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1. Simulation details

The 2D numerical model was calculated by the module “Tertiary Current Distribution, Nernst-
Planck” of COMSOL software. The diffusion coefficient of Zn** in the electrolyte of 2 M ZnSQO4 was
set to 2x10° m? s”!. The cathode was set as the upper boundary of the 50 um electrolyte. A coating
with 5 um thickness was on the anode surface, where the gap was filled with 0.25 pum electrolyte. The
diffusion coefficient of Zn>" in the coatings was set to 2x1071% m? s,

To create non-uniformity in the coating, the diffusion coefficient of Zn?" in the coating was

spatially modified according the Gaussian function as follows: [1]

— 2 .

g1(x) = exp <Tf2) (Equation S1)
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Where the full-width half-maximum of the coating was 5 um, and the maximum amplitude at the

center is 2x10 m? s™.. To give the coating a self-adaptive dynamic behavior, a feedback mechanism



was added to the spatially varying Gaussian conductivity profile. The Gaussian distribution was

AAV where A is a scaling factor and AV is the volume change of each

attenuated by a factor of e~
mesh element in the coating with Zn metal deposition. The overpotential was set to -135 mV (vs.
Zn/Zn*") at the Zn anode.

For comparison, the same parameters were used for electrodes with a SSI. Moreover, we
introduced ellipses (long diameter 2.5 um, short diameter 1.25 pm) filled with electrolyte or air. For
the rigid SSI, a 5 um pinhole was introduced to generate non-uniformity as a control. For the anode
without coating, the initial bumps were introduced since the dendrite growth mainly depends on the

surface roughness. This is a typical dendritic evolution problem, where the Bulter-Volmer current

density ip, is regulated by a rate modification factor S [2].

2. Supporting Figures

Figure S1. SEM images of Zn@QLI in the cross-section direction, indicating the thickness of the

b
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Figure S2. The gelatin solutions with 1.5 or 1.25 M ZnSOs solutions. The modified layer before (b)

modifed layer is ~3 um.

and after immersing (c) in 2 M ZnSO4 solution.



Figure S4. (a) The solid gelatin electrolyte at 40 °C. The Gel that immersed in 2 M ZnSO4
electrolyte at 40 °C (b) and 60 °C (c).

Figure S5. SEM images and corresponding EDS mappings after immersing Zn (a) and Zn@QLI (b) into 2

M ZnSOs electrolyte for 8 days.
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Figure S6. The EDS mappings after immersing Zn (a) and Zn@QLI (b) into 2 M ZnSOs4 electrolyte
for 16 days.
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Figure S7. The EDS mappings of the surfaces after CA test for Zn (a) and Zn@QLI (b).
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Figure S8. The discharge curve of Cu-Zn half cell, indicating the capacity of 20 um Zn foil is ~11
mAh cm=.
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Figure S9. The nucleation overpotentials of Zn and Zn@QLI at a current density of 1 mA cm™ (a)
and 0.2 mA cm™ (b).
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Figure S10. Galvanostatic cycling of the symmetric cell with Zn@QLI with a capacity of 3 mAh

cm? at 0.2 mA cm™.

Figure S11. SEM images of the Zn (a) and Zn@QLI electrode (b) in the stripped state, after cycling
for 100 h with a capacity of 1 mAh cm™ at 0.2 mA cm™.
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Figure S12. The cell configurations of the symmetric cell without separators for Zn (a) and Zn@QLI

electrode (b).
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Figure S13. (a) XPS survey spectra of the bare Zn electrode after 30 h cycles with the symmetric
cells without separators. The corresponding Zn 2p spectrum (b), S 2p spectrum (c) and O 1s

spectrum (d).
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Figure S14. (a) XPS survey spectra of the Zn@QLI electrode after 30 h cycles with the symmetric

cells without separators. The corresponding Zn 2p spectrum (b), S 2p spectrum (c), O 1s spectrum

(d),

Cls spectrum (e) and N1s spectrum (f).



The XPS survey spectra of both the Zn (Figure S13a) and the Zn@QLI electrode (Figure S14a)
confirm the composition of element Zn, S and O. Figure S13b-c show the Zn 2p, S 2p and O 1s spectra
of the cycled Zn electrode. The 2p orbital is split into two distinct peaks at 1022.4 and 1045.5 eV,
corresponding to the 2p32 and 2p1/2 of Zn?", respectively. The S 2p peaks at 168.9 and 170.0 eV are
assigned to multiplet-split 2p3/2 and 2p1/2 of sulfate species, which is consistent with the result of XRD.
The O 1s peaks at 531.7 and 532.6 eV represent two oxygen environments in sulfate species. As shown
in Figure S14b-d, the cycled Zn@QLI exhibits similar Zn 2p, S 2p and O 1s spectra compared to the
Zn electrode. Although the QLI has been removed, a new C 1s peak at 287.5 eV and a new N 1s peak

at 400.2 eV appear (Figure S14e and f), which can be attributed to the residual of the QLI.
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Figure S15. EDS mappings of the Zn electrode in the symmetric cell without separators after 30 h

cycles. The particle (a) and flat area (b) corresponding to Figure 4c.
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Figure S16. EDS mappings of the Zn@QLI electrode in the symmetric cell without separators after
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30 h cycles. The QLI edge (a), QLI (b) and the area under QLI (c) corresponding to Figure 4d.

Figure S17. SEM images of Zn (a) and Zn@QLI electrode (b) after cycles in the cross-section view.
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Figure S18. The cell configurations of the symmetric cell with suspended Zn@QLI electrodes.



Figure S19. SEM images of the cycled bare Zn after 30 h in the plated state (a) and stripped state

(b). (¢) The corresponding EDS mappings in b.
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Figure S20. SEM images of the cycled Zn@QLI anode after 30 h in the plated state (a) and stripped

state (b). (¢) The corresponding EDS mappings in b.

Figure S19a and b show the SEM images of the cycled Zn electrode after 30 h in the plated and
stripped state, respectively. The surface is composed of lots of whiskers in the plated state, while
some large bulks appeared in the above non-separator symmetric cell present. The bulks are assigned
to zinc oxides according to the element mapping (Figure S19c¢). In sharp contrast, the surface of the
as-deposited Zn@QLI electrode is still flat with some winkle (Figure S20a), which is very similar to

the morphology obtained from the non-separator symmetric cell. In the stripped state, the surface is
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rougher than that in the plated state, but still no large bulks and the distribution of element Zn and O

is uniform (Figure S20b and c).
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Figure S21. The simulation cell geometry in COMSOL for the bare Zn anode (a), Zn@elastic-SSI

with electrolyte filling in the oval gap (b) and Zn@QLI (c). Scale bar: 10 um.

a electrolyte

_ interphase .

Zn —
d electrolyte :
[ [ interphase | | 03
Zn — 0

Figure S22. The simulation cell geometry in COMSOL for Zn@gelatic-SSI with air filling in the oval
gap (a) and Zn@rigid-SSI (d). Simulations of Zn deposition on Zn@elatic-SSI with air filling in the
oval gap (b) and Zn@rigid-SSI (e). The color indicates the magnitude of spatial Zn*" flux. Mesh
element volume change during Zn deposition on Zn@elatic-SSI with air filling in the oval gap (c)
and Zn@rigid-SSI (). The color indicates the degree of volume change. In each snapshot, the

streamlines display the direction of Zn?* flux and the electrode is painted pink. Scale bar: 10 um.
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Figure S23. Voltage profiles of the Cu-Zn (a) and Cu@QLI-Zn half cell (b) with a capacity of 1 mAh

cm? at 1 mA cm™.
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Figure S24. Coulombic efficiency of the half cells with a capacity of 1 mAh cm™ at 0.2 mA g'! (a)
and 3 mAh cm? at 1 mA g! (b).
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Figure S25. The galvanostatic voltage profiles (a) and CV curves (b) of the full cells.
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Figure S26. EDS mappings of the Zn (d) and Zn@QLI anode (e) after 300 cycles.
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Figure S27. The galvanostatic voltage profiles of Zn@QLI-V20s full cell. The current 1 is 5 QA for
cycle, and 10 pA for cycle 2-3. The cell was rest for 3 days after cycle 2, then conducted cycle 3 to
test the self-discharge performance.
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