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Figure S1 (a) XRD patterns (b) SEM images and (c) EDX elemental mapping images of Co/Mo MOF. 
 

 
Figure S2 Full-survey XPS spectra of the CoO/MoC@N/C heterojunction composite. 
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Figure S3 SEM images and XRD patterns of (a-b) Mo MOF derived MoC and (c-d) Co MOF derived 
CoO. 
 

 
Figure S4 Nitrogen adsorption-desorption isotherms and corresponding pore-size distribution of 
(a) NCCM-600 (b) Co MOF derived CoO and (c) Mo MOF derived MoC. 
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Figure S5 (a) CV curves of NCCM-600 heterojunction composite in 0.1 m KOH saturated with O2 
and N2. 
 

 
Figure S6 (a) Linear sweep voltammetry (LSV) curves and (b) corresponding Tafel plots of NCCM-
500, NCCM -600, NCCM -700, commercial RuO2 and CoO (c) The stability of polarization curves of 
the NCCM-600. 

 

 

Figure S7 Nyquist plots of MOF derived N-doped porous C@CoO/MoC heterojunction composite, 
MOF derived MoC and MOF derived CoO. 
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Figure S8 CV curves of prepared (a) NCCM-600 (b) CoO (c) MoC in 1 M KOH at different scan rates. 
(d) Calculated Cdl for different samples, charging current density differences plotted against scan 
rate of the electrodes. The linear slope was used to represent the ECSA. 
 
 

Catalysts E1/2(ORR) 
(V) 

Ej=10(OER) 
(V) 

ΔE=Ej=10-E1/2 
(V) 

References 

NCCM-600 0.843 1.577 0.734 This work 
Co3O4@CoO@

Co 
0.79 1.65 0.86 [1] 

In-CoO/CoP 
FNS 

0.81 1.597 0.787 [2] 

NSC-CoO-900 0.83 1.66 0.83 [3] 
CoO/hi-Mn3O4 0.70 1.60 0.90 [4] 
CoO@NSNGs 0.82 1.63 0.81 [5] 

MoC 0.72 -  [6] 
CNF@Zn/CoNC 0.82 1.70 0.88 [7] 
Ni-Fe-MoN NTs 0.72 1.53 0.81 [8] 
Mo-N/C@MoS2 0.81 1.62 0.81 [9] 

2H-MoS2 0.66 1.73 1.07 [10] 
Co@IC/MoC@

PC 
0.875 1.512 0.635 [11] 

P–CoO@PWC–
2 

0.84 1.52 0.68 [12] 

Table S1 Comparison of the overpotentials for ORR (at E1/2) and OER at (10 mA cm−2) of the 
prepared CoO/MoC@N/C heterojunction composite and other reported bifunctional 
electrocatalysts. 
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Figure S9 Charge and discharge polarization curves of the fabricated Zn-air batteries. 
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