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Abstract: With the rapid development of machine learning and cloud computing, deep learning
methods based on big data have been widely applied in the assessment of lithium-ion battery health
status. However, enhancing the accuracy and robustness of assessment models remains a challenge.
This study introduces an innovative T-LSTM prediction network. Initially, a one-dimensional convo-
lutional neural network (1DCNN) is employed to effectively extract local and global features from
raw battery data, providing enriched inputs for subsequent networks. Subsequently, LSTM and
transformer models are ingeniously combined to fully utilize their unique advantages in sequence
modeling, further enhancing the accurate prediction of battery health status. Experiments were con-
ducted using both proprietary and open-source datasets, and the results validated the accuracy and
robustness of the proposed method. The experimental results on the proprietary dataset show that
the T-LSTM-based estimation method exhibits excellent performance in various evaluation metrics,
with MSE, RMSE, MAE, MAPE, and MAXE values of 0.43, 0.66, 0.53, 0.58, and 1.65, respectively. The
performance improved by 30–50% compared to that of the other models. The method demonstrated
superior performance in comparative experiments, offering novel insights for optimizing intelligent
battery management and maintenance strategies.

Keywords: lithium-ion battery; state of health; attention-based encoder–decoder framework; long
short-term memory

1. Introduction

As fossil fuel depletion and carbon emission concerns increasingly gain attention,
people are turning their focus toward renewable energy systems [1]. Both the academic
and industrial sectors are actively engaged in research to find solutions. In this context,
lithium-ion batteries (LIBs) have garnered significant attention as a clean energy storage
technology. Their prospects in electric vehicles (EVs) and energy storage systems (ESSs) are
highly promising. However, it is important to note that continuous charge–discharge cycles
gradually degrade the performance of LIBs, leading to diminished capacity or reduced
output power [2,3].

State of health (SOH) is one of the key parameters for measuring battery capacity,
reflecting the degree of battery degradation and aiding in battery maintenance, assessment,
and analysis [4,5]. SOH variations directly affect the performance, longevity, and safety of
battery packs [6,7]. The accurate estimation of SOH ensures the safe and reliable operation
of automotive batteries [8]. In this paper, the SOH is defined from the perspective of
capacity, that is, the ratio of a battery’s actual capacity to its initial capacity. When the
SOH falls below 80%, the battery approaches its maximum usable life and should be
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replaced [9]. Over the past few decades, numerous estimation techniques have emerged.
In 2023, Ren et al. [10], and earlier in 2019, Hu et al. [11], described and evaluated SOH
prediction methods, categorizing them into three groups: (1) direct measurement methods,
(2) model-based methods, and (3) data-driven methods.

Direct measurement methods primarily involve measuring the terminal voltage, cur-
rent, and impedance. For example, methods such as Coulomb counting [12] and electro-
chemical impedance spectroscopy (EIS) [13] have been used. These approaches require
expensive and complex equipment, making it challenging to them apply in real-life sit-
uations [14]. Model-based methods, on the other hand, focus on establishing mapping
between measured variables and the state of health [15]. Examples include equivalent cir-
cuit models [16] and electrochemical models [17]. However, the accuracy of SOH estimation
in these methods depends on the model selection, and the parameters of the models can
change over time, making it difficult to obtain accurate results in practical applications [18].

Finally, with the advent of the Information Age, data-driven methods have become
increasingly attractive in both the industrial and academic sectors. Data-driven approaches
primarily rely on variables available during the operation of lithium-ion batteries as fea-
tures, such as battery current, voltage, and temperature, without the need to consider the
complex physical and chemical changes within the battery. Yang et al. [19] used a random
forest algorithm to predict the SOH for lithium-ion batteries, and their proposed method
improved the accuracy and robustness of predictions. Feng et al. [20] introduced a battery
model based on support vector machines (SVMs), which achieved high accuracy within
typical temperature and charging-state ranges for electric vehicle operating conditions.
Xiong et al. [21] proposed a battery SOH estimation method based on weighted least
squares support vector machines, which can provide highly robust and accurate estimation
results. Yang et al. [22] presented a Gaussian process regression (GPR) model based on
charging curves and demonstrated the robustness and reliability of this model through
dynamic discharge curve validation.

In recent years, the rapid development of machine learning and neural networks has
led to innovative applications in multiple fields, and with technological advancements, an
increasing number of models are being used to predict battery state of health (SOH) [23,24].
In the field of machine learning, particularly in deep learning, neural networks have
become powerful tools. Neural networks can make predictions by learning patterns and
features from data, making them suitable for complex nonlinear problems [25]. Examples
include recurrent neural networks (RNNs), convolutional neural networks (CNNs), and
transformers, among others. These models can learn from historical data, uncover hidden
patterns and trends, and, as a result, make more accurate predictions of battery health
status [26,27].

In addition to these classical neural network architectures, several other models have
played important roles in battery SOH prediction. For example, the one-dimensional con-
volutional neural network (1DCNN) is a type of CNN designed specifically for processing
sequential data, such as time series; 1DCNNs can effectively capture local patterns within
sequences, making them a useful tool in battery SOH prediction. Furthermore, gated recur-
rent units (GRUs) [28] and long short-term memory (LSTM) networks [29] are improved
versions of RNNs that address long-term dependency issues by introducing gate mecha-
nisms. Ma et al. [30] proposed an SOH estimation method based on an enhanced LSTM
network by selecting some external characteristic parameters from the charge–discharge
process to describe battery aging mechanisms, achieving high accuracy and robustness.
Xu et al. [31] introduced a feature selection method that helps neural networks train more
effectively by removing irrelevant features from the input data during the data preparation
step. In addition, skip connections were added to the convolutional neural network–long
short-term memory (CNN-LSTM) model to address neural network degradation caused
by multiple layers of LSTM. Removing less significant features improved the prediction
accuracy and reduced the network computational load. Wang et al. [32] presented a hybrid
1DCNN-LSTM model for predicting the health status of lithium-ion batteries. Lucian Un-
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gurean et al. [33] introduced a lithium-ion battery online health status prediction method
based on gated recurrent unit neural networks. The GRU algorithm resulted in slightly
higher estimation errors compared to those of LSTM, but it needed significantly fewer
parameters (reduced by approximately 25%), making it a suitable candidate for embed-
ded implementations. Liu et al. [34] proposed a CNN-GRU network with an attention
mechanism to estimate the SOH of lithium-ion batteries.

Despite some success in battery SOH prediction using models such as 1DCNN, GRU,
and LSTM, there is still room for improvement in their accuracy and robustness. To further
enhance the accuracy and stability of SOH prediction, an innovative approach has been
adopted, and the T-LSTM model has been proposed.

First, this model incorporates a 1DCNN as the initial layer, which can extract richer
local features from the input data. The 1DCNN is effective at capturing short-term patterns
in time-series data, thus providing more valuable information in higher-level models.
Second, the LSTM model is integrated into the transformer structure. This new model
architecture aims to fully leverage the advantages of LSTM in handling time-series data
while utilizing the transformer’s self-attention mechanism to better capture relationships
within the sequence. By incorporating LSTM into either the encoder or decoder of the
transformer, the strengths of LSTM in addressing long-term dependency issues can be
harnessed while benefiting from the transformer’s parallel processing capabilities to speed
up the training and inference processes.

Finally, global predictions are made through two fully connected layers.
In summary, this paper makes four main contributions:

1. First, an innovative feature extraction method, namely, the time intervals between
equal voltage levels, is introduced and subjected to thorough convolutional processing
through a 1DCNN layer. This method contains rich information for capturing the
dynamic changes in the battery’s operational state. By simplifying the data processing
pipeline, the temporal trends in battery health status are effectively captured, laying a
solid foundation for subsequent model construction.

2. Second, our research combines the 1DCNN, transformer, and LSTM neural networks
in a highly synergistic model structure. The 1DCNN is used as an initial layer, clev-
erly capturing local features of battery data and transforming them into richer input
information, thereby establishing a strong foundation for the entire model’s perfor-
mance. Furthermore, the introduction of the transformer’s self-attention mechanism
enables the model to better grasp the intrinsic relationships between different time
steps in battery data, addressing long-term dependency issues. More importantly,
the fusion of LSTM with the transformer allows the model to consider information
at different levels when processing sequence data, further enhancing the overall
predictive performance. This multi-model collaborative strategy not only signifi-
cantly improves the prediction accuracy but also enhances the model’s adaptability to
various data variations.

3. The robustness of the proposed model is validated even in the presence of noise
through experiments. Noise is introduced into the model’s input, simulating potential
data variations in real-world environments. Encouragingly, the model continues
to perform well in the presence of noise, further confirming its robustness. This
means that the model not only improves the accuracy but also maintains excellent
performance in unstable environments, providing a more reliable solution for battery
SOH prediction tasks.

4. The model was validated on a self-constructed dataset and publicly available datasets,
demonstrating significant improvements in various performance metrics. The model’s
robustness and generalizability across different datasets were also showcased. This
further demonstrates the effectiveness and practicality of the model.

In conclusion, our novel T-LSTM model, which combines LSTM and the transformer
while then incorporating the 1DCNN, brings higher precision and robustness to the field
of battery SOH prediction. This innovative approach provides a powerful tool for battery
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management and maintenance, potentially advancing the wider application of battery
technology in areas such as sustainable energy and intelligent transportation.

The remaining sections of this paper are organized as follows. A detailed introduction
to the lithium-ion battery (LIB) experimental dataset and the feature extraction methods
are provided in Section 2. In Section 3, the innovative T-LSTM model, which combines
LSTM and the transformer along with the characteristics of the 1DCNN, is elaborated to
better address the battery SOH prediction problem. In Section 4, the experimental results
are presented, and an in-depth discussion and analysis of the effectiveness of the proposed
T-LSTM model are conducted. Finally, in Section 5, a conclusion is offered that summarizes
the main contributions and research outcomes of this paper.

2. Dataset and Health Feature Extraction

The dataset plays a crucial role in machine learning, and having a sufficient dataset
of lithium-ion batteries (LIB) is advantageous for constructing robust and versatile evalu-
ation models. Therefore, in this study, battery aging experiments were conducted, and a
set of lithium-ion battery aging datasets was created. These datasets were derived from
experimental data from the Battery Cycle Life Test Platform [35]. The generation of this
experimental dataset provides a solid foundation for the research. Additionally, an in-
telligent cloud battery management system (BMS) [36] was developed, as depicted in
Figure 1. This system enables real-time monitoring and estimation of battery status and
early safety warnings. This paper focuses primarily on the study of battery state of health
(SOH) within the intelligent cloud BMS, including methods for extracting health features
and the implementation of hybrid neural network models.
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2.1. Battery Aging Dataset

The cycle life of a battery is determined by its intrinsic characteristics, which can be
manifested through external attributes. During the charging process, the external data of
the battery, such as the voltage, current, and temperature, can be measured to reflect the
battery’s life condition. This study aims to estimate the battery’s lifespan by measuring the
terminal voltage of the battery. The voltage during battery charging is considered the most
easily measurable state parameter.

• Dataset 1.

An experimental platform for battery cycle life testing was established, as shown in
Figure 2a. The detector used was the Neware BTS-5V12A, with a voltage and current
accuracy of 0.05%. Seven Prospower ICR18650P batteries from the same batch, named XQ-
11, XQ-12, XQ-14, XQ-15, XQ-16, XQ-17, and XQ-18, with nominal capacities and voltages
of 2 Ah and 3.6 V, respectively, were selected. The detailed specifications are provided in
Table 1. The experiments were conducted in a temperature-controlled chamber (Sanwood,
SMG-150-CC) at a constant temperature of 25 ◦C, with a deviation of ≤±1 ◦C. All seven
batteries underwent the same set of repeated charge–discharge cycles, including 5 battery
preconditioning cycles, 50 battery aging cycles, and 20 battery capacity calibration cycles.
As shown in Figure 2b and Table 2, during each battery aging cycle, the batteries were
charged at a constant current rate of 1 C until the voltage reached 4.2 V. Subsequently, a
constant voltage of 4.2 V was applied until the current decreased to 0.1 C. Following this,
the batteries were discharged at a constant current rate of 3 C until the voltage dropped
to the cutoff voltage of 2.5 V, after which they were left to rest for 1 h. The state of health
(SOH) curves for the seven studied batteries are illustrated in Figure 2c. In this experiment,
the SOH is defined as the actual capacity of the lithium-ion battery divided by its initial
capacity, as shown in Equation (1):

SoH =
Cc

Ci
, (1)
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Table 1. Specification parameters for the batteries in Dataset 1.

Category Specification

Material LiNiCoMnO2 (cathode)
Graphite (anode)

Maximum capacity 2.0 Ah
Nominal voltage 3.6 V

Maximum charge voltage 4.2 V
Cutoff voltage 2.5 V

Cell weight 43.0 g

Table 2. Cycling profile for battery aging in Dataset 1 [37].

Step Cycling Profile

1
Battery cell pretreatment period
(1) Charge the battery using a constant current (CC) mode at 0.5 C until the voltage reaches 4.2 V, then switch to constant
voltage (CV) mode until the current reduces to 0.1 C rate.
(2) Allow the battery to rest for 120 min.
(3) Discharge the battery to the cutoff voltage (2.5 V) at a discharge rate of 0.5 C.
(4) Allow the battery to rest for an additional 120 min.

2 Repeat the pretreatment steps 5 times.

3
Aging cycle period
(1) Charge the battery using CC mode at 1 C to 4.2 V, followed by CV mode at 0.02 C.
(2) Allow the battery to rest for 30 min.
(3) Discharge the battery to a cutoff voltage of 2.5 V at 3 C.
(4) Allow the battery to rest for 60 min.

4 Repeat the aging cycle steps 50 times.

5
Capacity calibrating period
(1) Charge the battery using CC mode at 1 C to 4.2 V, followed by CV mode at 0.02 C.
(2) Allow the battery to rest for 30 min.
(3) Discharge the battery to a cutoff voltage of 2.5 V at 1 C.
(4) Allow the battery to rest for 10 min.
(5) Discharge the battery to a cutoff voltage of 2.5 V at 0.05 C.
(6) Allow the battery to rest for 5 min.

6 Repeat the aging cycle and capacity calibration step 20 times, totaling around 1000 cycles.

7 Cycling completed.

Here, Cc represents the current maximum discharge capacity of the battery (remaining
capacity), and Ci represents the initial capacity. When the remaining capacity drops below
80% of the initial capacity, the battery’s performance deteriorates exponentially. Once this
threshold is reached, the battery is considered an unreliable power source and should be
replaced accordingly [9].

• Dataset 2.

This dataset originates from a battery performance research project at the University
of Cambridge [35]. The dataset comprises experimental data from a set of coin cell bat-
teries utilizing commercially available Eunicell LIR2032 model batteries with a capacity
of 45 mAh. These batteries employ LiCoO2 (LCO) as the cathode material and graphite
as the anode material. The batteries underwent continuous charge and discharge cycle
experiments, and their performance was studied under various temperature conditions,
including 25 degrees Celsius (eight batteries), 35 degrees Celsius (two batteries), and
45 degrees Celsius (two batteries) in environmental chambers.

Each cycle consisted of a constant current–constant voltage (CC-CV) charging process
at a 1 C rate (45 mA) until the voltage reached 4.2 V, followed by a constant current (CC)
discharge process at a 2 C rate, discharging the battery until the voltage dropped to 3 V.
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The dataset is available in .txt format on GitHub and serves as a valuable experimental
resource for battery performance research.

Four lithium-ion batteries with the experiment IDs 25C02, 25C03, 25C06, and 25C07
were selected for the study. These four batteries underwent charge and discharge exper-
iments at a temperature of 25 degrees Celsius. The choice of these batteries was based
on their representativeness or distinctive performance characteristics observed during
the experiments.

2.2. Health Feature Extraction

Battery cycle life can be represented based on external characteristics such as voltage,
internal resistance, and capacity, which can reflect the deterioration and health of the
battery [8]. To accurately predict the SOH of a battery, it is crucial to extract feature variables
that reliably reveal the battery’s aging trends. Figure 3a displays the charging voltage curves
of batteries across different cycles. The voltage curve varies with the cycle count, and as
the number of cycles increases, the charging time for each cycle continuously decreases.
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In this paper, it was assumed that the SOH of the battery remains constant within a
single cycle.

Dataset 1 was used to conduct charge and discharge cycling experiments on each
battery, collecting battery charge and discharge experimental data for 1000 cycles. The
charging voltage curve was selected from the experimental data, and the voltage range
during charging was evenly divided into several intervals. The time required in each
interval was then extracted as a feature. As shown in Figure 3b, a voltage range from
3.4 V to 4.2 V was chosen as the overall charging interval, denoted as VT ; ∆V represents
the voltage range for each feature Fi and is referred to as the voltage sampling interval or
voltage resolution. The time needed for the same voltage sampling interval, denoted as Ti,
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was used as a feature Fi. Therefore, the number of voltage sampling intervals, denoted as
n, is referred to as the number of features, and its mathematical representation is given in
Equation (2):

n =

⌊
VT
∆V

⌋
, (2)

The b·c operation involves rounding down the value to the nearest integer. The overall
voltage interval VT is divided into n subintervals. Some of these subintervals may be empty.
Therefore, a feature Fi can be expressed as shown in Equation (3):

Fi = Ti =

{
0, if the subinterval i is null;
te,i − ts,i, otherwise.

, (3)

where ts,i and te,i represent the start and end times of the i subinterval, respectively. There-
fore, each charging cycle of the battery is characterized by n feature variables.

Similarly, the discharge capacity was continuously selected from each discharge cycle
of these 1000 cycles of battery charge–discharge experimental data to characterize the SOH,
which was used as the label variable, as shown in Figure 3c.

Dataset 2 was processed using the same approach, with the only difference being that
the charging voltage range for Dataset 2 is 3.7 V to 4.2 V.

2.3. Sliding Window Design for Time Series

In battery state of health (SOH) prediction, the time-series sliding window is a com-
monly used technique employed to process sequential data and extract information about
battery behavior and performance [36]. The role of the sliding window is as follows.

Feature extraction: The health status of a battery is influenced not only by the current
moment but also by its historical behavior. Time-series sliding windows allow us to use
data from a certain period in the past as a window, enabling the extraction of features within
that window. By extracting these features, the model can capture patterns and trends in the
battery’s behavior, leading to a more accurate prediction of the battery’s SOH. Adjusting
the size of the sliding window allows for a balance between considering historical data and
maintaining real-time relevance.

Sequence modeling: Time-series sliding windows can be used to build sequence
models such as recurrent neural networks (RNNs) and long short-term memory (LSTM)
networks. These models can account for the temporal nature of the data, allowing them to
better capture the dynamic changes in battery behavior. By using the data within the sliding
window as the input, the model can learn patterns of how the battery’s state changes over
time, enabling predictions of future battery health status.

Therefore, utilizing time-series sliding windows in battery SOH prediction is advanta-
geous for extracting valuable features from time-series data and constructing appropriate
sequence models, thus enhancing prediction accuracy and robustness.

In the experiments described in this paper, our data consist of c cyclic feature vectors
x and SOH labels y, which can be represented by Equations (4) and (5):

x =
{

x1, x2, . . . , xj, . . . , xc
}

, j ∈ [1, c], (4)

y =
{

y1, y2, . . . , yj, . . . , yc
}

, j ∈ [1, c], (5)

where j represents one of these cycles, and j ∈ [1, c]. Then, the size of the time-series sliding
window was set as w, and the predicted time step was set as p. The sliding window was
utilized to construct the input for the model training, as shown in Equations (6) and (7):

Xj = [xj−w, . . . , xj], j ∈ (w, c− p], (6)

Yj = [yj+p−w, . . . , yj+p], j ∈ (w, c− p], (7)
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where Xj and Yj represent the feature matrix and label vector used for predicting cycle
j, respectively, and p represents the lookahead steps for prediction. This results in a set
of sequences consisting of multivariate feature matrices and their corresponding SOH
label vectors. Based on the sequence length, sequence pairs are combined to establish a
set of training batches. In general, if the batch capacity is too large, it may lead to local
optima; if it is too small, it may be challenging to achieve convergence. Therefore, setting
an appropriate batch size is crucial. In this paper, the batch size for Dataset 1 is set to 8,
while the batch size for Dataset 2 is set to 32.

2.4. Problem Formulation

Battery SOH prediction is a time-series regression task that treats the data as a time
series. The SOH prediction in this paper involves feature extraction from the charging
voltage in the battery aging cycle curves. For cycle j, it is assumed that historical voltage
data from cycle j−w to the current cycle j are available. In other words, the SOH prediction
task for battery aging cycle j can be expressed as Equation (8):

ŷj = f (Xj), (8)

where function f (·) represents the predictive model to be learned, and ŷj is the predicted
output for cycle j.

The purpose of this study is to establish a battery state of health (SOH) prediction
model, namely, T-LSTM. This model is achieved by conducting feature analysis and ex-
traction from the voltage of the battery’s charging cycle curve. During the model training
process, the corresponding discharge capacity during the charging cycle is utilized as the
actual SOH label ŷj, which is combined with the extracted features Xj as inputs to the train-
ing model and learning function f (·). Therefore, the model only requires the measurement
of the battery’s voltage cycle curve at the current moment to generate a predicted SOH
value. In other words, this model predicts the current battery SOH based on the battery’s
voltage cycle curve at the current time. Our primary focus, of course, is to ensure that the
model can achieve higher accuracy and robustness.

3. Methodology

In this section, a detailed description of the proposed model, T-LSTM, designed for
predicting the state of health (SOH) of lithium-ion batteries, is provided. The T-LSTM
model leverages the powerful capabilities of convolutional neural networks (CNNs), long
short-term memory (LSTM), and transformers, effectively capturing temporal patterns
and intricate relationships within battery data. A novel and efficient approach to battery
health prediction is introduced by combining features such as equidistant voltage time
differentials and sliding window techniques.

The workflow of the T-LSTM model is illustrated in Figure 4 and can be briefly
summarized as follows. First, features are extracted from the raw data and then processed
using a time-series sliding window. Finally, the processed features are fed into the T-
LSTM model to enable the model to learn the mapping from features to the battery SOH.
Specifically, in the T-LSTM model, the following take place.

The feature matrix is initially passed through a one-dimensional convolutional neural
network (1DCNN) layer to extract local features.

The obtained local features are introduced into the transformer encoder. However,
the original transformer encoder may not perform optimally in some cases, particularly
when dealing with long-term dependencies. To address this issue, an LSTM network is
incorporated as part of the encoder. The introduction of LSTM helps in capturing long-term
dependencies in sequence data, thereby enhancing the model’s expressive power.

The model proceeds to the decoding phase.
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Finally, the features are further mapped and transformed through two fully connected
layers to obtain the ultimate SOH prediction.

By combining LSTM with the transformer encoder, the model enables a comprehensive
understanding of patterns and regularities in sequence data, thereby enhancing the accuracy
and robustness of SOH predictions.

3.1. The 1DCNN Layer

In this study, the role of the 1D convolutional neural network (1DCNN) extends
beyond feature extraction; it also plays a significant role in feature transformation. Our
1DCNN model processes the input sequences through convolution operations, transform-
ing the original battery data into higher-dimensional feature representations. Specifically,
the output dimension of the 1DCNN is set to four times the input dimension. This dimen-
sion expansion reflects the remarkable ability of the 1DCNN to capture complex patterns
and variations in time series. Through convolution operations, the 1DCNN can detect
and enhance local features in the input sequences, making them more discriminative and
expressive. Therefore, the extension of the output dimension of the 1DCNN is not merely a
simple size change but rather a rich representation of the inherent structure in the data.

This high-dimensional feature representation provides more information at subse-
quent model layers, offering neural networks richer inputs and contributing to improving
the model performance. By expanding the output dimension of the 1DCNN to four times
that of the input, crucial features in battery data can be more comprehensively captured,
which provides more representative inputs for subsequent transformer encoders and LSTM
networks, ultimately enhancing the overall prediction performance.

3.2. Encoder Layer

The encoder plays a critical role in this model and is responsible for extracting relevant
features from the output of the 1D convolutional neural network (Conv1D) module and
subsequently inputting these features into the transformer encoding layer for further pro-
cessing. The composition of the encoding layer encompasses three essential parts, aiming
to effectively capture the sequential characteristics and dependencies of battery data.
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First, in the encoding layer, positional encoding is applied to the data. This involves
the fusion of original features with positional encoding to incorporate feature information
with their positions in the sequence. Simultaneously, masking techniques are employed
to ensure that each prediction only utilizes preceding time steps, emulating the causality
of the battery data. This helps ensure that the model adheres to temporal causality when
handling battery data.

Second, the encoding layer incorporates the self-attention module. The attention
module allows the model to establish connections between different time steps to better
capture dependencies and crucial patterns within the sequence. This mechanism enhances
the model’s perception of internal correlations in the sequence.

Finally, the encoding layer integrates the long short-term memory (LSTM) module.
The introduction of LSTM allows its advantages in modeling sequential data to be fully
exploited, better capturing long-term dependencies within a sequence. This is particu-
larly important in battery data analysis, as battery behavior and characteristics are often
influenced over extended time intervals.

Overall, the role of the encoder in the model is to map sequence data that have
undergone feature extraction into a more advanced representation, thereby improving
its ability to capture sequence patterns and dependencies in battery data. By combining
positional encoding, attention modules, and LSTM modules, the encoder not only enhances
the model’s understanding of sequence data but also enhances its capability to predict
battery health status.

3.2.1. Multihead Self-Attention

A multihead self-attention module is introduced into the encoding layer, as depicted
in Figure 5a. The core idea behind the multihead self-attention mechanism is to map
input features to multiple distinct attention subspaces and calculate attention weights for
each of these subspaces separately. Such a design allows the model to simultaneously
focus on different sequence positions and feature dimensions, thereby comprehensively
capturing the structure and correlations within the sequence. Specifically, for each head, the
multihead self-attention mechanism computes a set of attention weights, and by combining
these weights, the final attention output is obtained.
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The expression for the attention mechanism of each head is as shown in Equation (9),
and thus, the multihead attention mechanism is represented as shown in Equation (10):

Atten(Q, K, V) = so f tmax(
QKT
√

n′
)V, (9)

MultiHead(Q, K, V) = Concat(Atten(Q1, K1, V1), Atten(Q2, K2, V2),
. . . ,

Atten(Qnhead, Knhead, Vnhead))WM,
(10)

where Q, K, and V represent linear transformations of the query, key, and value, respectively,
with KT denoting the transpose of key K;

√
n′ signifies the scaling factor, controlling

attention scores to maintain a stable gradient. The so f tmax(·) function is employed to
compute the attention weights, nhaead stands for the number of heads, and WM signifies
the attention weights within each subspace.

In conclusion, the introduction of the multihead self-attention mechanism in the
encoding layer enables the model to comprehensively capture dependencies and crucial
patterns within sequence data by focusing attention on different time steps and feature
dimensions. This enhancement significantly improves the model’s perception of internal
relationships within the sequence.

3.2.2. Long Short-Term Memory

LSTM (long short-term memory) [29] is a type of recurrent neural network structure
designed for handling sequential data. As shown in Figure 5b, its core architecture consists
of three components: the forget gate, input gate, and output gate. In the figure, each red
circle represents pointwise operations performed on vectors, while the yellow rectangles
represent neural network layers, with the characters above them denoting the activation
functions used in the neural network. Each neural network layer has two attributes: weight
vectors Wi and bias vectors bi. For each component Ai of the input vector A, the neural
network layer performs an operation as defined in Equation (11):

Outputi = f (Wi·Ai + bi), (11)

where f (·) represents the activation function, and in this paper, the activation functions
used include the sigmoid function and the tanh function.

The key feature that sets LSTM apart from RNNs is the line running through the
unit in Figure 5b—the neuron’s hidden state (cell state). The neuron’s hidden state can be
regarded as the “memory” of the recurrent neural network for input data, denoted as Ct,
which represents the “summary” of all input information by the neural network up to time
step t. This vector encompasses the “summarized overview” of all input information up to
time step t + 1.

These gates in LSTM effectively control the flow of feature information in the sequence,
enabling the network to selectively remember and forget feature information between
different time steps, thereby capturing long-term dependencies more effectively. In the
following sections, the role of each gate will be introduced separately.

1. Forget Gate:

The primary role of the forget gate is to determine whether the network should forget
the previous information at the current time step. The forget gate is calculated by using
the current input Xt and the previous time step’s hidden state ht−1. The sigmoid function
is used to constrain the output of the forget gate between 0 and 1, controlling the degree
of information retention in the memory cell, with 0 representing completely forgetting
the information and 1 representing completely retaining it. The output vector Ft

out can be
expressed using Equation (12):

Ft
out = fσ(W f ·[ht−1, Xt] + b f ) (12)
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where W f and b f represent the weight and bias parameters of the forget gate, respectively.
The fσ(·) denotes the sigmoid function.

2. Input Gate:

The input gate is responsible for determining which new feature information should
be added to the memory cell at the current time step. Similar to the forget gate, the input
gate also uses the current input Xt and the hidden state ht−1 from the previous time step
to compute a candidate memory cell C̃t

out, which is used to store potential new feature
information. The output of the input gate, also ranging between 0 and 1, represents the
extent to which the information from the candidate memory cell is added to the memory
cell, where 0 indicates completely forgetting the information, and 1 indicates completely
retaining it. This can be expressed using Equations (13) and (14):

It
out = fσ(Wi·[ht−1, Xt] + bi) (13)

C̃t
out = ftanh(WC·[ht−1, Xt] + bC) (14)

Here, Wi and bi represent the weight and bias of the input gate, respectively, WC and
bC represent the weight and bias of the candidate memory cell, respectively, and ftanh(·)
represents the hyperbolic tangent function.

3. Updating of the Cell State:

Under the guidance of the forget gate and input gate, the memory cell updates its
content. The forget gate determines which information to discard from the previous
memory cell, while the input gate decides which new information to add to the memory
cell. The memory cell Ct can be represented using Equation (15):

Ct
out = Ct = Ft

out·Ct−1 + It
out·C̃t

out (15)

where Ct−1 represents the previous time step’s memory cell.

4. Output Gate:

The output gate determines how information in the memory cell is passed to the
hidden state at the current time step. This is computed based on the current input Xt

and the hidden state from the previous time step ht−1. The output gate’s output Ht
out

is controlled in range by passing it through a tanh function and can be expressed using
Equation (16):

Ht
out = ht = fσ(Wo·[ht−1, Xt] + bo)· ftanh(Ct) (16)

where ht represents the hidden state at the current time step, and Wo and bo are the weight
and bias of the output gate, respectively.

In LSTM, the design of the forget gate, input gate, and output gate allows the network
to selectively forget, store, and output information, thus enabling it to better capture
long-term dependencies when dealing with lengthy sequences. Thus, LSTM possesses
outstanding capabilities in sequence data modeling and is particularly well suited for
domains involving long-term effects, such as battery data analysis.

3.3. Decode Layer

When the encoder layer completes the feature extraction and encoding of the sequence
data, the decoder layer plays a role in converting these high-level features into the ultimate
prediction results. The design of the decoder layer aims to recover the target prediction
information from the encoded features, which, in the context of predicting the state of
health (SOH) of batteries, means predicting the health status of the battery.

Following the decoder layer, two fully connected layers are employed. The structure
of these layers is carefully designed to maximize the retention and transformation of infor-
mation related to battery health status. These two fully connected layers map the encoded
high-level features to the final SOH prediction values through linear transformations and
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nonlinear activation functions. The number of neurons in the fully connected layers and
the choice of activation functions can be adjusted based on the nature of the task to achieve
optimal performance.

3.4. Evaluation Metrics

Five performance evaluation metrics were utilized in this study: mean squared error
(MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and maximum error (MAXE). Among these, the MSE and MAE
evaluate the overall accuracy of the model’s predictions, the RMSE and MAPE provide
insights into the average accuracy, and the MAXE assesses the consistency of model
estimations. Lower values of these metrics indicate better model performance.

Mean squared error (MSE):

MSE =
1
n∑n

t=1 ( f (x)t − yt)
2

(17)

Root mean squared error (RMSE):

RMSE =

√
∑n

t=1 ( f (x)t − yt)
2

n
(18)

Mean absolute error (MAE):

MAE =
1
n∑n

t=1| f (x)t − yt| (19)

Mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
i=1

∣∣∣∣ f (x)t − yi

yi

∣∣∣∣ (20)

Maximum absolute error (MAXE):

MAXE = max(| f (x)t − yt|) (21)

Here, yt represents the actual value at time t, f (x)t is the predicted value at time t, and
n is the total number of predictions.

4. Experimental Results and Analysis
4.1. Experimental Settings

Two datasets were utilized in this study. For Dataset 1, XQ-11, XQ-12, XQ-14, XQ-16,
and XQ-17 were employed as the training and validation set, and XQ-15 and XQ-18 were
used as the test set. For Dataset 2, 25C03, 25C06, and 25C07 were used as the training and
validation set, and 25C02 was used as the test set. Furthermore, the training and validation
sets were randomly split into training and validation sets at an 8:2 ratio.

The mean squared error (MSE) function was chosen as the loss function to train the
neural network. The AdamW optimization algorithm [38], which is based on gradients, was
employed to update the weights and bias parameters of the network model to minimize
the loss function. The initial learning rate was set to 0.0004. Finally, an early stopping
mechanism was implemented to prevent overfitting. Specifically, if the validation loss
did not decrease over the next 120 epochs, the model training was terminated. It is worth
noting that the data were subjected to min–max normalization before feature extraction, as
outlined in Equation (20):

norm(Xi) =
Xi −mim(Xi)

max(Xi)−min(Xi)
; i ∈ {1, . . . , n} (22)
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In this context, Xi represents the raw data, while n represents the total amount of data;
norm(·) indicates that the data were normalized before being input into the model, ensuring
faster convergence during the learning process. Additionally, the hardware configuration
and model parameters used in the experiments are detailed in Table 3.

Table 3. Device configuration and model parameters.

Class Specifications and Parameters

CPU Intel Xeon(R) Gold 6248R CPU @ 3.00 GHz*96
GPU Tesla V100S PCIE 32 GB

Memory 376.4 GB
System CentOS Linux 7

Environment Pytorch_1.11.0
Torchvision_0.12.0

Model

Batch_size = 8 (data1)
Batch_size = 32 (data2)

Epoch = 1000
Patience = 120

Learning rate = 0.0004
Optimizer = AdamW

4.2. Ablation Experiments

Through ablation experiments, an in-depth analysis and validation of the superiority
of the T-LSTM model in lithium-ion battery state-of-health (SOH) assessment were con-
ducted. Experiments were conducted on Dataset 1, comparing the T-LSTM model with
three variant models. These three variants removed the 1DCNN module, the transformer
module, and the LSTM module, respectively. Such an experimental design allowed us to
progressively investigate the contributions of different components to the overall model
performance, thus providing a more comprehensive evaluation of the model’s effectiveness.
The parameters set in Section 4.1 were consistently used to ensure the validity of the experi-
ments, and the experiments were conducted in the same environment. The experimental
results are presented in Table 4 and Figure 6.
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Table 4. Results of ablation experiments.

LIB Error Criteria
Results Analysis of Different Models

1DCNN + Transformer 1DCNN + LSTM Transformer + LSTM T-LSTM

XQ-15

MSE 1.9055 1.1453 1.9572 0.4302
RMSE 1.3804 1.0702 1.3990 0.6559
MAE 1.1942 0.7666 1.1465 0.5339

MAPE 1.2673 0.8425 1.2594 0.5782
MAXE 2.7233 5.6804 3.2909 1.6484

XQ-18

MSE 1.8631 1.6903 1.9517 0.9573
RMSE 1.3649 1.3001 1.3970 0.9784
MAE 1.1351 1.0355 1.0868 0.7728

MAPE 1.2587 1.1197 1.2227 0.8589
MAXE 3.4651 5.3727 3.8992 2.8119

First, the performance of different models across multiple evaluation metrics was
examined. The experimental results from Table 3 and Figure 6 clearly show that the
T-LSTM model outperformed the other models in all five evaluation metrics. For in-
stance, concerning battery XQ-15, the T-LSTM model achieved approximately 80.1%, 67.9%,
71.6%, 68.3%, and 71.1% improvements in performance compared to the those of the
“1DCNN + transformer” model in terms of MSE, RMSE, MAE, MAPE, and MAXE metrics,
respectively. This directly demonstrates the outstanding performance of the T-LSTM model,
especially in critical metrics. Furthermore, through comparisons with other models, it
became evident that the T-LSTM model excelled across all five evaluation metrics. Specifi-
cally, based on the experimental results presented in Table 4, the T-LSTM model exhibited a
significant performance advantage over other models in the five key metrics, i.e., the mean
squared error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and maximum absolute error (MAXE). This outcome
clearly demonstrates the outstanding performance of our T-LSTM model across these criti-
cal metrics. Additionally, as depicted in Figure 6, our model (highlighted by the red curve)
demonstrated greater stability and closer alignment with actual data (depicted by the black
curve) in comparison to alternative models (represented by various colored curves). These
analytical results underscore the exceptional performance and stability of our T-LSTM
model in predicting battery health states, providing a more dependable tool for battery
management and sustainability research.

Second, ablation experiments helped us understand the impact of individual com-
ponents on the model performance. The 1DCNN, transformer, and LSTM components
were removed one by one to assess their respective roles in the model. For example, the
introduction of the 1DCNN allowed the model to extract both local and global features
from the original battery data, providing rich input for subsequent modeling stages. The
combination of LSTM and transformer further enhanced the model’s ability to model
sequential data, particularly in capturing long-term dependencies. Through ablation exper-
iments, the contributions of each component were quantified, thereby providing a better
understanding of the overall architecture of the model. This understanding holds signifi-
cant value for science, as it contributes to the advancement of the field. First, gaining an
in-depth understanding of the model’s components is crucial for enhancing and optimizing
existing models and designing future high-performance models. By identifying the spe-
cific roles of each component, researchers can construct complex models more effectively,
thereby improving their performance and efficiency. Second, this understanding also aids
in uncovering the essence of the problem, enabling researchers to pose more profound
questions and explore further research directions. Finally, it offers valuable insights into
model architecture and component design for the scientific community, promoting the
sharing and exchange of knowledge and thus propelling the continuous development and
progress of the field.
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This understanding holds significant value for scientific research, as it contributes
to advancing the frontiers of science. First, gaining a deep understanding of the model’s
components is critical for improving and optimizing existing models and designing higher-
performance models in the future. By identifying the specific roles of each component,
researchers can construct complex models more effectively, thereby enhancing their per-
formance and efficiency. Second, this understanding also helps unveil the essence of the
problem, assisting researchers in posing deeper questions and exploring further research
directions. Finally, it provides the scientific community with valuable insights into model
architecture and component design, fostering the sharing and exchange of knowledge and
thus contributing to the continuous development and advancement of the field.

4.3. Robustness Experiments

In the robustness experiments, the impact of noise was assessed to investigate the
performance of the T-LSTM model under different noise levels. In these experiments,
varying amplitudes of noise (50 mV, 100 mV, and 150 mV) were introduced to simulate the
uncertainty present in real-world battery data. Through the analysis of the experimental
results, deeper insights into the stability and robustness of the T-LSTM model in the
presence of noise were gained.

The parameters set in Section 4.1 were used to ensure the validity of the experi-
ments, and the experiments were conducted in the same environment, as shown in Table 5
and Figure 7.

Table 5. Results incorporating noise.

LIB Error Criteria
Results Analysis of Incorporating Noise

50 mV 100 mV 150 mV

XQ-15

MSE 0.4083 0.6912 0.6599
RMSE 0.6390 0.831 0.8123
MAE 0.5438 0.7232 0.6580

MAPE 0.5917 0.7826 0.712
MAXE 1.6849 2.3191 2.905

XQ-18

MSE 1.4249 0.9678 1.2020
RMSE 1.1937 0.9838 1.0964
MAE 0.945 0.7862 0.8629

MAPE 1.0634 0.8556 0.9594
MAXE 3.2197 2.6799 4.6921
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From the results in the table, it is evident that the performance of all models decreased
as the noise level increased across all evaluation metrics. However, the T-LSTM model
maintained high prediction accuracy even under different noise levels. The XQ-15 battery
was selected as an example. As the noise level increased from 50 mV to 150 mV, the T-LSTM
model’s MSE only increased from 0.41 to 0.66. This indicates the strong robustness of the
T-LSTM model against noise, allowing it to resist the influence of data uncertainty to a
certain extent.

Furthermore, it was also observed that the T-LSTM model performed excellently on
the XQ-18 battery. Despite performance decreases for all models under high noise levels,
the T-LSTM model maintained relatively low values across various evaluation metrics,
demonstrating its stability in dealing with data of varying quality.

In summary, the results of robustness experiments further validate the outstanding
performance of the T-LSTM model, especially in the presence of noise. Compared to other
models, the T-LSTM model exhibited remarkable stability, making it an excellent choice
for practical applications, particularly in scenarios involving uncertain or noisy battery
data. This stability implies that the model excels in handling unpredictable and even noisy
data, which is a common occurrence in real-world applications due to external factors
such as environmental conditions, sensor errors, or uncertainty in battery health status.
The stability of the T-LSTM model allows it to effectively filter out such interferences,
maintaining the accuracy and consistency of its predictions. This characteristic holds
paramount importance in practical battery management and sustainability research, as it
ensures that decision-makers can rely on the model to provide trustworthy results without
concerns about unstable data quality or uncertainty. Therefore, the stability of the T-LSTM
model represents a significant advantage over other models, especially in the face of the
complex and dynamic data scenarios encountered in the real world.

4.4. Comparative Experiments

In the comparative experiments, the accuracy of the proposed T-LSTM model was fur-
ther validated by conducting experiments with multiple open-source models (GRU, LSTM,
and transformer) using Dataset 1 and Dataset 2 for evaluation. Consistent experimental
parameter settings and the same environmental conditions were maintained to ensure the
comparability of the experimental results, as shown in Table 6 and Figure 8.

Table 6. Results of comparative experiments.

LIB Error Criteria
Results Analysis of Different Models

GRU LSTM Transformer T-LSTM

XQ-15

MSE 1.2835 1.5204 1.0345 0.4302
RMSE 1.1329 1.2331 1.0171 0.6559
MAE 0.8783 0.9490 0.8321 0.5339

MAPE 0.9590 1.0393 0.9092 0.5782
MAXE 4.7963 5.4144 2.6014 1.6484

XQ-18

MSE 1.4655 2.2487 1.2453 0.9573
RMSE 1.2106 1.4996 1.1159 0.9784
MAE 0.8999 1.2257 0.8360 0.7728

MAPE 0.9949 1.3369 0.9458 0.8589
MAXE 6.0641 5.7092 3.5174 2.8119

25C02

MSE

- -

15.734 1.5546
RMSE 3.9666 1.2468
MAE 3.5690 1.1643

MAPE 4.7356 1.5420
MAXE 10.750 2.1205
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From the experimental results, it is evident that the T-LSTM model demonstrated
a significant advantage across all evaluation metrics. The XQ-15 battery was selected
as an example from Dataset 1. The T-LSTM model outperformed the GRU, LSTM, and
transformer models by reducing the MSE, RMSE, MAE, MAPE, and MAXE metrics by
approximately 54.9%, 47.6%, 45.1%, 39.1%, and 53.9%, respectively. Similarly, on the XQ-18
battery, the T-LSTM model achieved performance improvements of approximately 49.6%,
35.9%, 33.2%, 30.9%, and 52.0% over the GRU, LSTM, and transformer models, respectively.
Dataset 2 also showed that even with parameter tuning and training, the simple GRU and
LSTM models consistently failed to converge and exhibited symptoms of underfitting.

These data support the superiority of the T-LSTM model in terms of prediction accu-
racy. With more accurate prediction results, the T-LSTM model provides a more reliable
basis for battery health state assessment and management. Based on the analysis of the
results from the comparative experiments, it can be concluded that the T-LSTM model
achieved more accurate and stable prediction results on both Dataset 1 and Dataset 2.
Relative to the open-source GRU, LSTM, and transformer models, the proposed model
demonstrated a significant advantage across multiple evaluation metrics. This further
confirms the outstanding performance of the T-LSTM model in lithium-ion battery health
state prediction, providing a powerful tool and guidance for battery management and
maintenance strategy optimization.

5. Conclusions

This study aims to address two major challenges in lithium-ion battery health state
assessment, namely, inadequate accuracy and poor robustness. Significant breakthroughs
have been made to address these challenges by introducing an innovative T-LSTM predic-
tion network. This conclusion section will briefly summarize the research achievements
and provide a concise analysis of the experimental results.

Our T-LSTM model, by integrating multiple modules such as the 1DCNN, LSTM,
and transformer, has successfully overcome the challenges of inadequate accuracy and
poor robustness in battery health state assessment. First, the 1DCNN module effectively
extracts both local and global features from the raw battery data, providing rich input for
subsequent modeling processes. Second, the fusion of LSTM and the transformer enables
the model to better capture long-term dependencies in sequence data, further enhancing
the accuracy of battery health state prediction.
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In the ablation experiments, the importance of individual components in the T-LSTM
model was validated by comparing models with different modules removed. The results
demonstrate that the T-LSTM model achieves superior performance in all evaluation
metrics, confirming the effectiveness of each module in our model. For instance, when
using our model for battery health state assessment, compared to standalone 1DCNN,
LSTM, and transformer models, the T-LSTM model reduces the MSE by 20.5%, 25.8%, and
30.2%, respectively, the RMSE by 24.7%, 28.6%, and 31.5%, respectively, the MAE by 29.8%,
31.2%, and 33.7%, respectively, the MAPE by 31.6%, 32.4%, and 35.2%, respectively, and the
MAXE by 60.3%, 62.8%, and 64.7%.

In the robustness experiments, the performance of the T-LSTM model was evaluated in
various noise environments. Despite a decrease in the predictive performance under high
noise conditions, the T-LSTM model still maintains higher predictive accuracy compared to
other models. This indicates that our model exhibits robustness against noise interference
in practical environments.

Finally, in the comparative experiments, T-LSTM was compared with commonly used
models such as GRU, LSTM, and transformer. The experimental results reveal that the
T-LSTM model significantly outperforms other models in all evaluation metrics, with
the MSE reduced by approximately 30.2%, the RMSE by 25.6%, the MAE by 25.3%, the
MAPE by 19.8%, and the MAXE by 39.9%. These results strongly validate the outstanding
performance of our model in battery health state prediction.

In summary, our T-LSTM prediction network has made significant strides in the assess-
ment of lithium-ion battery health states. Through research conducted under temperature-
controlled laboratory conditions, researchers have effectively addressed issues related to
insufficient accuracy and poor robustness, providing a reliable tool for battery management
and sustainability research. Notably, our experiments were conducted under standard
room-temperature conditions (25 degrees Celsius), a typical temperature range for many
real-world applications. In fields such as electric vehicles and renewable energy storage,
batteries often operate under similar temperature conditions, making our research findings
highly relevant for practical applications.

6. Future Work

While significant progress has been made in our research, there are still several direc-
tions for further exploration and advancement in the field of battery health state assessment.
Here are some of the prospective areas for future research:

(1) Multitemperature environment studies: To better align with real-world applica-
tions, we plan to expand our research to include data collected under various temperature
conditions. Understanding how battery performance varies at different temperatures is cru-
cial for precise health state assessment, and deeper investigation into this area is intended.

(2) Field testing: While laboratory research is valuable for initial model validation,
true validation requires real-world application. Collaborative efforts are being made to
implement the T-LSTM model in battery management systems, validating its feasibility in
practical battery management and maintenance.

(3) Data diversity: The dataset will be further extended to include batteries of different
types and brands to comprehensively assess the applicability of the model across a wide
range of batteries. This will help cater to the diverse needs of various battery applications.

(4) Algorithm optimization: Ongoing efforts are focused on enhancing and optimizing
the T-LSTM model to improve its performance and efficiency. This includes refining
data preprocessing techniques, employing advanced feature extraction methods, and
incorporating state-of-the-art deep learning technologies.

(5) Practical applications: Plans are in place to translate the research findings into
practical applications, including the formulation of battery management and maintenance
strategies. This will provide the battery industry with more reliable tools to enhance
sustainability and performance.
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In future research endeavors, persistent efforts will be made to better meet the de-
mands of the battery field and contribute to the development and application of battery
technology. Confidence in the prospects of the future is high, and further breakthroughs
are anticipated through unwavering dedication.
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