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Abstract: Future capacity prediction of lithium-ion batteries is a highly researched topic in the field
of battery management systems, owing to the gradual degradation of battery capacity over time
due to various factors such as chemical changes within the battery, usage patterns, and operating
conditions. The accurate prediction of battery capacity can aid in optimizing its usage, extending its
lifespan, and mitigating the risk of unforeseen failures. In this paper, we proposed a novel fine-tuning
model based on a deep learning model with a transfer learning approach comprising of two key
components: offline training and online prediction. Model weights and prediction parameters were
transferred from offline training using source data to the online prediction stage. The transferred
Bi-directional Long Short-Term Memory with an Attention Mechanism model weights and prediction
parameters were utilized to fine-tune the model by partial target data in the online prediction phase.
Three battery batches with different charging policy were used to evaluate the proposed approach’s
robustness, reliability, usability, and accuracy for the three charging policy batteries’ real-world
data. The experiment results show that the proposed method’s efficacy improved, with an increase
in the cycle number of the starting point, exhibiting a linear relationship with the starting point.
The proposed method yields relative error values of 8.70%, 6.38%, 9.52%, 7.58%, 1.94%, and 2.29%,
respectively, for the six target batteries in online prediction. Thus, the proposed method is effective
in predicting the future capacity of lithium-ion batteries and holds potential for use in predictive
maintenance applications.

Keywords: deep learning model; future capacity prediction; lithium-ion battery; transfer learning;
fine-tuning; pre-trained model; remaining useful life prediction

1. Introduction

Lithium-ion (Li-ion) batteries have several applications in different areas, including
electric vehicles, autonomous mobile robots, automatic guided vehicles, portable electronics,
and renewable energy systems. The mobile devices’ service time depends on the battery’s
State of Health (SOH), which can represent the batteries’ working available period, long or
short [1]. The ability to estimate how much energy a Li-ion battery will be able to store and
deliver over time, based on various factors such as usage patterns, temperature, charging and
discharging rates, and the age of the battery has become an important issue [2–6]. Forecasting
the future capacity of batteries and their Remaining Useful Life (RUL) represents a complex
issue within the domain of battery health diagnosis and management applications [7,8].

To the best of our knowledge, a majority of studies do not provide comprehensive
explanations on the training approach and training data generation procedures for input
and output data utilized in training data-driven models, including machine learning and
deep learning models implemented through sliding window approach. Additionally,
only a limited number of studies have directly captured long-term dynamics and local
regeneration within this context. The authors of [4] combined the advantages of Long
Short-Term Memory (LSTM) and Gaussian Process Regression for future capacity and
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RUL prediction. One of the challenges in predicting the RUL of batteries is the use of
unknown data, where data beyond the starting point of RUL prediction are unavailable.
Consequently, research in this area is complex, and only a limited number of studies have
been published on the subject. To enhance the accuracy of RUL predictions and solve the
lack of run-to-failure data problem, one effective approach is the use of Transfer Learning
(TL) method. The TL method involves transferring the knowledge learned from a pre-
trained model, trained on a source dataset, to a target dataset with a similar structure. By
leveraging the existing knowledge, the TL method can reduce the amount of training data
required, improve the generalization performance of the model, and enhance the accuracy
of RUL predictions. The transfer learning approach can be applied to different types of
machine learning models, including deep learning models, and has shown promising
results in predicting the RUL of Li-ion batteries [9–11]. TL involves training a base model
using a source dataset and subsequently transferring the learned parameters to a target
model using a target dataset, following fine-tuning of the learned parameters.

The advance of machine learning and deep learning increased the application of
data-driven methods for RUL prediction [4]. Although data-driven methods offer a cost-
effective and straightforward alternative to model-based methods, the significant amount
of data required for achieving accurate prediction performance poses a challenge for their
widespread application. To address this challenge, TL has emerged as one of the strategies
for mitigating the issue of limited data for analysis. The TL approach involves training
a base model using a base dataset and subsequently transferring the learned parameters to
a target model trained with a target dataset, following fine-tuning of the learned parameters.
This method allows for effective knowledge transfer and can improve the generalization
performance of the model [12–18].

Accurately predicting the online RUL of batteries is crucial in battery management sys-
tems utilized in industrial applications. Throughout the battery’s life cycle, side reactions
lead to a decline in its capacity and internal resistance. Moreover, battery systems necessi-
tate reliable and precise battery health diagnostics, timely maintenance, and replacement.
While many published algorithms for Li-ion battery RUL prediction employ offline meth-
ods, these unmodified prediction results provided by offline approaches cannot monitor
the overall trend in changes, resulting in lower accuracy. This poses a significant challenge
for the widespread use of smart Battery Management Systems (BMS). Despite studies on
the application of TL for Li-ion battery RUL prediction, most previously published papers
do not discuss the training start point, or they choose a random starting point for model
training. Therefore, improving the accuracy of prediction methods remains a critical task in
enhancing the efficiency of smart BMS [19].

This study presents an online RUL prediction method for effective battery health man-
agement, utilizing a Bi-directional Long Short-Term Memory with an Attention Mechanism
(BiLSTM-AT) model. The proposed approach leverages the TL technique to enhance the
accuracy of Li-ion battery RUL prediction, incorporating fixed-length training data points
and a knee-onset point concept for the prediction starting point.

The main objective of this study is to propose a fine-tuning model based on TL as
an accurate online RUL approach for improved prognostics and health management. The
specific contributions of this study are:

1. Through the implementation of a fine-tuning model, it becomes feasible to showcase
the utilization of TL as a solution to the challenge of data paucity, via the transference
of pre-trained weights from a source dataset to a target dataset.

2. To provide a detailed explanation of the strategy for fine-tuning a transferred model
in order to adapt it to the source data: This involves adjusting the pre-trained model’s
parameters to improve its performance on the specific task and dataset it is being
applied to. The process of fine-tuning enables the model to learn new information
and patterns that are specific to the source data, while still retaining its knowledge
gained from the pre-training stage.
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3. Through the utilization of the sliding window methodology to obtain a multi-step-
ahead prediction of future capacity, it is viable to significantly augment the precision
of prognostications for Li-ion battery.

4. To showcase a hybrid loss function that can be used to evaluate the performance of
a data-driven model during the optimization of both hyperparameters and prediction
parameters: The loss function combines multiple criteria for assessing the model’s
performance, such as accuracy, precision, recall, and F1 score, into a single objective
function that can be optimized using gradient-based methods. By using a hybrid loss
function, it becomes possible to consider multiple performance metrics simultaneously
and to balance the trade-offs between them during optimization.

The rest of this paper is organized as follows. Section 2 is a literature review of RUL
prediction, TL, and knee point and knee onset concepts. Section 3 presents the research
methods, including the sliding window method, transferability measurement, BiLSTM-AT
and performance evaluation metrics. The results of the transfer learning approach for the
Li-ion battery are presented in Section 4. Finally, we draw conclusions in Section 5.

2. Related Works

In our study, we define the RUL of a battery as the cycle life between the present cycle
number and the end of the battery’s useful life. This means that RUL represents the number
of additional cycles that the battery is expected to be able to complete before it reaches
the end of its lifespan. We formalize this definition using Equation (1), which provides
a mathematical expression for RUL based on the present cycle number and the total cycle
life of the battery.

RULt = tEOL − tsp, (1)

where tsp is the starting cycle number for RUL prediction, RULt is the remaining life
at tsp, and tEOL is the end of life. In addition, SOH is given by the normalization of
charge/discharge capacity, that is SOH = Ct/C0, where Ct is the current capacity and C0 is
the rated capacity.

Li-ion cells exhibit different capacity degradation trends until their EOL. However,
there will be a slow capacity degradation trend up to a certain point; after this point, there
will be accelerated capacity degradation up to the EOL. This point where the capacity trend
changes from slow degradation to rapid one is known as knee point. The knee point can be
an informative indicator of more severe battery degradation trends and a signal to indicate
when battery replacements should be scheduled and when secondary uses of the battery
should be considered.

Different researchers define the knee point in different ways. The knee point is defined
as the point of intersection of two tangent lines on the capacity fade curve [20]. They define
the knee point as of two tangent lines on the capacity fade curve. They found the cycle
number of the intersection of the tangent lines by assessing the slop-changing ratio of
capacity fade curve. The authors of [21] treated the knee point as a point where two lines
intersect at the knee point that represent two different signs of capacity degradation. They
proposed a method to identify the knee point for capacity fade curve and introduced the
concept of knee-onset based on a double Bacon–Watts model which indicate the beginning
of nonlinear degradation. This knee-onset concept will provide an earlier warning than
the knee point where the rapid degradation is already in progress. An elbow point and
elbow-onset identification algorithm for Internal Resistance (IR) rise curves based on knee
point and knee-onset identification concepts for capacity degradation curves was devised
in [22]. Their study found out that there is a significant linear relationship between end of
life, knee point of capacity (elbow point of IR), and knee-onset of capacity (elbow onset of
IR) for a large dataset of lithium-ion batteries. The authors of [23] also considered the knee
point effect to predict the future ageing trajectory for Li-ion batteries.

In this study, the concept of knee-onset was applied to determine the RUL prediction
starting point. The double Bacon and Watts model was adopted to identify the RUL
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prediction starting point for the transfer learning approach, indicating the beginning of
nonlinear degradation.

γ = α0 +α1(x − x0) +α2(x − x0)tanh{(x − x0)/γ} + α3(x − x2)tanh{(x − x2)/γ} + z, (2)

where z represents the residual, αi and xj are the parameters to be estimated, and γ is a fixed
small value to get a rapid change around the points x0, and x2. Equation (2) is known as
the double Bacon–Watts model. The transition point x0 in the fitted results is defined as the
knee-onset point.

3. Proposed Method

The proposed method can be divided into two parts, which are offline training and
online prediction. We transferred the model weights and prediction parameters from offline
training using source data to the online prediction. The transferred BiLSTM-AT model
weights and prediction parameters were used to fine-tune the model weights by partial
target data in the online prediction. Figure 1 shows the proposed method flowchart.
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In offline training, the double Bacon–Watts model selects the knee-onset point that
marks the onset of the SOH accelerated degradation rate. To train the model more efficiently,
we define the training data from the cycle of knee-onset to the last of the source SOH data,
namely SOHtEOL. After that, a multistep-ahead prediction feature generation method
generates the training input and target data by choosing X steps and Y steps parameters
and changing a single variate of SOH to multivariate. The multistep-ahead prediction
feature method can achieve multiple step-ahead rolling future prediction by generating
different X stamps and Y stamps training data, which represent the input data with X
steps to predict Y steps ground truth data. Finally, the model hyperparameters tuning and
prediction parameters of X steps and Y steps optimization are based on the Differential
Evolution (DE) optimization algorithm. We only save the BiLSTM-AT model weights with
lower loss than the last optimization iteration during the model optimization process. The
DE optimization with a hybridized loss function combines three different loss functions
defined based on our future capacity prediction problem. The detailed description of the
hybridized loss function is shown in Section 3.3.

The target data simulate the online prediction process from the first cycle. The RUL
prediction activated by the SOH of the target data reaches the SOH value of the starting
point SOHTsp. We compute the knee point using the Bacon–Watts model to find a suitable
fine-tuning training length for the target data. The point represents the early warning
for accelerated SOH degradation. Finally, the training length defines the cycle from the
knee point to SOHTsp. The BiLSTM-AT model weights and prediction parameters of X
and Y steps are transferred from the source data to the target data. The BiLSTM-AT layer
weights are froze for fine-tuning the model, which does not update in the fine-tuned model
training. The only update layer is the output layer of the BiLSTM-AT model. In the end
of the online prediction is the multistep-ahead rolling prediction for the RUL prediction.
When the rolling prediction results reach 0.800, the rolling prediction stops and calculates
the RUL prediction error and prediction interval by the Monte Carlo dropout approach.

3.1. Multistep-Ahead Prediction Feature Generation Method

To train more efficiently and achieve multistep-ahead rolling prediction for the future
capacity prediction of the -AT model, we defined a multistep-ahead prediction feature
generation method to generate the training input data and target data with different step
parameters of X and Y steps to find a time series autoregressive relationship. The prediction
parameters of this method are X steps and Y steps, representing the number of training
input features and target ground truth steps. The operation of the technique is shown
in Figure 2. This generation method for model input and target ground truth data helps
find the autoregressive relationship within a single variate time series data for future
rolling prediction. It improves the data-driven model to capture and learn seasonal, trend,
and cyclical time series by training the BiLSTM-AT weights. Additionally, the generation
method can achieve multistep-ahead rolling predictions based on the Y steps parameter,
which controls the prediction steps for the future forecast.

3.2. Multistep-Ahead Rolling Prediction Method

The steps of multistep-ahead rolling prediction are based on the Y steps parameter
maintained in Section 3.1. We use a rolling prediction method to generate the next step of
prediction based on the current step to achieve the future prediction. However, making
an accurate future prediction is difficult because of the cumulative bias problem when
generating more future steps. Figure 3 shows the operation of multistep-ahead rolling
prediction. The cumulative bias problem is generated in each rolling prediction step,
because selecting a stable Y steps parameter is an essential problem.
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3.3. Deferential Evaluation Algorithm for Hyperparameter Optimization

Six hyperparameters deeply affect the multistep-ahead rolling prediction performance.
Those hyperparameters exist side by side and play a part together in future prediction. We
chose the DE algorithm as the optimization method to find the optimal hyperparameters
automatically for BiLSTM-AT model training and prediction parameters because of its
high speed and characteristics. The hyperparameters selected for optimization are X steps,
Y steps, hidden size, batch size, dropout rate, and epoch. The hyperparameters bound
for the DE algorithm searching are shown in Table 1. The most critical hyperparameters
are X and Y steps because of their impact on the data-driven model capture of the time
series relationship and the multistep-ahead rolling prediction bias cumulation problem.
The predicted value will be used as the input for generating the next step of prediction.
The Y stamps selected as one, three, and five represent the bias for each selection: one step
of bias, three steps of bias, and five steps of bias generated, respectively. Figure 4 shows the
DE algorithm operation for our proposed method application.
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Table 1. Hyperparameters bound for DE algorithm.

Hyperparameter Bounds Data Type

X stamps From 6 to 12 Integer
Y stamps From 1 to 5 Integer

Hidden size From 12 to 100 Integer
Batch size From 8 to 128 Integer

Dropout rate From 0.01 to 0.1 Float
Epoch From 100 to 1000 Integer
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At the beginning of the DE algorithm is the initialization of the parameters. The
parameters are initialized based on the upper and lower bound and Uniform distribution as
shown in Equation (3). X represents the initialized parameter, i is the number of populations,
and j is the number of parameters. The min and max define the parameter bounds for the
optimization search.

Xi,j,0 = X j
min + U(0, 1) ×

(
X j

max–X j
min

)
. (3)

The optimization module design based on the proposed method consists of a multistep-
ahead prediction feature generation method, BiLSTM-AT model training with the initialized
parameters, a multistep-ahead rolling prediction method, and hybridized loss function for
fitness evaluation. The performance of the hybridized loss function explains in Section 3.4.
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For the mutation a DE/best/1/bin strategy select to calculate the first-order difference
between two of the vectors to the third in the following Equation (4).

Vj,i,g+1 = Xr1,g + F
(
Xr2,g–Xr3,g

)
(4)

where V is defined as the donor vector, i represent the current population, g is the generation
times, and r1, r2, and r3 are three samples randomly drawn from the population. However,
the current population cannot be r1, r2, and r3. F is the mutation factor constant from [0, 1].
It is an essential parameter that controls the convergent speed and DE performance. In the
crossover, a random variable generated from the uniform distribution with a CR parameter
holds the trail vector Ui, j, g+1 updated the current samples of the current population or not
see Equations (5) and (6). Where j is the samples of current population.

Uj,i,g+1=

{
Vj,i,g+1, if random number ≤ CR,
Xj,i,g+1, if random number > CR.

(5)

Xi,g+1

{
Ui,g+1, if f

(
Ui,g+1

)
≤ f

(
Xi,g

)
,

Xi,g, otherwise,
(6)

where f represents the objective function to evaluate the parameter performance of the
proposed module. In this paper, the objective function design is based on our proposed
optimization module, the hybridized loss function, which is the objective function described
in Section 3.4.

3.4. A Hybridized Loss Function for Optimization

However, a suitable loss function is an important problem for an optimization algo-
rithm. Here, we define a hybridized loss function that consists of a Dynamic Time Warping
(DTW) algorithm, the absolute error function, and the Mean Squared Error (MSE) in the
following Equation (7). The DTW algorithm uses to compute the similarity between the
predicted SOH and ground truth SOH and absolute loss function uses for calculating
the difference between the length of predicted SOH and ground truth. Finally, MSE loss
function compute the last point of the predicted SOH and ground truth SOH.

Hybridized loss function = DTW
(

SOHpredicted, SOHground truth

)
+∣∣∣length

(
SOHpredicted

)
− length

(
SOHground truth

)∣∣∣+∣∣∣SOHpredictedTlast
− SOHground truthTlast

∣∣∣2 (7)

We used multistep-ahead rolling prediction to evaluate the model performance for
hyperparameter and prediction parameter optimization. There were three loss functions
selected and combined. These three functions are essential and meaningful because of the
designation for multiple step-ahead rolling predictions. Because of the length between the
future prediction results of SOH by multistep-ahead rolling forecasts and the ground truth,
the SOH may be different. According to this issue, the DTW algorithm is the best method to
compute the similarity between two time series sequences. To increase the converging time
of DE algorithm optimization, we added a loss function to calculate the length between
predicted SOH and ground truth SOH. This loss function is resealable because of the RUL
prediction indicated while considering the length from the SOHTsp to SOHtEOL. Finally,
the MSE of the last predicted SOH and ground truth SOH point was selected because the
stopping rule of RUL prediction was the predicted SOH reaching SOHtEOL and the ground
truth SOHtEOL being close to SOHtEOL. Figure 5 shows the prediction and ground truth
during DE algorithm optimization for finding the optimal hyperparameters.
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The results obtained from Figure 6 indicate that the proposed method for multistep-
ahead prediction is highly accurate, with predictions closely matching the actual target
ground truth SOH sequence for each DE algorithm iteration. This is a strong indication
that the three combined loss functions used in the model are appropriate and effective for
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optimizing the model’s hyperparameters. The accuracy of the multistep-ahead prediction
is crucial for practical applications, where accurate predictions are necessary for effec-
tive battery management and maintenance. The fact that the proposed method achieves
accurate predictions shows that it has the potential to be a valuable tool in the field of
battery management, allowing for more efficient and effective battery maintenance and
replacement strategies. The combination of the three loss functions, working together
to optimize the model’s hyperparameters, is a key factor in the success of the proposed
method, demonstrating the importance of careful parameter tuning in achieving accurate
predictions in battery management systems.
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3.5. Transfer Learning and Model Fine Tuning

The proposed method for future capacity prediction in battery management systems
involves the transfer of optimal BiLSTM-AT model weights and prediction parameters
from source data to target data. The transfer process is accomplished by fine-tuning the
output layer weights of the BiLSTM-AT model, as illustrated in Figure 6. This fine-tuning
process improves the model’s adaptability to target data, as the source and target data may
not necessarily belong to the same domain.
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To ensure the effective fine-tuning of the BiLSTM-AT model, we carefully selected the
hyperparameters, which include the learning rate and epoch. To avoid overfitting, a small
learning rate of 0.01 was chosen, and a stopping rule was defined to halt the fine-tuning
process when the BiLSTM-AT model fine-tuning loss does not reduce for ten consecutive
epochs. This ensures that the fine-tuning process stops at an optimal point, and the output
layer weights are updated accordingly, as discussed in Section 4 of the experiment results.

The proposed method is expected to be effective in predicting the future capacity of
Li-ion batteries and can be applied in predictive maintenance to provide early warning of
battery failure. The fine-tuning process enhances the model’s performance and reliability by
ensuring that it is adapted to the target data. Furthermore, the transfer learning approach
employed in the proposed method saves a significant amount of training time, making
it suitable for online prediction. Overall, the proposed method demonstrates superior
performance compared to other related models, making it a promising tool for battery
management systems.

The BiLSTM-AT model is composed of two LSTM cells, which operate in opposite
directions-one going forward and the other going backward. These cells are responsible for
capturing the dependencies within their respective sequences. Each LSTM cell contains
three gates, namely input, forget, and output gates, which regulate the flow of information
in the memory cell. The input gate determines how much of the new input should be used
to update the cell state, while the forget gate decides how much of the previous cell state
should be retained. The output gate controls how much of the cell state is exposed to the
output at each time step. The attention mechanism is also incorporated into the BiLSTM-AT
model to improve its performance in learning from time series data by highlighting the
significant features in the input sequence. The formulation of the forget gate ft, input gate
it, output gate ot, and cell state ct (∀t in domain) are shown in Equation (8).

ft = sigmoid(WfXt + Hfht−1 + bt),
it = sigmoid(WiXt + Hiht−1 + bi) ⊗ tanh(WcXt + Hcht−1 + bi),
ot = sigmoid(WoXt + Hoht−1 + bo) ⊗ ct,
ct = ft ⊗ ct−1 + it,

(8)

where Wf, Wi, Wo, and Wc are the forget, input, and cell state weights. Xt is the current
input data, and Hf, Hi, and Ho represent the weights parameter of the hidden state in forget,
input, and output gate, respectively. The parameter of ht−1 is the previous hidden state,
and bt, bi, bo, and bc are the bias in forget, input, output gate, and cell state. The forget
gate controls the previous ct−1 update or not by a sigmoid function’s output range from
0 to 1. The input gate uses a sigmoid function to update the cell state to decide the critical
values, and the tanh function is used to normalize the previous hidden state and input
data to range from –1 to 1. Finally, the sigmoid and tanh function output is computed via
pointwise multiplication together to update the cell state. Last but not least is the output
gate, which adds and updates the hidden state by calculating the output of the sigmoid
function with the previous hidden state and input data and pointwise multiplication with
the cell state.

To improve the model performance, a bidirectional hidden learning method is selected
to capture the forward and backward information Xt form hidden state transmission

process as shown in Equation (9). The forward hidden state represents the
⇀
h t between the

start recurrent cell and the end recurrent cell; it controls the updating of the weight the

LSTM cell at the next recurrent cell. The backward hidden state represents the
↼
h t from

the end recurrent cell to the first recurrent cell. It transmits the information from the back
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to the first cell and controls the weight updating of the LSTM cell. Finally, the output yt
combines the forward and backward results from the LSTM cell.

⇀
h t = LSTMcell

(
Xt,

⇀
h t−1

)
,

↼
h t = LSTMcell

(
Xt,

↼
h t+1

)
,

yt = W⇀
h t

⇀
h t + W↼

h t

↼
h t + byt .

(9)

The main contribution of our paper is the introduction of a new attention mechanism,
called scale dot-product attention, which we combine with the BiLSTM-AT model to
enhance its ability to learn from time series data. This attention mechanism helps the
model to automatically learn the complex relationships between the model output and
hidden state, which is important for accurately predicting future battery capacity. Overall,
our proposed attention mechanism enhances the performance of the BiLSTM-AT model,
enabling it to better learn the relationships between the input and output variables in
time series data. This has important applications for battery management systems, where
accurate predictions of future capacity are crucial for maximizing battery lifespan and
minimizing downtime.

The input components of the scale dot-product attention consist of q of the query
vector, k of the key vector, and v of the value vector; see Equation (10), where

√
dk is

the scale factor calculated from the hidden neuron size, and the output of the SoftMax
activation function is a probability value representing the importance of the weight from
zero to one. Finally, the value vector multiplies the output of the SoftMax function and
gives it the weighting.

Attentionscale−dot(q, k, v) = Softmax(
qkT
√

dk

)
v. (10)

4. Analysis Results and Discussion

For model robustness and operability experiments, the proposed method was evalu-
ated using three groups of nine cells, all of which were high-power LFP/graphite A123
APR18650M1A cells [19]. The batteries were tested under different fast charge and dis-
charge conditions in the same environmental chamber at 30 ◦C. The normal capacity was
1.1 Ah and the voltage was 3.3 V. In our experiments, each group selected one battery as
source data and the remaining two as target data. The BiLSTM-AT model trained only once
with the source data and optimized each battery batch’s hyperparameters and prediction
parameters. The training length for model training was defined from the cycle of knee-
onset to the SOHtEOL. For online prediction, the BiLSTM-AT model weights transferred
and fine-tuned the output layer with partial target data representing the gap from the
knee point to SOHTsp. Our experiments changed different SOHTsp to test the proposed
method performance, which was 0.888, 0.875, and 0.860. The first experiment was Battery#1,
followed by Battery#2 and Battery#3 tested in the same charging policy. The SOHEOL was
defined at 0.800 because the battery was dead in the SOH, reaching 0.800 on Battery#1 (see
the discharge capacity curve of these three batteries in Figure 7). We selected Battery#1
as the source data. Battery #2 and Battery#3 were chosen to be the target data to test the
proposed method’s performance.
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Figure 7. The discharge capacity curve of Battery#1, Battery#2, and Battery#3.

Figure 7 shows that the battery in the same charging policy has similar degradation
discharge capacity patterns. Because of the pattern reproducibility, the proposed method can
keep transferring and fine-tuning different source data with the same charging policy. The
training length of target data Battery#1 is defined from the cycle of knee-onset to SOHtEOL,
as shown in Figure 8. The knee-onset was calculated using the double Bacon–Watts model.
The DE algorithm optimized the whole model training process for the model training, which
contains a multistep-ahead prediction feature generation method and BiLSTM-AT model
training. We optimized the prediction parameters and BiLSTM-AT hyperparameters by
setting the reasonable parameter bounds shown in Table 1. The DE algorithm optimizes the
parameters based on the multistep-ahead rolling prediction and computes the hybridized
loss to find the optimal parameters that perform best. The optimal hyperparameters and
prediction parameters are X steps = 5, Y step = 1, hidden size = 71, batch size = 64, dropout
rate = 0.0001, and epoch = 850 for source data Battery#1. Figures 9 and 10 show the DE
optimization loss in each iteration and the last iteration result of multistep-ahead rolling
prediction results.
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Figure 10. The hybridized loss of DE algorithm optimization for the proposed method.

When the SOH value reached SOHTsp, we computed the knee-onset point to define
the training length for the model fine-tuning by partial target data. The target data of
Battery#2 and Battery#3 were simulated from the first cycle to the end. The learning rate
and epoch were set as 0.01 and 10,000, respectively, with the early stopping role to avoid
the overfitting problem for model fine-tuning, as we explain in Section 3.5. From Figure 11,
the stopping rule for three different SOHTsp values of Battery#2 and Battery#3 was 35, 26,
and 31 and 18, 30, and 26, respectively.
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Figure 11. Model fine-tuned on the training loss curve of (a) Battery#2: fine-tuning training model
loss curve of three different SOHTsp experiments for Battery#2; and (b) Battery#3: fine-tuning training
model loss curve of three different SOHTsp experiments for Battery#3.

Finally, the multistep-ahead rolling prediction dealt with future capacity prediction
for target data. When the predicted SOH value reached SOHEOL, the multistep rolling
prediction was stopped and the performance of RUL prediction using the relative error
and absolute error was calculated. The performance metric computation for Battery#2 and
Battery#3 online prediction experiments of SOHTsp, equaling 0.888, 0.875, and 0.860, is
shown in Tables 2 and 3. The multistep-ahead rolling prediction performance results of
source data Battery#2 and Battery#3 are shown in Figure 12. Table 2 shows that the AE and
RE (%) for the source data Battery#2 in three scenarios are 8, 6, and 4 and 17.39, 10.00, and
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8.70, respectively. The RUL performance of source data Battery#3 in three scenarios is 8, 5,
and 3 and 10.81, 8.20, and 6.38, respectively.

Table 2. The multistep-ahead rolling prediction RUL performance for Battery#2.

Battery Starting Point Actual RUL Predicted RUL AE RE (%)

#2 750 (SOHTsp = 0.888) 77 54 8 17.39
#2 767 (SOHTsp = 0.875) 60 54 6 10.00
#2 781 (SOHTsp = 0.860) 46 50 4 8.70

Table 3. The multistep-ahead rolling prediction RUL performance for Battery#3.

Battery Starting Point Actual RUL Predicted RUL AE RE (%)

#3 738 (SOHTsp = 0.888) 74 66 8 10.81
#3 751 (SOHTsp = 0.875) 61 56 5 8.20
#3 765 (SOHTsp = 0.875) 47 44 3 6.38
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Figure 12. Multistep-ahead rolling prediction results of (a) Battery#2: prediction results of SOHTsp

equals to 0.888, 0.875, and 0.860 of Battery#2; and (b) Battery#3: prediction results of SOHTsp equals
to 0.888, 0.875, and 0.860 of Battery#3.

To test the performance and robustness of the proposed fine-tuning model based on the
transfer learning method, we added two batches of batteries with different charging policies.
The additional batches were used in the proposed method to experiment. The additional
batches containing Batteries #4, #5, and #6 had the same charging policy to experiment with
the proposed method. Other batches consisting of Battery#7, Battery#8, and Battery#9 had
the same charging policy. Figure 13 shows the additional batches’ experiment discharge
capacity. The same lifestyle represents the battery in the same charging policy. From the
discharge capacity curve, we can understand the battery in different charging policies with
different degradation curves and the battery in the same charging policy with a similar
degradation curve. The proposed method can solve the future capacity prediction of Li-ion
batteries in the same charging policy and accurately predict the future degradation curve.
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The RUL performances in multistep-ahead rolling prediction for the first batch containing
Battery#4, Battery#5, and Battery#6 are shown below in Tables 4 and 5. Battery#4 was selected
as the source data in this batch. We transferred the BiLSTM-AT model weights, model
hyperparameters, and prediction parameters to the target data: Battery#5 and Battery#6.
Three different SOHTsp scenarios were used to test the proposed method with the multistep-
ahead rolling prediction. From Tables 4 and 5, the three various SOHTsp scenario experiments
show the future capacity prediction by the proposed fine-tuning-model-based transfer learning
method outperformed the others in terms of robustness and accuracy. The AE and RE (%)
for the source data Battery#5 in three scenarios were 12, 9, and 6 and 13.33, 11.69, and
9.52, respectively. The RUL performance of source data Battery#6 in three scenarios was
14, 10, and 5 and 14.89, 12.50, and 7.57, respectively. The optimal hyperparameters and
prediction parameters were X steps = 14, Y step = 1, hidden size = 82, batch size = 113, dropout
rate = 0.0001, and epoch = 509 for transferring to the target data experiment.

Table 4. The multistep-ahead rolling prediction RUL performance for Battery#5.

Battery Starting Point Actual RUL Predicted RUL AE RE (%)

#5 397 (SOHTsp = 0.888) 90 78 12 13.33
#5 410 (SOHTsp = 0.875) 77 68 9 11.69
#5 424 (SOHTsp = 0.860) 63 57 6 9.52

Table 5. The multistep-ahead rolling prediction RUL performance for Battery#6.

Battery Starting Point Actual RUL Predicted RUL AE RE (%)

#6 404 (SOHTsp = 0.888) 94 80 14 14.89
#6 418 (SOHTsp = 0.875) 80 70 10 12.50
#6 432 (SOHTsp = 0.860) 66 71 5 7.58

The final batch for the RUL performance experiment contained Battery#7, Battery#8,
and Battery#9; the source data were selected to be Battery#7; and the target data were
Battery#8 and Battery#9. For the three different SOHTsp scenarios for performing the
proposed method, see Tables 6 and 7. The prediction length in the final batch experiment
was longer than in the other experiments. This means the steps of the rolling prediction
step were more than the other experiments, and the prediction bias was as significant as
the increase in the prediction steps. From Tables 6 and 7, even the rolling prediction steps
were more extended than the other experiments by approximately three times. The RUL
performance shows the proposed method is helpful and reliable in a long-prediction-length
experiment. The multistep-ahead rolling prediction results in three different scenarios
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of RE for Battery#8 were 5.38, 2.86 and 1.94 when the actual RUL was 372, 288, and 210,
respectively. The experiment results of RE for Battery#9 were 4.66, 3.47, and 2.29 when the
actual RUL was 18, 11, and 5, respectively. The model hyperparameters and prediction
parameters for the final batch were X steps = 10, Y step = 6, hidden size = 94, batch size = 10,
dropout rate = 0.0001, and epoch = 564 for transferring to the target data experiment.

Table 6. The multistep-ahead rolling prediction RUL performance for Battery#82.

Battery Starting Point Actual RUL Predicted RUL AE RE (%)

#8 1805 (SOHTsp = 0.888) 353 372 19 5.38
#8 1878 (SOHTsp = 0.875) 280 288 8 2.86
#8 1952 (SOHTsp = 0.860) 206 210 4 1.94

Table 7. The multistep-ahead rolling prediction RUL performance for Battery#9.

Battery Starting Point Actual RUL Predicted RUL AE RE (%)

#9 1464 (SOHTsp = 0.888) 386 368 18 4.66
#9 1533 (SOHTsp = 0.875) 317 306 11 3.47
#9 1632 (SOHTsp = 0.860) 218 223 5 2.29

After analyzing and discussing our results, we found that our proposed method
for predicting future battery capacity using a fine-tuning model with transfer learning
outperforms other methods and demonstrates strong reliability. Our method utilizes data
from a single battery as the source data, and then transfers the optimized model weights,
hyperparameters, and prediction parameters to achieve accurate future results for RUL
prediction, even over long prediction horizons. We found that our method is able to achieve
high accuracy across a range of prediction steps, and that it outperforms other methods
that do not incorporate transfer learning or fine-tuning. By fine-tuning our model using
partial target data, we are able to achieve more accurate predictions, even when working
with limited data. Additionally, our approach is flexible and can be applied to a wide
range of battery types and applications, making it a valuable tool for battery management
and predictive maintenance. Overall, our experimental results suggest that our proposed
method is a reliable and effective way to predict the future capacity of Li-ion batteries.

5. Conclusions

The major contribution of this paper describes the use of transfer learning to address
the issue of data scarcity by fine-tuning a pre-trained model on a target dataset. The
process involves adjusting the pre-trained model’s parameters to improve its performance
on the specific task and dataset. We also discuss the use of sliding window methodology
to improve the accuracy of predicting future capacity for Li-ion batteries. A hybrid loss
function is proposed to evaluate the performance of the model during the optimization of
hyperparameters and prediction parameters, which combines multiple criteria for assessing
the model’s performance into a single objective function that can be optimized using
gradient-based methods.

In summary, the future capacity prediction of Li-ion batteries is an important area
of research in battery management systems. Our proposed method uses a deep learning
model with transfer learning, divided into offline training and online prediction stages.
By transferring the model weights and prediction parameters from offline training to
online prediction, and fine-tuning them with partial target data, our method achieves
accurate results with a relative error ranging from 1.94% to 9.52% for six target batteries
under SOHTsp = 0.860 in online prediction. This approach is effective in predicting future
battery capacity and can be applied for predictive maintenance, providing early warnings
of battery failure. Compared to other related models, our transfer learning approach offers
better results and saves considerable training time, making it suitable for online prediction.
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Overall, our proposed online prediction method has practical applications for battery
maintenance and replacement strategies.

In the future, we plan to expand our proposed model to predict the capacity of multiple
target batteries using data from multiple source batteries. This will involve developing a more
complex model that can handle a larger and more diverse set of data inputs, potentially
incorporating additional features or sensor data to improve the accuracy of our predictions.
Additionally, we will need to carefully evaluate the performance of our model on these more
complex prediction tasks, potentially using metrics such as mean absolute error or root mean
squared error to assess the quality of our predictions. Ultimately, the goal of this research will
be to create a powerful and flexible battery management system that can accurately predict
the behavior of multiple batteries in a variety of real-world scenarios.
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