cover, were ignored. Figure 8 depicts the final
three-dimensional geometric model of the battery.

3.4. Verification of the Electrical and Thermal Performance of Batteries
3.4.1. Verification of Electrical Properties

As shown in Figure 9, the associated test data collected at various discharge rates
and ambient temperatures were compared with the voltage modeling data and validated.
The voltage-changing trend observed in both the modeling and experimental results was
similar, and the deviations were very small. Furthermore, it is believed that the impact of
reversible entropy heat on the precision of the voltage simulation value was negligible.
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3.4.2. Validation of Thermal Properties

Figure 10 shows how the experimental results for different discharge rates and ambient
temperatures were compared with and validated against the temperature simulation data.
The results of both the experiment and simulation show excellent consistency in the battery
temperature and its changing trend. The temperature initially increases, drops slightly, and
then rises sharply during the discharge process. Furthermore, the reversible entropy heat in
the simulation leads to more accurate results compared with those results of the simulation
that ignore this factor. For example, at 25 ◦C, when the battery is discharged at 1C for
2000 s, the error between the simulation without entropy heat and the experiment reaches
5.87%, while the error for the simulation with entropy heat is only 0.87%. Nevertheless, at
−5 ◦C, due to the influence of a frigid ambient environment, the propensity for lithium
dendrite formation is exacerbated during high-rate discharges, resulting in a decline in
battery activity. This, in turn, amplifies the challenge of achieving congruence between
simulations and experimental outcomes. However, simulations employing the entropic
model manifest a closer approximation to the experimental results.
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4. Results and Discussion
4.1. Polarization Characteristics of the Battery

This section contains an analysis of the effects of ambient temperature and discharge
rate on the battery’s ohmic polarization, concentration polarization, and electrochemi-
cal polarization. These effects are investigated under different temperature conditions,
including −15 ◦C, −5 ◦C, 25 ◦C, and 35 ◦C, and various discharge rates, including 1/5
C, 1/2 C, 1 C, and 2 C. These conditions were selected to represent a range of realistic
operating conditions.

4.1.1. Ohmic Polarization Characteristics

Figure 11 illustrates the impact of ambient temperature and discharge rate on the
ohmic polarization of the battery. At low temperatures, particularly below 0 ◦C (such as
−15 ◦C and −5 ◦C), the ohmic polarization increases significantly and decreases overall
with an increase in DOD (depth of discharge). In contrast, the ohmic polarization is
considerably low at high temperatures (25 ◦C and 35 ◦C) and remains almost constant
throughout the discharge. Since the battery temperature change during discharge is higher
under low-temperature conditions than high-temperature conditions for the same discharge
rate, the ohmic resistance change value under low-temperature conditions is larger than
that under high-temperature conditions. Furthermore, since the battery temperature rises
during discharge, the ohmic polarization decreases with discharge in low-temperature
environments; however, small or almost constant values are observed in ambient and
high-temperature environments. Moreover, as the discharge rate increases, the ohmic
polarization rises significantly due to an increase in current. Under low-temperature
conditions, it is affected by the change in ohmic resistance, while in ambient- and high-
temperature environments, it is proportional to the discharge rate change. Thus, if the
discharge rate increases from 1/5 C to 2 C, the initial ohmic polarization increases by
approximately ten times.
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and 2 C.

4.1.2. Concentration Polarization Characteristics

Figure 12 depicts the impact of discharge rate and ambient temperature on concen-
tration polarization. The concentration polarization increases noticeably as the ambient
temperature decreases. Moreover, it exhibits a “U”-shaped trend with the increase in DOD
under low-temperature conditions, while remaining relatively stable under ambient- and
high-temperature conditions. The higher concentration polarization at the initial discharge
stage may be due to the higher overpotential required to initiate the motion of lithium ions
from a static state to a moving state when the current is connected. The high concentration
polarization at the end of discharge may be attributed to the movement of lithium ions from
the negative to the positive electrode inside the battery, where the lithium-ion concentration
at the negative electrode is much lower than that at the positive electrode. Nevertheless,
the lithium ions still move towards the high-concentration areas, resulting in a reverse
concentration gradient, which is unfavorable for the diffusion process according to Fick’s
law. Therefore, a considerable overpotential is needed, causing a serious polarization phe-
nomenon. The low-temperature environment severely exacerbates this physicochemical
behavior, changing the motion state of the lithium ions.
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Additionally, as the discharge rate is increased, concentration polarization rises as
well. This is because of the excessive accumulation of electrons at the positive electrode,
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which requires the transfer of more lithium ions from the negative electrode to the positive
electrode per unit time. However, the electrochemical reaction at the positive electrode is
hampered by the low rate of diffusion of lithium ions, which causes a rise in concentra-
tion polarization.

4.1.3. Electrochemical Polarization Characteristics

Figure 13 illustrates the impact of ambient temperature and discharge rate on elec-
trochemical polarization. Electrochemical polarization increases with decreasing ambient
temperature, and it rises sharply at the beginning of the discharge process, then grad-
ually decreases and finally increases again at the end of the discharge process under
low-temperature conditions. In contrast, electrochemical polarization is relatively stable
and maintained at a low level at room temperature and in high-temperature environments.
This may be because the electron transport rate is significantly faster than the lithium-ion
transport rate, and at the beginning of the discharge process, the electrons arrive at the
anode before the lithium ions, leading to a slower electrochemical reaction and thus causing
electrochemical polarization. As the discharge process proceeds, the lithium-ion concen-
tration gradient between the negative and positive electrodes gradually decreases, which
facilitates the lithium-ion transport process and thus reduces electrochemical polarization.
However, at the end of the discharge process, when the concentration gradient is reversed,
the reverse transport process of lithium ions becomes more difficult, resulting in a sharp
increase in electrochemical polarization. Moreover, electrochemical polarization increases
with an increasing discharge rate.
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4.1.4. Proportion of Polarization Types

The effect of ambient temperature and discharge rate on the percentages of various
polarizations is shown in Figure 14. The results show that the ohmic polarization has
the highest percentage, accounting for approximately 80% in most cases, followed by
concentration polarization at around 17%, while electrochemical polarization has the
lowest proportion, approximately 3%. The percentage of ohmic polarization gradually rises
as the ambient temperature rises, whereas the percentages of concentration polarization
and electrochemical polarization steadily decrease.



Batteries 2023, 9, 529 17 of 23

Batteries 2023, 9, x FOR PEER REVIEW 17 of 23 
 

Figure 13. The effects of ambient temperature on electrochemical polarization: (a) −1/5 C and 1/2 C; 

(b) 1/C and 2 C. 

4.1.4. Proportion of Polarization Types 

The effect of ambient temperature and discharge rate on the percentages of various 

polarizations is shown in Figure 14. The results show that the ohmic polarization has the 

highest percentage, accounting for approximately 80% in most cases, followed by concen-

tration polarization at around 17%, while electrochemical polarization has the lowest pro-

portion, approximately 3%. The percentage of ohmic polarization gradually rises as the 

ambient temperature rises, whereas the percentages of concentration polarization and 

electrochemical polarization steadily decrease. 

Moreover, under the low-temperature environments of −15 °C and −5 °C, the per-

centages of concentration polarization at 5% and 85% DOD are notably higher than those 

at 45% DOD. This is because the concentration polarization is more pronounced at the 

beginning and end of discharge in low-temperature environments. Additionally, the pro-

portion of ohmic polarization increases, and the proportion of the other two polarizations 

decreases with the increase in discharge rate under low-temperature conditions. In con-

trast, in high-temperature and room-temperature environments, the percentages of the 

three polarizations are relatively stable and less affected by the change in discharge rate. 

  
(a) (b) 

  
(c) (d) 

Figure 14. The effects of ambient temperature on the proportion of polarization types: (a) −1/5 C; 

(b)1/2 C; (c) 1/C; (d) and 2 C. 

4.2. The Battery’s Characteristics for Producing Heat 

In this section, the impacts of ambient temperature and discharge rate on the produc-

tion of ohmic heat, polarization heat, and reversible entropy heat in batteries are exam-

ined. Specifically, four representative ambient temperature conditions are considered: 

Figure 14. The effects of ambient temperature on the proportion of polarization types: (a) −1/5 C;
(b)1/2 C; (c) 1/C; (d) and 2 C.

Moreover, under the low-temperature environments of −15 ◦C and −5 ◦C, the per-
centages of concentration polarization at 5% and 85% DOD are notably higher than those
at 45% DOD. This is because the concentration polarization is more pronounced at the
beginning and end of discharge in low-temperature environments. Additionally, the pro-
portion of ohmic polarization increases, and the proportion of the other two polarizations
decreases with the increase in discharge rate under low-temperature conditions. In contrast,
in high-temperature and room-temperature environments, the percentages of the three
polarizations are relatively stable and less affected by the change in discharge rate.

4.2. The Battery’s Characteristics for Producing Heat

In this section, the impacts of ambient temperature and discharge rate on the pro-
duction of ohmic heat, polarization heat, and reversible entropy heat in batteries are
examined. Specifically, four representative ambient temperature conditions are considered:
low-temperature conditions of −15 ◦C and −5 ◦C, room-temperature conditions of 25 ◦C,
and high-temperature conditions of 35 ◦C. Additionally, four discharge rate conditions are
investigated: lower discharge rates of 1/5 C and 1/2 C, and higher discharge rates of 1 C
and 2 C.

4.2.1. Ohmic Heat Generation Characteristics

The effects of ambient temperature and discharge rate on the production of ohmic
heat are shown in Figure 15. The trend in ohmic heat generation characteristics is similar to
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that in ohmic polarization characteristics. As the ambient temperature decreases, especially
below 0 ◦C, the ohmic heat generation increases significantly. Additionally, the ohmic heat
generation decreases with an increase in the DOD. Furthermore, the ohmic heat generation
is significantly lower in ambient-temperature and high-temperature environments, and it
remains stable throughout the discharge process.
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The creation of ohmic heat considerably increases with the increased current as the
discharge rate rises. The generation of ohmic heat is more affected by the change in ohmic
resistance under low-temperature conditions; nevertheless, it is basically proportional to
the change in discharge rate under normal- and high-temperature conditions. According
to Ohm’s law, if the discharge rate increases 10 times from 1/5 C to 2 C, the generation
of ohmic heat will increase by approximately 100 times. The discharge rate has a bigger
impact on ohmic heat generation than ohmic polarization.

4.2.2. Polarization Heat Generation Characteristics

Figure 16 shows how discharge rate and ambient temperature affect the generation of
polarization heat. Since the concentration polarization is greater than the electrochemical
polarization, the polarization heat generation is dominated by the concentration polariza-
tion, and the trend of the polarization heat generation is similar to that of the concentration
polarization. As the ambient temperature decreases, the polarization heat generation
increases significantly. It shows a “U”-shaped change with the increase in DOD under
low-temperature conditions, and it is more stable under room- and high-temperature con-
ditions. Additionally, when the discharge rate rises, so does the amount of heat generated
by polarization.

4.2.3. Reversible Entropy Heat Characteristics

Figure 17 illustrates how discharge rate and ambient temperature affect reversible
entropy heat. The reversible entropy heat is mostly negative in the 0% to 72% DOD interval
and positive in the 72% to 90% DOD interval, with a relatively small value throughout
the discharge process. For consistency with other types of heat generation, the reversible
entropy heat is defined as positive when discharging heat and negative when absorbing
heat. Thus, the reversible entropy heat suppresses the total heat generation of the battery in
the 0% to 72% DOD range and promotes it in the 72% to 90% DOD range. It is noteworthy
that within the 40% to 60% DOD range, this inhibitory effect becomes increasingly pro-
nounced with the escalation in DOD. Conversely, within the 72% to 90% DOD range, the
enhancing influence of reversible entropy enthalpy on total heat generation becomes more
conspicuously evident as DOD rises.
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Overall, the influence of ambient temperature on reversible entropy enthalpy ap-
pears relatively minor, whereas the discharge rate exhibits a more pronounced impact
on reversible entropy enthalpy. Within the 0% to 72% discharge depth range, reversible
entropy enthalpy increasingly restrains battery heat generation with rising discharge rates.
Specifically, at 25 ◦C and a 60% depth of discharge (DOD), the reversible entropy enthalpy
values for 1/5 C, 1/2 C, 1 C, and 5 C are −1.2, −2.7, −6.0, and −12.2 kW/m3, respectively.
However, within the 72% to 90% discharge depth range, reversible entropy enthalpy pro-
motes battery heat generation with increasing discharge rates. For instance, at an 80% DOD,
the reversible entropy enthalpy values for 1/5 C, 1/2 C, 1 C, and 5 C are 0.9, 2.1, 4.0, and
9.4 kW/m3, respectively.

4.2.4. Proportion of Heat Generation Types

Figure 18 illustrates the impact of discharge rate and ambient temperature on the
proportion of various types of heat generation. Both ohmic heat generation and polariza-
tion heat generation contribute to the total heat generation of the battery at any ambient
temperature, while reversible entropy heat only promotes the total heat generation of the
battery at the end of discharge. As the ambient temperature increases, the proportion of
ohmic heat generation and polarization heat generation gradually decreases, while the
proportion of the reversible entropy heat effect increases. Therefore, when simulating
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battery thermal behavior in a high-temperature environment, it is crucial to consider the
entropy heat coefficient and reversible entropy heat to enhance simulation accuracy. As
the discharge rate increases, the proportion of ohmic heat generation gradually increases,
and the proportion of polarization heat generation decreases in low-temperature environ-
ments, but it increases in normal- and high-temperature environments. The concentration
polarization heat generation is highly sensitive to ambient temperature. The proportion
of reversible entropy heat effect decreases with the increase in the discharge rate, as the
ohmic heat generation dominates under high-rate discharge since it is proportional to the
square of the current, whereas the reversible entropy heat in the Bernardi heat generation
rate equation is proportional to the current.
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5. Conclusions

This study sought to evaluate the electric–thermal characteristics of batteries through
the development of an electric–thermal coupling model. Under varied ambient temper-
atures and discharge rates, the battery’s polarization and heat generation characteristics
were examined. The following are the primary conclusions:

1. The electric–thermal coupling simulation model was validated by using experimental
data under different discharge rates and ambient temperatures. The comparisons
show how effectively the generated model simulates the electrical and thermal char-
acteristics of the battery under various operation conditions.

2. The impact of discharge rate and ambient temperature on the battery’s ohmic, electro-
chemical, and concentration polarizations was analyzed, revealing that these factors
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have a significant effect on these polarization types. Specifically, low-temperature
environments and high discharge rates resulted in a significant increase in these
polarization values, with the greatest changes observed during the discharge process.
In contrast, these values remained stable at ambient temperature and low discharge
rates. The proportion of ohmic polarization was found to be the highest among
the three types, accounting for approximately 80% of the total polarization, while
electrochemical polarization was the least significant at about 3%, and concentration
polarization was about 17%.

3. The ohmic heat generation and polarization heat generation increase significantly at
high discharge rates and low ambient temperatures, while the reversible entropy heat
is less affected by ambient temperatures and increases significantly with the increase
in discharge rates. The ohmic heat generation and polarization heat generation
contribute to the total heat generation of the battery at any ambient temperature,
and the reversible entropy heat contributes to the total heat generation of the battery
only at the end of the discharge period. At low discharge rates and high ambient
temperatures, the entropy heat coefficient and reversible entropy heat are crucial
factors in the thermal simulation of batteries.
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