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Abstract: The joint optimization of power systems, mobile energy storage systems (MESSs), and
renewable energy involves complex constraints and numerous decision variables, and it is difficult to
achieve optimization quickly through the use of commercial solvers, such as Gurobi and Cplex. To
address this challenge, we present an effective joint optimization approach for MESSs and power
grids that consider various renewable energy sources, including wind power (WP), photovoltaic
(PV) power, and hydropower. The integration of MESSs could alleviate congestion, minimize
renewable energy waste, fulfill unexpected energy demands, and lower the operational costs for
power networks. To model the entire system, a mixed-integer programming (MIP) model was
proposed that considered both the MESSs and the power grid, with the goal of minimizing costs.
Furthermore, this research proposed a highly efficient deep reinforcement learning (DRL)-based
method to optimize route selection and charging/discharging operations. The efficacy of the proposed
method was demonstrated through many numerical simulations.

Keywords: renewable energy; battery energy storage system; machine learning; deep reinforcement
learning; data-driven optimization; cost minimization

1. Introduction

Renewable energy sources such as wind, water, and solar energy have consider-
able capacity to lower energy costs and carbon emissions while playing a crucial role
in creating low-carbon and sustainable energy systems, as highlighted in [1–3]. How-
ever, the intermittency and variability of renewable energy pose a great challenge to the
safe and economic operation of power systems in regions with an abundance of renew-
able energy potential [4,5]. To address this challenge, energy storage systems (ESSs) are
a promising technology for the integration of renewable energy and the reduction in
renewable curtailment.

Stationary energy storage systems (SESSs), the most conventional application mode
of BES, have enabled energy conversion and capacity sharing during a limited time pe-
riod [6,7]. Specifically, given the predicted renewable energy generation curve, SESSs,
renewable energy, and thermal units were scheduled collaboratively to integrate renewable
energy. However, SESS was inflexible, as it relies on large-capacity and long-distance
transmission lines. Meanwhile, the utilization efficiency of SESSs also depended on its
location, as it was difficult for the owners of a SESS to determine the optimal location
because numerous constraints had to be considered, such as political, economic, social,
and geographical factors [8–10]. Therefore, mobile energy storage systems (MESSs), as an
ongoing development application mode of BES that couples energy and transportation
systems, incorporate vehicles (e.g., electric vehicles (EVs), trains, ships, etc.), batteries,
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power converters, and transformers. As compared to SESSs, MESSs enable energy con-
version and the capacity sharing of energy storage over longer time periods through their
transportation network and considerably improve the utilization rate of battery assets
and the emergency dispatching capability of the power system. MESSs had more flexible
deployment capabilities and had a more remarkable capacity in energy arbitrage [11,12],
renewable energy integration [13–15], peak-shaving [16,17], grid-congestion relief [18,19],
and grid-investment deferral [20–22].

The authors of [11] proposed the concept of a utility-scale MESS, which incorporated
electric trucks, energy storage, and energy conversion systems; constructed an optimization
model involving charge scheduling and route planning of MESSs; and used the proposed
model in the energy arbitrage of a power grid in California. The results revealed that,
as compared to the SESS, the MESS had considerable benefits over a life-cycle time pe-
riod. In [13], the researchers integrated MESS into a large-scale power distribution system
in order to integrate renewable energy in remote areas and proposed a particle-swarm
optimization to streamline a scheduling model of MESSs. The results showed that the
proposed models and algorithm could considerably reduce the operating cost of the power
system. The authors of [14] developed a decision framework that used MESS to improve
system resilience for the emergency dispatching of the power distribution system, and
they verified that the proposed decision framework could effectively improve system
response-and-recovery speed in the emergency scenarios. In [18], the researchers integrated
large-scale EVs into the electric energy distribution system and proposed a mixed-integer
linear programming (MILP) model to optimize the charging schemes of EVs. The results
showed that the proposed model could substantially alleviate grid congestion and improve
the performance of EVs and grid benefits. The authors of [20] developed a collaborative
planning model for SESSs and MESSs to reduce the capital cost of transmission lines, energy
storage systems, and the operating costs of power systems. Meanwhile, ref. [20] used
the proposed model to determine the optimal region for SESS and MESS implementation
for China’s northwestern grid. The aging issue of mobile energy storage devices has also
attracted attention. Reference [23] analyzed the influence mechanism of grid-connected
operation on the life degradation of lithium-ion battery energy storage systems and estab-
lished a cost accounting model for frequency regulation, considering the impact of battery
life degradation. Reference [24] studied the frequency regulation problem of a power grid
model that includes loads, traditional generators, and multiple electric vehicles, aiming to
minimize the degradation of battery devices. Their proposed strategies demonstrated high
effectiveness under actual operating conditions. In this paper, in order to emphasize the
modeling of mobile energy storage systems and their joint optimization with the power
grid, we have simplified the description of this part.

Recently, deep reinforcement learning (DRL) techniques have seen growing applica-
tions in battery management [25,26], grid management, and micro-grid management [27,28].
The authors of [25] presented a DRL-based method for a battery system in EVs, which
consisted of a high-power battery pack in order to reduce energy loss and enhance thermal
safety. The proposed strategy demonstrated advantages in terms of reducing calculation
time and energy consumption. In [26], the researchers proposed a joint optimization
framework of DRL and binary integer programming for the battery swapping–charging
systems for EVs, which had favorable performance in a real-time demonstration, as well
as improved computational efficiency and privacy preservation. A multi-agent system
based on an RL method was applied to manage a stand-alone micro-grid including a
power-production unit, a power-consumption unit, and a power-storage unit in [27]. The
authors of [28] proposed an optimal control strategy based DRL, which had asynchronous
advantages via its actor− critic framework to manage and optimize an online energy sys-
tem.A multi-agent DRL-based approach was developed by [29] for real-time route selection
and dispatching of multiple coordinated MESSs, and it had the ability to handle a hybrid
continuous-discrete action space and to strengthen resiliency after extreme events. In [30],
the researchers proposed a DRL-based method that coordinated the scheduling of the
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MESSs and the resource allocation of micro-grids in order to minimize the overall cost of
the system. In the future, a significant amount of data is expected to be generated in the
fields of energy and transportation [19], which could provide significant data support for
solving MESS’s challenges through the application of DRL-based methods.

We have summarized the commonly used forms of energy storage, including their
optimization objectives, research methods, and integration with the power grid, as shown
in Table 1.

Table 1. Summary of energy management problem and power grid.

Authors [31] [9] [10] [11] [32] [30] Ours

Year 2021 2020 2021 2021 2022 2020 2023

Modality SESSs X

MESSs X X X X X X

Objective function

Cost/benefit X X X X X

Grid peak X

Resilience X

Method

Math programming X X

Heuristic X

Control X X

Deep reinforcement learning X X

Coordinated with
Power grid X X X X X X

Renewable energy X

Therefore, based on the aforementioned research, most of the methods adopted to solve
joint optimizations in power systems, MESSs, and other renewable energy components
have been commercial solvers, heuristics, and meta-heuristics [12,20]. More recently,
DRL-based methods have shown strong abilities in resolving combinatorial optimization
challenges,and all have achieved remarkable results. To the best of our knowledge, however,
few studies have focused on applying DRL to solve the cooperative scheduling challenges
of batteries and power systems. Therefore, we proposed a joint mixed-integer programming
(MIP) model for MESSs and the power grid. To address the nonlinearity and the elimination
of integer variables, a hybrid strategy was proposed. A MESS model, which included
0–1 integer variables, was resolved using a DRL-based approach. The output from the
DRL-based method was used as a portion of the input for the power-grid model, which was
a simple linear programming (LP) model and easy to solve. The MESSs were formulated as
constrained Markov decision processes (CMDPs), which served as the foundation for the
DRL design. To enable the agent to make simultaneous decisions about the destination and
power, a hybrid discrete-continuous action space was designed. The effectiveness of the
proposed method was demonstrated through numerical experiments. Our contributions
were summarized in three key areas:

(1) We developed an MIP model for the joint system of the MESSs and power grids to
minimize the total operating costs. The model included constraints on the output of
thermal power and renewable energy sources, the energy transmission of the power
grid and the MESSs, the locations of the MESSs, etc.;

(2) We presented a formulation of the MESS challenge as a CMDP and introduce a
DRL-based algorithm to make decisions in a hybrid action space that combined both
discrete and continuous variables;

(3) We proposed a new linear programming (LP) model that eliminated the constraints on
the MESSs in the original model by using the DRL-based method, thereby eliminating
the integer-variable constraints and significantly improving the solving time. There-
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fore, we proposed an algorithmic framework that combined DRL-based methods with
the solutions of new LP models.

The remainder of this paper is structured as follows. In Section 2, the scheduling opti-
mization challenge of the MESSs and the power grid is formulated as a MIP model. Section 3
describes the proposed DRL-based method. In Section 4, simulation studies are performed to
validate the efficacy of the proposed approach. Section 5 presents the conclusions.

2. Mobile Energy Storage Systems and Power Grid Model

The joint optimization model for the MESSs and power grids aimed to minimize
costs while considering constraints on energy transportation and operation. The objective
function was comprised of two components: thermal power cost and MESS transportation
cost, as follows:

min ∑
g∈G

∑
u∈Ug

∑
t∈T

Cg
u,tP

g
u,t + ctra∆t ∑

g∈G
∑
f∈G

∑
t∈T

γg, f ,t, (1)

where G denotes the electricity consumption node set and g denotes a single node; Ug
denotes the thermal power unit set in node g; T represents the decision cycle, and t
represents time index, where time slot length δt is set to 1 hour. The variables Cg

u,t and Pg
u,t

indicate the generation cost of thermal power units and output, respectively. In addition,
ctra denotes the transportation cost per unit of time, which was set to $20/h in this study.
The expression γg, f ,t ∈ 0, 1 represents whether the MESSs were traveling between nodes g
and f (1 indicated traveling and 0 indicated not traveling).

The constraints of the joint model were the following:

PU
u,min ≤ PU

u,t ≤ PU
u,max, ∀u ∈ Ug, g ∈ G, t ∈ T, (2)

PU
u,t − PU

u,t−1 ≤ RUu,t, ∀u ∈ Ug, g ∈ G, t ∈ T, (3)

PU
u,t − PU

u,t−1 ≥ −RDu,t, ∀u ∈ Ug, g ∈ G, t ∈ T, (4)

0 ≤ PR
r,t ≤ PR

r,t,max, ∀r ∈ Rg, g ∈ G, t ∈ T, (5)

− PTL
l,t,max ≤ PTL

l,t ≤ PTL
l,t,max, ∀l ∈ TL, g ∈ G, t ∈ T, (6)

∑
l∈TL

PTL
l,t = 0, ∀t ∈ T, (7)

∑
u∈Ug

Pg
u,t + ∑

r∈Rg

PR
r,t + ∑

l∈TL
PTL

l,t = PL
g,t + ωg,tPMESS

g,t , ∀u ∈ Ug, r ∈ Rg, g ∈ G, t ∈ T, (8)

0 ≤ PMESS
g,t ≤ ωg,tPmax, ∀g ∈ G, t ∈ T, (9)

∑
g∈G

ωg,t ≤ 1− ∑
f∈G

γg, f ,t, ∀g ∈ G, t ∈ T, (10)

αg,t − βg,t = ωg,t −ωt,(t−1), ∀g ∈ G, t ∈ T, (11)

∑
g∈G

(
αg,t + βg,t

)
≤ 1, ∀t ∈ T, (12)

∑
f∈G

γg, f ,t ≥ βg,t, ∀ f ∈ G, t ∈ T, (13)

α f ,t − θ f ,t = ∑
g∈G

(
γg, f ,t−1 − γg, f ,t

)
, ∀ f ∈ G, t ∈ T, (14)

∑
g∈G

(
αg,t + θg,t

)
≤ 1, ∀t ∈ T, (15)

γg, f ,t ≥ γg, f ,t−1 − γg, f (t−Hg, f ,t)
, ∀g ∈ G, f ∈ G, t ∈ T. (16)

where PU
u,min and PU

u,max denote the minimum output and maximum output of thermal
power units, respectively. The variables RUu,t and RDu,t denote the increased or decreased
output of the thermal units, respectively, (with ramp constraints). In addition, Rg is the set
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of renewable energy resources including WP, PV, and hydropower. The actual output of the
renewable energy resources and the maximum output of the renewable energy resources
are expressed as PR

r,t and PR
r,t,max, respectively. Furthermore, PTL

l,t and PTL
l,t,max represent the

actual transmission power and maximum transmission power of tie-line l, respectively.
The expression l = (g, f ) ∈ TL denotes the tie-line between nodes g and f . The load in
node g is represented as PL

g,t.
The constraints were divided into two categories. The first category included the

constraints on the power grid, including inequalities, as expressed in (2)–(8). Constraint (2)
included the upper and lower limits of the thermal unit output. Constraints (3) and
(4) represented the ramp constraints for thermal power units. The output of renewable
energy resources was constrained by inequality, as shown in (5). The constraints on the
transmission power of the tie-lines were expressed in (6) and (7). Constraint (8) represented
the balance of power output for the whole joint system of the MESSs and power grids.

The second category included constraints (9)–(16) of the MESSs, with respect to [11].
Constraint (9) denoted the limit of the power output of the MESSs. The storage could not
stop at a node if it was traveling between nodes and could only appear at one node at one
time, as expressed in constraint (10). Equations (11)–(15) modeled the transportation status
between nodes g and f , where αg,t ∈ {0, 1} and βg,t ∈ {0, 1} were both binary variables
that denoted whether the MESSs were moving to node g at time t or whether the MESSs
were moving from node g at time t, respectively.In addition, θg,t ∈ {0, 1} represented an
auxiliary binary variable. Constraint (11) connected the change of the locator indicators
ωg,t with the arrival indicators αg,t and depart indicators βg,t. The arrival and departure
could not occur simultaneously, as expressed in constraint (12). Constraint (13) managed
the storage depart node. Constraints (14) and (15) ensure that the arrival indicators αg,t are
equal to 1 for the arrival times; otherwise, they were equal to 0. Constraint (16) calculated
the transportation time Hg, f ,t from node g to node f . In this study, the traveling time was
estimated as a square matrix for all nodes.

Model (1) contained a large number of integer variables, which are known to be
computationally demanding. In this proposal, we considered a machine-learning approach
to solve for the integer variables. This study formulated the storage movement process as a
Markov decision process (MDP) and applied a DRL-based method to solve it.

3. Deep Reinforcement Learning-Based Method

This section begins with a concise overview of the evolution of DRL-based techniques.
The MESSs challenge is then framed as an MDP. The agent in the DRL-based approach was
represented by an electric truck and its operator. Next, we demonstrated the integration of
the DRL-based technique into the MIP model. Finally, the formulation of the action space,
state space, and reward function for the DRL-based method was established. The proximal
gradient projection algorithm was employed to ensure the safe exploration by the agent.

3.1. Background of DRL

The basement of the reinforcement-learning phase was the Bellman equation [33]:

Q∗(s, a) = En′∼ε

[
r + γ max

a′
Q∗
(
s′, a′

)
| s, a

]
, (17)

where the optimal value of the state sequence s, represented by Q(s, a), is determined by
selecting the action a that maximizes the expected value of Q(s, a).

Traditional reinforcement learning encounters the challenge of dimensionality. The
authors of [34] addressed this issue by utilizing neural networks (NNs) to approximate the
Q-value table. The Q-value was approximated using NNs, expressed as Q(s, a; w), which
was a close estimation of the true Q-value Q(s, a). The weights of the NNs were represented
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by the variable w. The weight parameters were updated through the loss function [35]:

Lt(w) =

{
Q(st, at; w)−

[
rt + γ max

a′∈A
Q
(
st+1, a′; wt

)]}2
. (18)

The maximization calculation in Equation (18) is computationally inefficient for contin-
uous action spaces due to the non-convex nature of the function Q(s, a; w) with respect to
action a. This renders the maximization calculation NP-hard in the worst-case scenario [36].
To overcome this challenge, ref. [37] introduced the deterministic policy gradient (DPG)
theorem which utilizes policy-based methods for continuous action spaces through the
implementation of deterministic policies µθ : S → A. The objective of policy gradient
methods is to discover a policy πθ that optimizes the expected reward. The objective of the
policy, J(πθ), is then updated through gradient descent [38]:

∇θ J(µθ) = E
s∼ρµθ

[
∇θµθ(s)∇aQµθ (s, a)|a=µθ(s)

]
. (19)

3.2. Algorithm Framework

The actor− critic framework has proven to be effective in various domains, such as
energy storage systems [26] and the game Go [39]. We adopted a similar structure in this
proposal. The Actor network was a strategic network designed to determine the power
parameters of the MESSs, which had a continuous feasible range. The Critic network
assessed the actor–network’s parameter choices and decided on other discrete variables,
such as destination selection, charging and discharging selection, etc.

The hybrid action space A was defined according to [36], as follows:

A = {(k, xk) | xk ∈ Xk for all k ∈ K}, (20)

which consists of discrete action k ∈ K and continuous action xk ∈ Xk. The Bellman
equation transforms into [36], as follows:

Q
(
st, kt, xkt

)
= E

rt ,st+1

[
rt + γ max

k∈K
Q
(

st+1, k, xQ
k (st+1)

)
| st = s

]
. (21)

The value-based network’s weights are denoted as ω, and the policy-based network’s
weights are denoted as θ. In each step t of the updating process, ωt and θt were updated,
respectively. First, the weight parameter, ω, was estimated by employing the gradient
descent to minimize the mean-squared Bellman error, which was similar to the DQN
method. Then, ω and θ were fixed by maximizing Q(s, k, xk(s; θ); ω). The loss functions
were formulated as follows [40]:

`Q
t (ω) =

1
2
[
Q
(
st, kt, xkt ; ω

)
− yt

]2, (22)

`Θ
t (θ) = −

K

∑
k=1

Q(st, k, xk(st; θ); ωt), (23)

where yt = rt + γ maxk′∈K Q(st′ , k, xk(st′ , θt); ωt).
According to [41], there were three approaches for utilizing machine learning in

combinatorial optimization challenges: using machine learning on its own, integrating
machine learning with traditional optimization algorithms, and iteratively combining
optimization and machine learning. For this proposal, we employed the DRL-based
approach to efficiently eliminate integer variables in model (1). The objective function of
model 1 served as the reward for reinforcement learning, and the DRL-based method was
used to obtain the integer variables in constraints (9)–(16). The value of ωg,t in constraint (8)
was passed as an input to the new model.
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The new model was described by the following:

min ∑
g∈G

∑
u∈Ug

∑
t∈T

Cg
u,tP

g
u,t + Ctra

s.t. constraints (2)− (8) in model (1),
(24)

where Ctra is the total transportation cost of the MESSs.
The algorithm framework is depicted in Figure 1. State St (P1) consisted of the

output of thermal units and renewable energy at grid nodes, while State St (P2) included
the remaining energy of the MESSs, the cost of thermal power units, and the location
information. State St was the combination of these five elements.

Figure 1. Framework of optimization method for the joint model of MESSs and power grids.

3.3. Constrained MDP Formulation

According to model (1), this study modeled the MESSs in this model as MDPs. How-
ever, due to the capacity constraint of the battery packs in the MESSs, the processes became
CMDPs. To address this, we designed a hybrid action space and a state space for the
CMDPs. A proximal gradient projection algorithm was proposed to ensure safe exploration
by the agent.

3.3.1. Action Space A, State Space S , and Reward FunctionR
Action space A was composed of two levels: The discrete action space that included

a chosen charging/discharging/holding action and the chosen destination node; and the
continuous action that included the output power parameters of the MESSs. At time t, the
action at was represented by

(
(gt, cdht)|Pcdh

g,t

)
, where g is the chosen destination node, cdh

represents the charging/discharging/holding choice, and Pcdh
g,t is the corresponding power

at node g at time t. The range of actions and their values were defined by the following:

A =


g ∈ {g1, g2, ..., gN}
cdh ∈ {−1, 0, 1}

P =

{
(0, Pmax], cdh = −1 or chd = 1

0, cdh = 0

, (25)

where N is the node’s number, and cdh = −1, 0, and 1 means discharging, holding, and
charging, respectively.
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The state space S consisted of two parts, as illustrated in Figure 1. The variable St(P1)
described the state of the power grid, and St(P2) described the state related to the MESS. At
time t, S could be defined as St =

(
Pu,t, REg,t, Eg,t, Loadg,t, g

)
, where REg,t is the renewable

energy resources at node g at time t, Eg,t is the remaining energy in the MESSs at node g at
time t, and Loadg,t represents the load at node g. There was a capacity constraint for the
MESSs, E ≤ Eg,t ≤ Ē, which indicated the battery pack had an upper and lower limit on its
capacity, represented by E and Ē, respectively.

The reward R was based on the objective value of the linear programming (LP)
model (24). The reward in RL was a cumulative value, as depicted in Equation (21), where
Q(s, a) = ∑t∈T γtrt. In this study, the objective value of model (24) was used as the reward:
rt = −Objm2, where Objm2 represents the optimal objective value of model (24).

Theorem 1. In a finite MDP, if ∑t∈T −Objm2,t was the maximum when training converged with
a policy, then each −Objm2,t t ∈ T was the maximum in the policy.

Proof of Theorem 1. If φ is a policy, then

qπ(s∗, a∗) ≥ vπ(s∗).

Suppose, then, that there is a policy φ
′
:

v
π
′ (s) ≥ vπ(s) for all s,

π
′
(a | s) = 1(s∗ = s)1(a = a∗) + 1(s∗ 6= s)π(a | s).

We considered v∗(s) = maxπ∈Π vπ(s) and q∗(s, a) = maxπ∈Π qπ(s, a). Now extrapo-
lating backward, there existed s∗, resulting in the following:

maxa q∗(s∗, a) > v∗(s∗).

Suppose there existed a policy π
′′
, as well as a∗:

q
π
′′ (s∗, a∗) = maxa q∗(s∗, a)

while v∗ was the maximum over all π, for π = π
′′
, we obtained the following inequality:

q
π
′′ (s∗, a∗) > v

π
′ (s∗).

Therefore, we obtained the following:

v
π
′ (s∗) ≥ q

π
′′ (s∗, a∗) > v

π
′ (s∗).

However, q
π
′′ (s∗, a∗) was strictly larger than vπ(s∗) for any policy π, so we obtained

the following contradiction:

v
π
′ (s∗) > v

π
′ (s∗)

Therefore, if a policy was optimal, then it would be optimal for all states in all steps.

3.3.2. State-Updating Process

Based on the design of S and A, new states could be observed after taking actions via
A in both the MESS environment and the power-grid environment. The state-updating
equations for time-step t were described separately for the three cases of charging, dis-
charging, and holding, as follows:

charge :



Pu,t′ = PLP
u,t

REg,t′ =Mre(REg,t) + Eg,t

Eg,t′ = Eg,t + Pg,t∆h
Loadg,t′ =Mload(Loadg,t)

g
′
= Action(g)

,



Batteries 2023, 9, 219 9 of 16

discharge :



Pu,t′ = PLP
u,t

REg,t′ =Mre(REg,t)− Eg,t

Eg,t′ = Eg,t − Pg,t∆h
Loadg,t′ =Mload(Loadg,t)

g
′
= Action(g)

,

hold :



Pu,t′ = PLP
u,t

REg,t′ =Mre(REg,t)

Eg,t′ = Eg,t

Loadg,t′ =Mload(Loadg,t)

g
′
= Action(g)

,

whereMre andMload are the matrices that hold the renewable energy sources and loads,
respectively.

3.3.3. Proximal-Gradient Algorithm

In accordance with our previous discussion in Section 3.3.1, we studied the MESSs
challenge under the CMDP framework. Several approaches were available for ensuring
safe exploration by the agent, including the primal-dual algorithm, the adaptive-penalty
method, and the gradient-projection algorithm. However, for the purposes of this study,
we deemed the proximal-gradient algorithm to be both readily implementable and compu-
tationally efficient.

In the normal gradient-descent process, the iterative equation was the following:

xt+1 = xt − αt · ft(xt), (26)

where αt is the step length in step t. When the solution x̃t exceeded its feasible domain, we
needed to project it back into the feasible domain. Therefore, the iterative equation was
transformed into the following:

xt = PX(x̃t) := arg min
{
‖x− x̃t‖2 : x ∈ X

}
, (27)

where PX is the projection operator, which was chosen as the Euclidean distance function
in our study, and x̃t := xt−1 − γn∇̂x f (xt−1) denoted the original infeasible solution.

3.4. Learning Process

As mentioned in Section 3.2, this proposal employed the "actor− critic" (A-C) frame-
work to train the policy NN and value NN, respectively. To ensure the network was
convergent and stable, we used target networks that were added to each NN of the A-C
structure and added an experience replay pool, such as the double-DQN(DDQN) [42]. The
learning process was also similar to the update process of the DDQN.

The required inputs for the algorithm included the initialized parameters such as
exploration parameter ε, mini-batch size B, a probability distribution ξ, etc. The capacity N
of the experience replay memory D; the parameters of the Actor network Θ and the Critic
network Q; and their target networks Θ̂ and Q̂, respectively, also needed to be initialized.

At the beginning of each episode i ∈ I, where I is the maximum training time, the
agent acquired an initial state by observation and computed continuous action parameters
through network Θ: xk ← xk(st, θt). Then, it selected an action at =

(
kt, xkt

)
, according to

the ε-greedy policy:

at =

{
a sample from distribution ξ with probability ε(
kt, xkt

)
such that kt = arg maxk∈KQ(st, k, xk; ωt) with probability 1− ε
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in each decision time-step t. Then, we performed the action in the MESSs and power grid
environment to define the new state st+1 and the reward rt, which was obtained by solving
the model (24).

Next, the transition tuple [st, at, rt, st+1] was stored in D. Through sampling a batch
{sb, ab, rb, sb+1}b∈[B] of size B, the target yb could be calculated via equation

yb =

{
rb if sb+1 is the terminal state,
rb + maxk∈K γQ(sb+1, k, xk(sb+1, θt); ωt) if otherwise.

Then, the stochastic gradients ∇ω`
Q
t (ω) and ∇θ`

Θ
t (θ) were calculated through

{yb, sb, ab}b∈[B], as shown in Equations (22) and (23). The weights were updated by
θt+1 ← θt − βt∇θ`

Θ
t (θt). In the above processes, the proximal gradient projection men-

tioned in Section 3.3.3 was applied. We used a soft update (Polyak averaging) method to
update the target networks Q̂ = (1− τ)Q + τQ̂ and Θ̂ = (1− τ)Θ + τΘ̂, where τ ∈ [0, 1]
is a hyper-parameter, usually τ � 1.

4. Case Studies

In order to verify the effectiveness of the proposed strategy, case studies were im-
plemented for the integrated model, utilizing simulation data. Our comparison of the
energy output after incorporating MESSs demonstrated that the proposed strategy was
effective in reducing the proportion of thermal power output and enhancing the utilization
of renewable energy sources.

4.1. Experiment Settings

The training process for the 10-node scenario was approximately 5 h in length, on
a desktop computer with an NVIDIA GTX 3080 GPU and an Intel i7-13700KF CPU, and
approximately 6 h on a server with an NVIDIA Tesla P100.The solver for the MIP and LP
models was Gurobi Optimizer, version 9.11.

The MESSs comprised an electric truck, a battery pack, and an operator. The unit
movement cost cTRA incorporated all expenses associated with the movement, including the
charging costs of the electric truck and the operator’s wages. The experimental arithmetic
was represented by a topological diagram comprising 10 nodes that were interconnected
by electrical conduits. The hyper-parameters of the experiment were subject to multiple
simulations to find a balance between convergence speed and stability. The main simulation
parameters are shown in Table 2.

Table 2. Experiment Parameters

Parameter Names Value

Maximum capacity Ē (MWh) 27
Maximum charge/discharge power pwrMAX (MW) 27
Maximum number of nodes n 10
Maximum number of thermal power units 3
Charging and discharging efficiency η 0.95
Transportation cost per unit of time cTRA ($/h) 20
Random exploration parameter ε 0.9–0.1
Batch size B 128
Discount factor γ 0.95
Probability distribution in random exploration ξ U(0,1)
Soft updating parameter τ 0.1
Sizes of three layers of neural networks [256,128,64]
Learning rate in policy network lrp 1× 10−6

Learning rate in value network lrv 1× 10−4
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4.2. Results Analysis

Figure 2 depicts the convergence of the cumulative rewards achieved by the proposed
DRL-based algorithm during the training phase. The x-axis represented the number of
iteration rounds, with each increment on the axis representing 100 iterations. The y-axis
displayed the accumulated cost, which was presented as a negative value. The graph
demonstrated that the training reached convergence after approximately 1500 iterations.
The training process was approximately 5 h for 7000 iterations, whereas the execution
time of the trained network was virtually insignificant. By utilizing a trained network, we
observed a significant improvement in computational efficiency.

Figure 2. Episodic average reward in every 100 episodes in a scenario with 10 nodes.

Figure 3 shows the alteration in the distribution of renewable energy and thermal unit
outputs within the system. As depicted in Figure 3a, certain nodes, such as nodes 3 and 8,
exhibited a richer availability of renewable energy sources, whereas others, such as nodes
1, 6, and 7, exhibited virtually no presence of such resources. To cater to the electricity
demand of these nodes with limited renewable energy, it was necessary to utilize thermal
power units. Figure 3b presents a polar plot, demonstrating the distribution of renewable
energy and thermal unit outputs in the absence of a connection to the MESS system. The
figure clearly illustrates that some nodes, such as node 5, exhibited a predominant presence
of renewable energy output, while others, such as node 8, were dominated by thermal
power generation. Overall, the system exhibited a relatively substantial proportion of
thermal power generation.

Figure 3c presents a polar plot that displays the optimal energy distribution among
various nodes. The blue, red, and green segments in the plot depicted the local renew-
able energy sources, the energy generated by thermal units, and the energy transmitted
through the MESSs, respectively. As shown in the plot, certain nodes, such as nodes 5
and 9, possessed abundant local renewable energy resources and, thus, exhibited a higher
proportion of local energy output. These nodes were also the main charging nodes and
were not typically involved in discharging the MESSs.Comparatively, nodes such as node 2
had both local renewable energy resources and energy transmitted by the MESSs contribut-
ing to their power supply. Furthermore, nodes such as node 8, which primarily relied
on the energy transmitted by the MESSs, effectively reduced their share of the thermal
power-unit output.
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(a) Renewable Energy Resource at Each Node
in a 10-Node Scenario

(b) Share of Energy Output of the Original
System at Each Node in a 10-Node Scenario

(c) Share of Energy Output of the System after Integration of the MESSs at Each Node in a
10-Node Scenario

Figure 3. The Output of Thermal Power Units, Original Renewable Energy, and Transferred Renew-
able Energy at Each Node in a 10-Node Scenario.

Figure 4 presents a chord diagram that displays the cumulative energy transfer within
the decision cycle of the MESSs. The diagram provided a visual representation of the
flow of energy transfer and its accumulation during the decision cycle. The direction of
the arrows represents the flow of energy transfer. As depicted in the figure, some nodes
were designated as primary charging nodes, such as nodes 3 and 5, while others served
as primary discharging nodes, such as nodes 1 and 8. This was because these nodes, such
as 3 and 5, possessed abundant renewable energy sources, which was a result of their
geographical locations and other contributing factors. However, when these nodes were
not connected to the MESSs, the surplus of renewable energy resources could lead to issues
such as excess light or wind. By incorporating these nodes into the MESSs,the proportion
of thermal power output was significantly reduced, thus improving the utilization of
renewable energy sources. Some nodes, such as nodes 3 and 8, served as both supply and
demand nodes, which was due to the intermittent nature of renewable energy and the
mismatch between the supply of renewable energy and the peak demand for electricity.
For example, the power generation capacity of PV was related to factors such as sunlight
duration and weather and reached its peak output during sunny afternoons, but the local
demand may not be able to consume all the generated electricity during this time period.
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Therefore, the excess electricity would then be transported to nearby nodes to meet the
electricity demand of other nodes. In the evening, when the power output of PV decreased,
a hydroelectric power supply from neighboring nodes could be required.

Figure 4. Optimal cumulative total renewable energy transfer in a 10-node scenario.

By conducting numerous experiments, we demonstrated that by integrating the MESSs
into the power grid, it was feasible to transfer surplus renewable energy from nodes with
an abundance of such resources, to nodes with limited resources. This resulted in a
reduction in thermal power generation in the latter, thereby validating the proposed model
and algorithm.

Furthermore, our proposed mobile energy storage system-grid joint optimization
model has the potential to address network contingency events. First, our study on
coupling mobile energy storage systems with the power grid contributes to achieving
higher renewable energy penetration levels [43,44]. In the event of network contingencies
(e.g., equipment failure, fluctuations in power demand, etc.), mobile energy storage systems
can quickly adjust their output to balance supply and demand imbalances in the grid.
Moreover, mobile energy storage systems can transfer electrical energy from one location to
another within the grid in a short period of time, alleviating local transmission congestion
issues and improving the stability of the entire grid. Second, by optimizing the dispatch
strategy of mobile energy storage systems, we can allocate renewable energy resources
reasonably across different time periods to meet grid demand. This will help mitigate
power supply shortages or overloads caused by contingency events, further enhancing the
stability and reliability of the grid [29]. Lastly, our research also indicates that mobile energy
storage systems can help reduce the operational costs of the entire power system [45]. By
utilizing renewable energy resources more efficiently, we can decrease our reliance on
conventional fossil fuel-based generation, thus lowering the cost losses associated with
network contingencies.
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5. Conclusions

In this study, we developed a mixed-integer nonlinear programming (MINP) model
that coupled MESSs with a power grid to balance a region with an uneven distribution
of renewable energy. We modeled the MESSs as constrained Markov decision processes
(CMDPs) and proposed a framework based on a deep reinforcement learning (DRL) al-
gorithm that considered the discrete-continuous hybrid action space of the MESSs. We
solved the constraint on battery capacity in the CMDP by applying a proximal-gradient-
projection algorithm. Based on this, we reformulated the original MINP model as a linear
programming (LP) model to arrive at our solution framework. The case study showed that
our proposed algorithm and framework effectively improved the utilization of renewable
energy and reduced the generation costs of thermal power units.

The DRL-based algorithm we proposed has good scalability and application prospects
in energy challenges with discrete-continuous hybrid decision-action spaces. Furthermore,
our approach of using a DRL-based method to eliminate integer decision variables and
nonlinear constraints provided insight for solving the MINP challenges. However, to
highlight the main innovation points of this paper, we simplified some constraints, such as
overlooking power-flow constraints and the aging characteristics of batteries. In future re-
search, we will consider these additional constraints and objective functions more carefully,
including the initial investment cost for implementing MESSs, and attempt to optimize
scheduling decisions over longer time periods.
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