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Abstract: The goal of this work was to predict the dynamic charge acceptance (DCA) for cells using
different additives on the negative electrode from the evaluation of small-signal measurements by
electrochemical impedance spectroscopy (EIS). Thereby, various operating points were evaluated,
such as state of charge (SoC) and prior usage (charge or discharge). The 2V test cells under investi-
gation utilized plates of enhanced flooded 3P2N battery cells (EFB). They contained three positive
and two negative electrodes. The latter varied in their additive composition. In total, eight different
negative electrodes were investigated, five including specially synthesized amorphous carbon as
an additive, two with unknown additive mixes, and one including a commercially available carbon
black. The best parameters for predicting the DCA were found within the first semicircle of the
negative half-cell spectra measured during a superimposed charging current.

Keywords: dynamic charge acceptance; electrochemical impedance spectroscopy; equivalent circuit
model; lead-acid batteries

1. Introduction

Driven by the need to reduce emissions, battery performance became increasingly
important in automotive applications. Furthermore, the function of automotive batteries
shifted from starting, lighting, and ignition to providing significant contributions to a vehi-
cle’s performance. Stop/start and regenerative braking are the hybridization features for
micro-hybrid vehicles. Thereby, the engine is stopped automatically when the vehicle stops,
thus reducing emissions. To maximize its effectiveness, as much energy as possible must
be recovered and stored within the battery during vehicle deceleration. The main factor
limiting the ability to capture this energy is the battery’s dynamic charge acceptance (DCA)
at partial state of charge (SoC). Numerous testing methodologies have been developed to
characterize the DCA of automotive batteries: single-pulse tests [1], the stand-alone DCA
EN test [2], and more complex cycling tests [3,4].

The DCA of lead-acid batteries (LABs) in operation is not very consistent and hard
to predict since it is influenced by many factors. Some of the main factors influencing on
DCA are:

• SoC (a lower SoC results in higher DCA [5–7]);
• Short- and long-term history (Higher DCA can be found after prior discharge com-

pared to prior charge [5,8–10]. Lower DCA can be found after prior discharge at a low
current rate compared to discharge at a high current rate [5]. DCA degradation can be
found after extended rest time [5,8]);

• Electrolyte concentration and stratification (higher DCA results from lower electrolyte
concentration [11,12] as well as lower stratification [11,13,14]);
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• Temperature (higher temperatures result in higher DCA [5,6,13]); and
• Additives used within the electrodes [5,9,10,15–20].

A previous publication has shown that it is possible to predict DCA by using electro-
chemical impedance spectroscopy (EIS) [21]. Thereby, DCA was determined according to
EN 50342-6:2015 [2]. The results were correlated with the parameters gained from the nega-
tive half-cell EIS measured with a superimposed charging current at 80% SoC [21]. A good
correlation was found between the DCA and the resistance values of the first semicircle [21].
However, the EIS was only tested at one SoC after being previously discharged.

In addition to the already shown qualitative predictability of the DCA of test cells
with different carbon additives using EIS [21], the scope of this work is to predict DCA at
different working points. Thereby, it had to be evaluated whether the influence of the SoC
and the short-term history on DCA can also be seen in EIS.

2. Experimental
2.1. Test Cell Preparation

A total of eight different negative active mass (NAM) formulations were studied.
Among them, five amorphous carbon powders, which only varied in their external surface,
provided by the Fraunhofer ISC and synthesized by the Bavarian Center for Applied
Energy Research [22], were used. The synthesis of these five carbons [23] and their physical
properties [9] are described in the literature. The specific surface area and the specific
pore volume of the five different amorphous carbon powders were very similar [9]. The
significant variation of the specific external surface area (Sext) and, thereby, the variation of
the average particle size (dpart) is given in Table 1. From previous studies it is known that
the external surface area is directly proportional to DCA according to an EN test [24]. Next
to the five synthesized amorphous carbons, two commercially used additive mixes which
enhance DCA (referred to as CX and CY) and a commercially available carbon black, used
as reference (Ref), were included in this study.

Table 1. Textural properties of five synthesized carbon materials and a commercial reference CB
(adapted ref. [9]).

Material ID Sext of Carbon dpart

EFB + C1 7.1 m2 g−1 633 nm
EFB + C2 20.3 m2 g−1 221 nm
EFB + C3 50.4 m2 g−1 88 nm
EFB + C4 92.1 m2 g−1 48 nm
EFB + C5 159.3 m2 g−1 27 nm
EFB + CX - -
EFB + CY - -
EFB + Ref 28 m2 g−1 104 nm

Paste mixing was done on a laboratory scale with an identical mixing routine for all
additives under inspection. The basic paste recipe was not changed, but the amount of water
was varied to control mass penetration and paste viscosity. The amount of water needed
was not directly linked to carbon’s external surface area. One paste mixture included:

• Leady oxide (1500 g);
• Water (194 ± 16 g, depending on water absorption of carbon);
• Diluted sulfuric acid (SD 1.4 g·cm−3, 120 g);
• Barium sulfate (12 g);
• Vanisperse (3 g);
• Carbon additive (1.0 wt% = 15 g, for CX and CY unknown).

After paste mixing, the active material was pasted manually on industrially manu-
factured starter battery grids (143 mm × 113 mm) where 106 g ± 1 g of active material
was used per plate. For the EFB + CX and the EFB + CY test cells, concasted grids were
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used. For all other paste mixes, gravity casted grids were used. The electrodes were cured
under moderate temperatures and a defined atmosphere. In the first step, high humidity
of >95% RH at 40 ◦C was kept for 18 h to form tribasic lead sulfate. During the second
curing step, the electrodes were dried, and residual lead content was reduced at increasing
temperatures from 50 ◦C to 60 ◦C over a period of 24 h. The humidity was decreased
during the second step from >95% RH to approximately 10% RH due to opening of the
vent of the curing box. The completed plates were weighed, and only plates of 154 ± 7 g
were used for cell preparation.

The negative plates were used to build 3P2N 2 V, 20 Ah EFB with eight different NAM
additives. The nominal capacity of 20 Ah was chosen to guarantee typical NAM utilization
levels, whereas the actual capacity of the test cells was much larger due to an excess of
acid volume and PAM content. Consequently, SOC was scaled to nominal capacity within
this work. To maximize the influence of the additives in the NAM, the negative plates
were bound to be the limiting factor within the cells. All test cells used the same industrial
manufactured positive plates. Furthermore, the same current collector and the same cell
case were used for testing. All tests were conducted in a climate chamber, minimizing
outer influences.

In the following, all currents were normalized to I20, which is the current used for a
20 h complete discharge to determine the capacity (C20) defined by the EN standard. A
gentle formation procedure was used, with constant current charging of 3·I20 = 3 A at room
temperature of 25 ◦C up to 6·Cn = 120 Ah (40 h), where Cn is the nominal capacity of the
test cell. After formation, the acid density of all cells was adjusted to 1.29 g cm−1 at 100%
SoC and all cells were filled up to an equal level. After the acid adjustment, all test cells
were finalized by charging with a constant current of 0.5·I20 = 0.5 A for 10 h to avoid acid
stratification caused by the acid adjustment.

2.2. Constant Current Discharge

Before further testing, several constant-current C20 discharge cycles were conducted
prior to the DCA (EN) test, shown in Table 2. These were used to ensure similar behaviors
and capacities of all test cells. During the C20 test, the test cells were discharged with a
constant current of I20 = 1 A until the cut-off voltage of 1.75 V was reached. In European
EFB (and AGM) designs, the discharge capacity is typically acid-limited. However, within
the test cell, there was an unavoidable acid overage, especially in the outside pores of the
outer plates [25]. To avoid an unusually deep discharge of the active material, an additional
cut-off condition of 22 h was supplemented.

Table 2. Test matrix.

Test Sequence Batch 1 Batch 2 Batch 3

C20 X X X
Single-pulse CA X X

Ic at 80% SoC X X X
Id at 90% SoC X X X
Ir at 80% SoC X X X
Id at 80% SoC X
LSM pictures X X

EIS X

2.3. Dynamic Charge Acceptance

Two different charge acceptance tests were executed. The first charge acceptance test
based on the EN 50342-6:2015 where the DCA (IDCA) results out of three parts: namely,
after prior charge (Ic) at 80% SoC, after prior discharge (Id) at 90% SoC, and during real
start-stop micro-cycles (Ir) at 80% SoC [2]. At the named state of functions, the test cells
were charged with 20 pulses, each 10 s long, with a voltage limit of 2.4 V. The average
charging current during these pulses was the evaluation criterion for the DCA performance,
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typically normalized to the capacity of the battery or test cell. Further explanation of the
original DCA EN test usage at cell level is given in [10]. Within this work, only two parts
out of the DCA EN test are shown, after charge (Ic) at 80% SoC and after prior discharge (Id).
However, Id was conducted at 80% SoC rather than at 90% SoC. This way, both histories
could be compared without any SoC influence.

The second test used was a charge acceptance single-pulse test for 10 s up to 2.4 V,
based on the Japanese standard [1]. Similar to the DCA EN test the average charging current
during this pulse was the evaluation criterion for this test as well, which was normalized
to the capacity too. The standard only tests the charge acceptance after prior discharge at
one specific SoC. To evaluate SoC influences and the effects of the short-term history, it
was necessary to modify the test procedure to match the requirements. Therefore, the fully
charged test cell was discharged with 1·I20 = 1 A until the target (between 95% and 50%)
SoC. Afterwards, the cells were rested for 16 h before the pulse test. This way, the charge
acceptance after prior discharge was determined. To determine the charge acceptance after
prior charge, the cells were discharged to 0% SoC and charged with 1·I20 = 1 A, with a
voltage limit of 2.6 V, until the target SoC afterwards. After the cells rested for 16 h, the
pulse test was executed. A similar DCA test for SoC influence testing on VRLA batteries
was already proposed by Smith et al. [6]. In contrast to their procedure, the test cells
within this work were recharged not only before but also in between all charge acceptance
tests. This way, it can be assured that the targeted SoC was actually investigated without
any summed-up errors of previous charge acceptance tests. The charging regime used
after each charge acceptance test, independent of the prior usage, was according to the EN
standard [26]: 5·I20, for 24 h with a maximum voltage limit of 2.66 V and rest for at least 16 h
before starting the following sequence. A schematic visualization of the preconditioning
for the DCA single-pulse test is shown in Figure 1. The tests were executed at 25 ◦C
within a climate chamber using 50 A channels of the Digatron power electronics MCT
50/100/200-06-13(12) ME. The test matrix visualizing the test order is shown in Table 2.
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Figure 1. Schematic visualization of the preconditioning (prior discharge and charge, visualized in
blue) for the charge acceptance single-pulse measurement (execution marked red).

2.4. Test Cell Preparation for Laser Scanning Microscopy

To investigate the morphological NAM differences corresponding to the starkly differ-
ing DCA after charge and after discharge, the test was stopped at 80% SoC after prior charge
or discharge, and a 20 h rest time before the Ic or Id measurement was started, respectively.
Plate samples for laser scanning microscope (LSM) pictures were taken for EFB + CX and
EFB + CY test cells. These cell types were chosen since they showed significant differences
between Ic and Id.

For LSM measurements, the examined cell was opened, the cell stack was taken out,
and a negative electrode was separated. Keeping the exposure to air as short as possible
(under 1 min), the plates were cleaned in a beaker using isopropanol. Isopropanol was
used as a non-reactive substance to clean off the electrolyte (sulfuric acid) from the negative
plate. This way, further reactions, such as the growth of lead sulfate crystals, could be
avoided. One washing consisted of five steps. Each step took 30 min with continuous
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stirring. Thereby, the electrodes were rinsed off without using mechanical forces and
possibly destroying the microscopic structure of the negative electrode. The isopropanol
was replaced after each step, keeping the concentration gradient between the washing
medium and the substance left in the pores high. Right after the washing procedure, the
electrodes were dried in a vacuum oven at 60 ◦C for 24 h. The dried plates were scanned
using LSM. LSM pictures were taken at three different heights (top, middle, and bottom)
of the test cell. At each height, five different frames were taken and compared to ensure a
uniform surface.

2.5. Electrochemical Impedance Spectroscopy

To receive valuable EIS measurement data, the battery should be kept in a stationary or
at least in a quasi-stationary state during each measurement. Regardless, EIS measurements
at various SoC (50% till 90% SoC in 5% steps adjusted based on Ah counting) with different
superimposed currents (IDC = 0A, ±0.5·I20, ±1·I20, ±2·I20 and ±4·I20) and with different
histories (prior charging or prior discharging) were to be investigated. The testing profile
is shown in Figure 2a. The test started with a freshly charged cell, which was discharged
stepwise from 90% SoC down to 50% SoC, using a current of 1·I20. At each step, EIS was
executed, marked with red rectangles in Figure 2a. First, an EIS measurement without any
superimposed current (IDC = 0A) was executed, followed by EIS with various superimposed
charge and discharge currents. This measurement principle follows the micro-cycling
approach introduced by Karden et al. [27] and has already been used in previous work [21].
During the micro-cycling approach, the cells were cycled by approximately ±2.5% SoC
around the targeted SOC, visualized in Figure 2d. The cycles should not be larger to stay
in the stationary state (regarding the SoC) during one EIS measurement. Figure 2c shows
the superimposed current for investigating one SoC, and the resulting voltage is shown in
Figure 2b. One impedance spectrum was recorded during each discharging and charging
period, starting after 1% SoC change during each new superimposed current. This way,
the rapid voltage change, where the cells were in a non-stationary state (in regard to the
voltage), was not recorded during EIS. When the lowest step of 50% SoC was reached, the
cells were fully recharged according to the EN standard [26]. This has two advantages:
Firstly, during the whole discharge history containing micro-cycles at multiple SoCs, small
errors of the superimposed DC currents and little asymmetrical AC currents during the
EIS measurement all added up to the overall SoC error. To neglect this error, the cells
were fully charged before starting the next phase. Secondly, during a full charge, all coarse
sulphate crystals, accruing during the micro-cycles, were dissolved, and the cells started
fresh into the second part, the charge history. After the complete charge, the cells were
discharged to 0% SoC and recharged again to 50% SoC to start the charge phase. Now
the cells were charged stepwise from 50% SoC up to 80% SoC using 1·I20. Again, at each
step, the micro-cycle approach and EIS measurements were executed, marked with red
in Figure 2a.

Pretests showed that it was not possible using the same micro-cycling approach,
shown in Figure 2b–d, at each SoC step. At high SoC and for high superimposed currents,
a voltage overshoot accrued during the micro-cycles. This voltage overshoot counteracted
the basic requirement for using EIS: the system under inspection had to be stationary, linear,
and causal. However, the system was not stationary anymore if the voltage showed an
overshoot. Therefore, superimposed currents had to be limited at a high SoC to avoid
voltage overshoots above 2.4 V, which could provoke a non-stationary state, with regards
to the voltage of the cell. Therefore, at high SoC, only spectra with IDC = 0 A and ±0.5·I20
were taken. For lower SoCs also, superimposed currents ±1·I20, ±2·I20, and ±4·I20 were
used. After prior charge, the voltage overshoots were more distinct compared to those after
discharge. Therefore, EIS after prior charge was only possible up to 80% SoC. The micro-
cycles of each superimposed current were repeated three times. Only the last impedance
spectra with superimposed charge and discharge currents were investigated. Within this
work, especially the negative half-cell spectra were evaluated to identify the influence of
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NAM additives. Tests conducted before the EIS measurement procedure are summarized
in Table 2. All EIS measurements were performed within a climate chamber at 25 ◦C to
enable a stationary state with regards to the temperature. The most important measurement
parameters are summarized in Table 3.
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Figure 2. Schematic visualization of (a) the complete EIS measurement after prior discharge
and charge and a zoom into the micro-cycle EIS procedure visualizing (b) voltage, (c) current,
and (d) SoC at 60% SoC.

Table 3. EIS test parameters (adapted ref. [21]).

Parameter Value

IDC 0 A, ±0.5·I20, ±1·I20, ±2·I20 and ±4·I20
investigated SoC 50% till 90% SoC in 5% steps

investigated history prior charge and discharge
IAC,max 0.5 A

fmin 10 mHz
fmax 6.5 kHz

number of measurement points 8 frequencies per decade
T 25 ◦C

∆ SoC ±2.5%

The EIS measurements were recorded using a Digatron EISmeter 2-20-4. Half-cell
spectra were measured using a hydrogen reference electrode Gaskatel 88010 from Gaskatel
Gesellschaft für Gassysteme durch Katalyse und Elektrochemie mbH, Kassel, Deutschland.

The data processing, fitting, and parameter determination were already described in
the authors’ previous paper [21]. Summarizing, the obtained EIS data were preprocessed to
avoid systematic errors, e.g., due to violations of the stationarity. First, a Kramers–Kronig
(K–K) transformation was used to verify that the data were stable and causal and that the
real and the imaginary parts were interdependent [28,29]. The measurement data points
were compared with the K–K transformation. If the absolute error was larger than 1.5 mΩ
or the ratio of the error to the absolute value of the impedance was greater than 3%, the
data points were not evaluated any further. Figure 3 shows a complete EIS spectrum and
indicates which data points were thrown out and which were used for further evaluation
based on the K–K transformation. Afterwards, the distribution of relaxation times (DRTs)
was used to analyze the number of processes and their characteristic frequencies. The
number of processes identifies the number of resistance-capacity (RC) elements necessary
for representing the spectra with an equivalent circuit model (ECM) and even allows their
quantification [30,31]. Thereby, a valid ECM and starting parameters for fitting were chosen
based on the DRTs.
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The EIS measurements were evaluated using an equivalent circuit model (ECM). The
ECM consists of internal resistance, an inductance, and three constant phase elements
(CPE), shown in Figure 4.
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For the evaluation, the high-frequency part of the spectra remained very similarly
independent of the investigated SoC, pre-histories, or the carbon additives used within
the test cells. Therefore, the internal resistance, inductance, and one CPE describing the
high-frequency part and the mini semicircle of the spectra were fitted but kept constantly
independent of the investigated SoCs, pre-histories or the carbon additives used within the
test cells. This way, some fitting parameters were excluded from influencing the remaining
parameters, and the comparison between these remaining parameters and the DCA was
clearer. Only the parameters of the first and second semicircle were variable and were
described by resistance and capacitance. Both were connected by their time constant.
However, the time constant did not obtain more information and was not visualized within
this work. A spectrum is shown in Figure 4, marking the evaluated measurement data and
comparing it to the fitting result using the described ECM.

3. Results and Discussion
3.1. Constant Current Discharge

The test results of the C20 constant discharging test are shown in Figure 5. Due to
the acid surplus within the test cells, all test cells exceeded the expected 20 h discharge
time, already discussed in previous work [25]. Nevertheless, the C20 test showed similar
capacities and discharge curves for all test cells. Differences within later DCA or EIS tests
were, therefore, assumed to originate from differences caused by the different additives.
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3.2. Influence of Prior Usage on DCA and EIS

In Figure 6a, Ic (DCA after prior charge) at 80% SoC is shown for all eight types of test
cells. Ic at 80% SoC was tested using three similar test cells for each different additive type
(except C2, which could only be tested with one test cell). For each carbon additive, the
average DCA result and the variation were visualized. To compare the influence of prior
usage, Id (DCA after prior discharge) at 80% SoC is shown in Figure 6b. Id at 80% SoC was
only conducted with one test cell for each carbon additive. Ic at 80% SoC was very small
compared to Id at 80% SoC.
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The test cells are ordered within Figure 6 according to their expected DCA result.
The order of the DCA could not conclusively be identified for Ic at 80% SoC since all test
cells had DCA values within the range of errors. However, Id at 80% SoC increased in
the following order: C2 < C1 < Ref < C3 < C4 < CX < C5 < CY. Id at 80% SoC results of
the five tailored carbons lined up (except C1 and C2, whose DCA test results are reversed)
according to their external surface areas and was in agreement to the literature [24]. The
higher the external surface area, the higher the DCA.

Differences in the geometric plate surface structure were investigated using LSM in
order to investigate the correlation to differences in DCA, especially between Ic and Id.
Table 4 shows the LSM pictures after prior charge and after discharge for the two different
EFB + CX and EFB + CY test cells at three different electrode positions (top, middle, and
bottom). These cell types were chosen since they showed significant differences between
Ic and Id. For the bottom part, the existence of superficial dense sulfate layers resulted
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from stratification and stand times during initial cycling. This structure was independent
of the additives used and remained unchanged after a charge and subsequent discharge.
After prior charge, both cell types showed multiple coarse lead-sulfate crystals of several
micrometers in size at the top of the cells. By contrast, after discharge, the PbSO4 crystals
were mostly dissolved, and only small crystals remained at the top of the negative plates.
The coarse crystals after charge and fine crystals after discharge were expected to be
identified. However, differences between EFB + CX and EFB + CY should also be noticeable,
at least after discharge, where the EFB + CX and EFB + CY cells conducted different DCA
as well. Significant differences between EFB + CX and EFB + CY could be identified neither
after prior charge nor after discharge within the LMS pictures. However, it is known that at
80% SoC, the active material consists of 60% pores [32]. For this reason, it is likely that most
of the DCA-relevant processes were conducted within the pores, which would not be visible
with an LSM. In the LSM pictures, only the plate surfaces could be shown, which should
not be misinterpreted to show a situation representative of the overall active material since
the surface inside the pores could be presented at all.

Table 4. LSM picture of the negative plate surface after charge and after discharge of the EFB + CX

and the EFB + CY test cell at the top, middle, and bottom.

Prior charge at 80% SoC Prior discharge at 80% SoC
EFB + CX EFB + CY EFB + CX EFB + CY

Batteries 2023, 9, x FOR PEER REVIEW 9 of 20 
 

The test cells are ordered within Figure 6 according to their expected DCA result. The 
order of the DCA could not conclusively be identified for Ic at 80% SoC since all test cells 
had DCA values within the range of errors. However, Id at 80% SoC increased in the 
following order: C2 < C1 < Ref < C3 < C4 < CX < C5 < CY. Id at 80% SoC results of the five 
tailored carbons lined up (except C1 and C2, whose DCA test results are reversed) 
according to their external surface areas and was in agreement to the literature [24]. The 
higher the external surface area, the higher the DCA.  

Differences in the geometric plate surface structure were investigated using LSM in 
order to investigate the correlation to differences in DCA, especially between Ic and Id. 
Table 4 shows the LSM pictures after prior charge and after discharge for the two different 
EFB + CX and EFB + CY test cells at three different electrode positions (top, middle, and 
bottom). These cell types were chosen since they showed significant differences between 
Ic and Id. For the bottom part, the existence of superficial dense sulfate layers resulted from 
stratification and stand times during initial cycling. This structure was independent of the 
additives used and remained unchanged after a charge and subsequent discharge. After 
prior charge, both cell types showed multiple coarse lead-sulfate crystals of several 
micrometers in size at the top of the cells. By contrast, after discharge, the PbSO4 crystals 
were mostly dissolved, and only small crystals remained at the top of the negative plates. 
The coarse crystals after charge and fine crystals after discharge were expected to be 
identified. However, differences between EFB + CX and EFB + CY should also be noticeable, 
at least after discharge, where the EFB + CX and EFB + CY cells conducted different DCA 
as well. Significant differences between EFB + CX and EFB + CY could be identified neither 
after prior charge nor after discharge within the LMS pictures. However, it is known that 
at 80% SoC, the active material consists of 60% pores [32]. For this reason, it is likely that 
most of the DCA-relevant processes were conducted within the pores, which would not 
be visible with an LSM. In the LSM pictures, only the plate surfaces could be shown, which 
should not be misinterpreted to show a situation representative of the overall active 
material since the surface inside the pores could be presented at all.  

Table 4. LSM picture of the negative plate surface after charge and after discharge of the EFB + CX 
and the EFB + CY test cell at the top, middle, and bottom. 

 Prior charge at 80% SoC  Prior discharge at 80% SoC 
 EFB + CX EFB + CY  EFB + CX EFB + CY 

 

To predict these DCA test results using EIS, it was necessary to investigate the same 
short-term and long-term history and the same SoC. There were EIS measurements and 

Batteries 2023, 9, x FOR PEER REVIEW 9 of 20 
 

The test cells are ordered within Figure 6 according to their expected DCA result. The 
order of the DCA could not conclusively be identified for Ic at 80% SoC since all test cells 
had DCA values within the range of errors. However, Id at 80% SoC increased in the 
following order: C2 < C1 < Ref < C3 < C4 < CX < C5 < CY. Id at 80% SoC results of the five 
tailored carbons lined up (except C1 and C2, whose DCA test results are reversed) 
according to their external surface areas and was in agreement to the literature [24]. The 
higher the external surface area, the higher the DCA.  

Differences in the geometric plate surface structure were investigated using LSM in 
order to investigate the correlation to differences in DCA, especially between Ic and Id. 
Table 4 shows the LSM pictures after prior charge and after discharge for the two different 
EFB + CX and EFB + CY test cells at three different electrode positions (top, middle, and 
bottom). These cell types were chosen since they showed significant differences between 
Ic and Id. For the bottom part, the existence of superficial dense sulfate layers resulted from 
stratification and stand times during initial cycling. This structure was independent of the 
additives used and remained unchanged after a charge and subsequent discharge. After 
prior charge, both cell types showed multiple coarse lead-sulfate crystals of several 
micrometers in size at the top of the cells. By contrast, after discharge, the PbSO4 crystals 
were mostly dissolved, and only small crystals remained at the top of the negative plates. 
The coarse crystals after charge and fine crystals after discharge were expected to be 
identified. However, differences between EFB + CX and EFB + CY should also be noticeable, 
at least after discharge, where the EFB + CX and EFB + CY cells conducted different DCA 
as well. Significant differences between EFB + CX and EFB + CY could be identified neither 
after prior charge nor after discharge within the LMS pictures. However, it is known that 
at 80% SoC, the active material consists of 60% pores [32]. For this reason, it is likely that 
most of the DCA-relevant processes were conducted within the pores, which would not 
be visible with an LSM. In the LSM pictures, only the plate surfaces could be shown, which 
should not be misinterpreted to show a situation representative of the overall active 
material since the surface inside the pores could be presented at all.  

Table 4. LSM picture of the negative plate surface after charge and after discharge of the EFB + CX 
and the EFB + CY test cell at the top, middle, and bottom. 

 Prior charge at 80% SoC  Prior discharge at 80% SoC 
 EFB + CX EFB + CY  EFB + CX EFB + CY 

 

To predict these DCA test results using EIS, it was necessary to investigate the same 
short-term and long-term history and the same SoC. There were EIS measurements and To predict these DCA test results using EIS, it was necessary to investigate the same
short-term and long-term history and the same SoC. There were EIS measurements and
their fitting results after prior discharge at 90% SoC (Appendix A Figures A1 and A2), at
80% SoC (Appendix A Figures A3 and A4), and after prior charge at 80% SoC (Appendix A
Figures A5 and A6). In the following, the Ic results, shown in Figure 6a, were compared
with EIS taken after prior charge at 80% SoC. Id results, shown in Figure 6b, were compared
with EIS taken after prior discharge at 80% SoC. The correlations between the DCA and
the EIS parameters 1/R1 (Figure 7), 1/R2 (Figure 8), CPE1 (Figure 9), and CPE2 (Figure 10)
are shown.

The DCA test results for Ic were low and high for Id, resulting in clustering of the data
points in different sections within the figures, depending on the prior usage. Furthermore,
the regression line was plotted for all values of Ic and Id, and the correlation coefficients,
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meaning a statistical relationship between two parameter sets, are given in Table 5. The
correlation coefficient used was determined by:

R2 = 1 − RSS
TSS

where R2 is the correlation coefficient, RSS is the sum of squares of residuals, and TSS is
the total sum of squares. The correlation coefficient is in the range from −1 to +1, where ±1
indicates the strongest possible correlation.
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Figure 7. R1 compared to DCA with IDC = (a) −0.5·I20, (b) 0DC and (c) +0.5·I20.
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Table 5. Correlation coefficient between DCA (EN) partial results and EIS parameters.

IDC = −0.5·I20 IDC = 0 DC IDC = +0.5·I20

Ic at 80% SoC

1/R1 0.386 0.105 0.660
1/R2 0.641 −0.347 0.225
CPE1 −0.036 0.524 0.435
CPE2 0.105 0.344 0.366

Id at 80% SoC

1/R1 0.706 0.499 0.876
1/R2 0.624 0.812 0.622
CPE1 −0.230 0.228 0.198
CPE2 0.337 0.600 0.521

Comparing the DCA (EN) test results with the EIS measurements, the first semicircle,
consisting of the parameters R1 and CPE1, showed a higher correlation than the second
semicircle. This was already found in previous publications [21] and falls into place with
the observations during single-pulse measurements at different SoC, shown in Section 3.3.
Furthermore, the highest correlation was found between the EIS parameters of the first
semicircle and the DCA with a superimposed DC current of +0.5·I20. The DCA most likely
shows its correlations with the EIS parameters when charging processes are promoted [21].
A good correlation between the capacitance values CPE1, which was in the range of double-
layer capacitance (~100 F), and DCA was found.
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3.3. Influence of SoC on DCA and EIS

Figure 11 shows the test results of the single-pulse charge acceptance test after charge
and after discharge, exemplary for three 3P2N EFB cells. The SoC influence (higher DCA for
lower SoC [5–7]) and the differences between additives are visible in the single-pulse DCA
test as well. For test cells with DCA-enhancing additives, the effect flattened for a lower SoC,
as already shown in previous publications [5–7], while the DCA almost linearly increased
for test cells with an overall lower DCA. The influence of prior usage (Ic < Id [5–10]) was
also very clear for the three different test cells Figure 11. It was shown that the influence of
prior usage was more distinct than the influence of the SoC. Furthermore, the influence
of the SoC and differences between additives are more distinct after discharge than after
charge, previously shown in [9,10].
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Figure 11. Single-pulse charge acceptance test after prior charge and discharge.

Within Figures 12 and 13, the fitting parameters 1/R1, 1/R2, CPE1, and CPE2 of the
EIS with a superimposed DC current of +0.5·I20 are compared with the single-pulse DCA
test results at different SoCs, and their correlation is visualized via the grey dotted line.
The correlation coefficients are summarized in Table 6. The correlation between DCA and
the parameters obtained during EIS with a superimposed DC current of +0.5·I20 were
visualized because they showed the highest correlation compared to the results obtained
with superimposed −0.5·I20 or 0DC (Appendix A Figures A7–A10). Moreover, the first
semicircle, consisting of the parameters R1 and CPE1, showed a higher correlation than
the second semicircle did. Both were observed in earlier publications, as DCA is the most
likely to show correlations with EIS parameters when charging processes are promoted
and the 10 s DCA pulse has a frequency of 1/10 Hz, which is found in the first semicircle of
the EIS spectra [21].

Differences between the single-pulse charge acceptance test at 80% SoC, shown in
Figure 11, and the results from EN standard Ic at 80% SoC, shown in Figure 6a, and the
Id at 80% SoC, shown in Figure 6b, are to be expected due to the different test procedures.
During the DCA EN test, 20 pulses were evaluated, where the first pulse resulted in the
lowest DCA out of all the pulses (0.2–0.3 A Ah−1 incline). Therefore, the DCA EN test
results were higher than those of the single-pulse tests.
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4. Conclusions

Eight different NAM formulations were investigated regarding their DCA. Among
them, five different amorphous carbons with significant variation of the specific external
surface area, two commercially used additive mixes that enhanced DCA, and a commer-
cially available carbon black were used.

DCA was tested with a single-pulse approach and with a modified and shortened
version of the EN standard. Thereby, the influence of the additives, the short-term history,
and the SoC on DCA could be evaluated. Furthermore, EIS was conducted with identical
test cells at various SoC, superimposed DC currents, and charging/discharging histories.
The EIS data were preprocessed with a K–K transformation to verify that all evaluated data
were stable, causal, and that real and imaginary parts were interdependent [28,29]. Fur-
thermore, the EIS data were investigated via the DRTs to analyze the number of processes
and their characteristic frequencies. The EIS measurements were evaluated using an ECM
based on DRTs. The high frequency part of the spectra was fitted with internal resistance,
inductance, and one CPE but kept constant independent of the investigated SoCs, prior
usage, or carbon additives. Only the parameters of the first and second semicircles were
freely fitted. Even though this restriction caused a noticeable deterioration of fitting quality,
it had to be accepted to validate such a broad range of test cells (additives) and battery
states (SoC and prior usage). Artifacts can be avoided only if the model with a minimal
number of variable parameters is used. This way, a comparison between the remaining
parameters and DCA was possible. Therefore, the gained parameters were correlated with
the respective DCA results.

It has been shown that the best parameters for predicting DCA are found within the
first semicircle of the negative half-cell spectra measured during a superimposed charging
current. By evaluating these parameters, it is possible to quantitatively predict DCA for
different additives. Furthermore, the influence of prior usage and the SoC while taking the
measurement can also be visualized using EIS.
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Abbreviations

AC alternating current IDCA resulting dynamic charge acceptance current
C20 20 h discharge capacity Ir average charge current during real-world micro cycles
Cn nominal capacity K–K Kramers–Kronig
CPE constant phase element LAB lead-acid battery
DC direct current LSM laser scanning microscope
DCA dynamic charge acceptance N negative plate
dpart average particle size NAM negative active mass
DRT distribution of relaxation times P positive plate
ECM equivalent circuit model PAM positive active mass
EIS electrochemical impedance spectroscopy R resistance
EFB enhanced flooded batteries R0 internal resistance
EFB + C enhanced flooded batteries with current R2 correlation coefficient

increasing additives
EN European standard RC resistance-capacity
fmax maximum frequency Ref-CB reference, carbon-black
fmin minimum frequency RH relative humidity
IAC,max maximum AC current RSS sum of squares of residuals
I20 20 h discharge current SoC state of charge
Ic average charge current after prior charge Sext specific external surface area
Id average charge current after prior discharge T temperature
IDC DC current TSS total sum of squares

τ time constant
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