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Abstract: Much attention has been given to aqueous zinc-ion batteries (ZIBs) due to their features of
inherent safety, environmental compatibility, low cost, and fantastic energy density. Nevertheless,
chemical corrosion and dendrite growth occurring on Zn anodes during the charge–discharge process,
which often cause surface passivation and short circuit of cells, seriously hindering the development
of ZIBs. To solve these problems, a Cu(II) and polydopamine co-modified glass fiber (Cu(II)-PDA/GF)
is designed as separator. On one hand, the modification of PDA enhances ionic conductivity and
the water absorbing capability of a glass fiber separator due to the presence of functional groups.
On the other hand, the pre-deposition of Cu on Zn anodes enables the uniform nucleation of Zn
during the initial deposition process. Due to the synergistic effect, reversible zinc plating/striping is
achieved in symmetric cells, which display a long lifecycle of over 1800 h at the current density of
1 mA cm−2 and with a fixed capacity of 1 mAh cm−2. Moreover, the assembled Zn//V2O5 cells using
the Cu(II)-PDA/GF separator also demonstrate improved capacity retention. This study provides a
simple and effective separator modification strategy for high-performance and reliable ZIBs, which
are conducive to other metal-based energy storage devices.

Keywords: aqueous zinc-ion batteries; separator; modification

1. Introduction

The excessive consumption of traditional fossil energy has aggravated the issues of
energy shortage and environmental pollution. The exploitation and utilization of clean
energy is severely limited by its defects of instability [1,2]. Therefore, developing reliable
large-scale energy storage systems (ESSs) with the advantages of low cost, high energy
density, and high security is of great importance [3,4]. In recent years, aqueous recharge-
able batteries, such as monovalent (K, Na) and multivalent (Mg, Ca, Zn, Al) ion batteries,
have attracted considerable attention due to the features of nonflammability and abundant
natural reserves [5–8]. Among these battery systems, zinc-ion batteries (ZIBs) are consid-
ered to be a good choice among next-generation batteries due to their advantages of low
redox potential (−0.76 V, vs. SHE) and the high theoretical capacity (820 mAh g−1) of Zn
anodes [8].

Unfortunately, undesirable dendrite growth and uncontrolled side reactions occurring
on Zn anodes could accelerate the failure of Zn metal batteries. During the initial plating
process, the random nucleation on Zn surface causes the nonuniform distribution of the
electric field and leads to vertical Zn growth on the protrusions that eventually leads to the
formation of Zn dendrite [9], which may pierce the separator and cause short-circuiting
of the cell. Moreover, hydrogen evolution causes exhaustion of electrolytes and chemical
corrosion produces “dead Zn”; these problems accelerate the failure of the cells [10].

To overcome these problems, many strategies have been developed such as modifying
the zinc anode [11–17], implanting electrolyte additives [18–21], and employing polymer-
or hydrogel-based electrolytes [22–26]. So far, most studies have been focused on decora-
tion of electrolytes and electrodes, while little research has focused on separators. As a
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crucial component of batteries, separators could regulate ion diffusion and optimize the
electrochemical kinetics of batteries during the charge–discharge process, which could lead
to dendrite-free Zn deposition. The common separators are glass fiber (GF) or filter paper
(FP), both of which possess good compatibility with aqueous electrolytes, but they are
chemically inactive. Therefore, separators are usually functionalized by chemically engi-
neering or surface modification to improve the cycle stability of ZIBs. For example, Janus
separators with good electrolyte wettability and high ionic conductivity can be realized by
adding vertical graphene carpet [27] or Ti3C2TX MXene [28] to one side of a commercial GF
separator to homogenize the interfacial electric field and promote Zn nucleation kinetics.
Moreover, supramolecules with abundant polar groups [29] were also reported to prevent
the accumulation of Zn2+ and suppress the Zn dendrite by modifying the GF separator. In
addition, during zinc ion electrodeposition, the cellulose/GO composite separator (CG) [30]
achieved an ultra-stable dendrite-free anode through crystal orientation regulation.

Inspired by above studies, we designed a multifunctional Cu(II) doped polydopamine-
modified GF (Cu(II)-PDA/GF) separator for high-performance ZIBs. Figure 1 schematically
illustrates the Zn plating process in the cells with pristine GF and Cu(II)-PDA/GF sep-
arators. As shown in Figure 1, inhomogeneous Zn nucleation takes place at the initial
plating stage in the cell with a pristine GF separator, which further leads to the growth
of disordered Zn dendrite due to the wild 2D Zn2+ diffusion at the electrode/electrolyte
interface. The as-formed Zn dendrites are inclined to cause the failure and short-circuiting
of cells. In contrast, the abundant zincophilic active sites (amino, imino, and hydroxyl) in
the Cu(II)-PDA/GF separator could regulate the randomly scattered ion and result in a
homogeneously distributed Zn2+ flux over the entire Zn anode, which, therefore, would
induce uniform Zn plating and lessen the growth of the Zn dendrite. Moreover, the extraor-
dinarily strong adhesion is expected to induce intimate interactions between electrodes
and the GF separator and relieve the local surface tension of Zn metal [31]. Interestingly,
numerous Cu2+ are encapsuled in the PDA modification layer via the metal–ligand band
with the functional groups and could be preferentially deposited to form the metal Cu layer
on the Zn anode, which also contributes to uniform Zn deposition due to its good affinity
with Zn atoms [32–34]. Based on above features, a Cu(II)-PDA/GF separator enables a
Zn metal symmetric cell with a long lifecycle of 1800 h at 1 mA cm−2 and with a specific
capacity of 1 mAh cm−2. The Zn//V2O5 delivers a high capacity of 196.1 mAh g−1 even
after 1000 cycles at 2 A g−1.
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Figure 1. Schematics of Zn deposition with pristine GF separator and Cu(II)-PDA/GF separator.

2. Materials and Methods

All the chemicals were used as purchased without purification. The metal foils were
purchased from Shenzhen Kejing Star Technology Co., Ltd., Shenzhen , China The sep-
arator is Whatman glass fiber with a thickness of 0.675 mm and pore size of 2.7 µm.
ZnSO4·7H2O, CuSO4·5H2O, C8H11NO2·HCl, and V2O5 were purchased from Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China.
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2.1. Fabrication of the Cu(II)-PDA/GF Separator

The co-modification of the separator is realized by a simple soaking process. Firstly, the
infiltrating solution was prepared. Typically, 1.2 g of Tris (pH = 8.5) and 0.4 g of dopamine
hydrochloride (2 mg·mL−1) were dissolved in 200 mL of deionized water under vigorous
stirring. Then, 0.25 g of CuSO4·5H2O and 0.4 mL of H2O2 (19.6 mmol·L−1) were added in
the above solution and stirred for 10 min. Secondly, the GF separator was pre-wetted with
absolute ethanol and then completely submerged in the as-prepared infiltrating solution
for 40 min. Finally, the GF was extracted and washed with deionized water three times and
dried in vacuum atmosphere at 50 ◦C for 12 h to obtain modified Cu(II)-PDA/GF separator.

2.2. Characterization

X-ray powder diffraction (XRD, Bruker-D8 Advance X-ray diffractometer, Cu Kα radi-
ation), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy
(XPS, Thermo Fisher K-Alpha system) were performed for composition analysis. Scanning
electron microscope (SEM, Hitachi SU-8010) was used for morphology detection.

2.3. Electrochemical Measurements

The CR2032 coin battery was assembled with 2 M ZnSO4 as electrolyte and GF or
Cu(II)-PDA/GF as separator. The V2O5 cathode was prepared by mixing V2O5, conductive
Super P, and polytetrafluoroethylene (PTFE) binder with a mass ratio of 7:2:1. Ethanol
was used as the dispersant to form a paste, and then the paste was rolled into thin film
and cut into pieces with a mass load of ~2.0 mg cm−2. The battery test system (LAND,
CT2001A) was used to test the electrochemical performance of the battery. It was used for
cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests on the
CHI 660e electrochemical station.

3. Results and Discussion

Dopamine readily self-polymerizes into PDA nanopolymers via an oxidation process,
which can be deposited on the surface of various substrates to form functional coatings due
to the super non-covalent/covalent bonding capability of catechol and quinone moieties.
Herein, PDA nanopolymers were self-assembled on the GF separator to regulate the
zincophilic and ion transport properties by dipping the GF in a DA monomer solution with
CuSO4/H2O2 as a trigger [35]. As shown in Figure 2a and Figure S1, after the infiltration
process, the color of the GF separator changed from white to brown. SEM images shown
in Figure 2a,b display that the modified Cu(II)-PDA/GF separator retained its original
porous structure, which facilitated the fast and full infiltration of the electrolyte. High
magnification SEM images further display that the surface of the GF separator is uniformly
coated by polymeric PDA nanoparticles (Figure 2b). EDS mapping images also exhibit that
the even distribution of elements Si, C, N, and Cu further confirms the successful coating
of Cu(II) doped PDA on GF (Figure 2c).

To investigate the chemical environment of the coating layer, XPS of the freshly
prepared Cu(II)-PDA/GF separator was carried out. As shown in Figure 2d, typical peaks
of Cu 2p, O 1s, N 1s, C 1s, and Si 2p can be obviously observed from the XPS survey spectra,
further verifying the successful modification of the GF separator. The peaks located at
283.9 eV, 285.2 eV, and 287.2 eV in the high-resolution XPS spectra of C1s can be indexed to
the C-H, C-N/C-O, and C=O bonds, respectively (Figure 2e). And those located at 399.0 eV
and 400.3 eV in the N 1s spectra corresponds to the =NR and R2N-H bonds, respectively
(Figure 2f). Notably, the obvious signals of Cu 2p located at 953.0 eV, 933.4 eV, and 941.9 eV
can be attributed to the 2p1/2, 2p3/2, and satellite peaks of Cu2+ (Figure 2g), indicating
that Cu2+ is trapped in the PDA layer due to the complexation reaction between Cu2+ and
catechol groups. The introduction of Cu2+ can promote the polymerization of PDA [36].
XPS O1s peaks at 533.4 eV, 532.1 eV, 531.2 eV and 530.1 eV correspond to O-H, C-O, C=O,
and Cu-O, respectively, further indicating the doping of Cu(II) in the PDA coating layer
(Figure 2h). Based on above analysis, it can be confirmed that the polymeric Cu(II)-PDA
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layer was successfully constructed on the GF separator. Ionic conductivity is an important
indicator for the selection of a separator. EIS tests of the stainless steel//stainless steel cells
were carried out to evaluate the ionic conductivity of a pristine GF separator and Cu(II)-
PDA/GF separator. As shown in Figure S2, the bulk resistance Rb at the high frequency
intercept of the Nyquist plot is 0.97 Ω for the Cu(II)-PDA/GF separator and 1.32 Ω for the
pristine GF. The ionic conductivity was calculated to be 89.01 mS cm−1 and 65.82 mS cm−1

for Cu(II)-PDA/GF and pristine GF, respectively, indicating significantly improved ionic
conductivity of the modified GF (Figure 2i).
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Figure 2. (a,b) SEM images of Cu(II)-PDA/GF separator; insert in (a) is the photo of Cu(II)-PDA/GF
separator. (c) EDS images of Cu(II)-PDA/GF separator. XPS survey spectra of Cu(II)-PDA/GF
separator: (d) full survey XPS spectra; high-resolution XPS spectra of (e) C 1s, (f) N 1s, (g) Cu 2p, and
(h) O 1s. (i) Ionic conductivity of pristine GF separator and Cu(II)-PDA/GF separator.

To elucidate the effect of the Cu(II)-PDA/GF separator on the electrochemical behavior
of a Zn anode, morphology evolution of the Zn anode during the deposition process at
1 mA cm−2 was characterized by SEM. As shown in Figure 3a, messy dendrite growth
starts to occur on the Zn anode after only 10 min of deposition, and it becomes fiercer in the
following stage in the cells using a pristine GF separator (Figure 3b,c). In contrast, during
the whole deposition process in the cell using the Cu(II)-PDA/GF separator, the Zn anode
maintained a smooth texture without any obvious bulky protuberance, demonstrating a
superior effect on the inhibition of dendrite growth (Figure 3d–f). The effect may be at-
tributed to the abundant functional groups on PDA, which could induce the transportation
of Zn2+ at the electrode/electrolyte interface. Notably, the EDS mapping images (Figure S3)
of the Zn anode after 10 min deposition presents an even distribution of elements Cu, C,
N, O, and S, indicating that the Cu(II)-PDA modification layer endows the separator with
good adhesion with the Zn anode.
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XPS measurements of the Cu(II)-PDA/GF separator and Zn anode before and after
1 h deposition at the current density of 1 mA cm−2 in symmetric cells were carried out.
As shown in Figure 3g, the intensity of Cu(II) in the Cu(II)-PDA/GF separator sharply
decreased after the deposition process. Notably, metal Cu can be obviously detected on
the surface of Zn foil, indicating that Cu(II) in the modification layer is transferred into
Cu(0) and deposited on Zn anode during the deposition process. It is reported that metallic
Cu has a strong Zn binding ability, and can effectively reduce the nucleation overpotential
of zinc, thereby promoting uniform deposition of Zn2+, and significantly reducing the
possibility of tiny protrusions growing into zinc dendrite [37,38] (Figure 3g). Therefore, it
is believed that the resulting Cu(0) also contributed to the uniform Zn deposition in the
cells using Cu(II)-PDA/GF separator.

The electrochemical window is affected by the electrochemical stability of water, which
includes the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER)
of water. The HER and OER of symmetric cells using different separators were measured
by LSV. As shown in Figure S4, compared with a pristine GF separator, a Cu(II)-PDA/GF
separator displays a wider potential window, indicating that the Cu(II)-PDA modification
can effectively inhibit the hydrogen evolution and oxygen evolution reactions, which will be
helpful for the inhibition of side reactions. SEM images of the Zn foil after 48 h immersion in
the cells using different separators further demonstrate that the Cu(II)-PDA/GF separator
inhibits the growth of by-products and suppresses side reactions (Figure S5). To further
evaluate the corrosion current density, Tafel measurements were performed. As shown in
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Figure 3h, compared with pristine GF separator (1.1038 mA cm−2), the Cu(II)-PDA/GF
separator displays much lower corrosion current density (0.4262 mA cm−2); this further
indicates that the corrosion of the zinc anode becomes lower after assembling with the
Cu(II)-PDA/GF separator.

To further evaluate the hydrophilic character of the separators, a simple water absorp-
tion test was carried out. As shown in Figure 3i and Table S1, the Cu(II)-PDA/GF separator
has greater water absorption capacity than pristine GF separator, indicating improved
affinity with the electrolyte. The Cu(II)-PDA/GF separator with good hydrophilicity and
ionic conductivity is expected to guarantee convenient Zn2+ transportation of ZIBs during
the charge/discharge process.

To further evaluate the practical application of the as-prepared Cu(II)-PDA/GF sep-
arator, CE tests were carried out in Cu//Zn cells. As shown in Figure 4a and Figure S6,
the cells with the Cu(II)-PDA/GF separators display long lifecycles of more than 1200 h
and high average CE of 99.62% and 99.81% at the current densities of 1 mA cm−2 and
2 mA cm−2, respectively. The cells employing pristine GF separator (Figure 4a) presented
an average CE of 96.2% during the initial 150 h and the CE values fluctuated dramatically
in the following cycles. The severe fluctuations mainly resulted from the growth of zinc
dendrites, parasitic side reactions, and the recovery of “dead Zn” that broke away from the
hydrated zinc hydroxide sulfate.
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Figure 4. (a) Columbic efficiency of Zn plating/stripping on Cu foil at the current density of
1 mA cm−2 with the fixed capacity of 1 mAh cm−2. (b) Voltage-capacity profiles of Cu//Zn cells
with pristine GF separator and Cu(II)-PDA/GF separator (nucleation overpotential values are shown
in the inset). (c) Voltage and capacity distribution of Cu//Zn cells with Cu(II)-PDA/GF separator
assembled for different cycles. Cycling performance in symmetrical cells with pristine GF separator
and Cu(II)-PDA/GF separator at the current density of (d) 1 mA cm−2 and (e) 4 mA cm−2.
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From the initial galvanostatic charge/discharge (GCD) curves of Cu//Zn cells, the
nucleation overpotential for Zn deposition can be calculated. The lower nucleation over-
potential of the cell indicated that the crystal nucleation barrier was smaller, which is
favorable for the uniform deposition and exfoliation of zinc. Otherwise, during the nucle-
ation process of the crystal, the nucleation overpotential is large, and the resistance becomes
larger [10]. As shown in Figure 4b, the nucleation overpotential of the GF separator bat-
tery was 46.24 mV, which was higher than that of the Cu(II)-PDA modified glass fiber
separator battery (32.15 mV), indicating that the Cu(II)-PDA/GF separator can promote
the uniform deposition of zinc ions. The GCD curves of the Cu//Zn battery with the
dopamine-modified separator at the 200th and 500th cycles are very consistent, and also
very close to the GCD curve at the 50th cycle. The battery exhibited excellent reversibility
with a low voltage difference of 28 mV (Figure 4c). However, when the blank separator was
used, the overlap of the GCD curves was not very good, and at the same time, the voltage
gap was comparatively large (Figure S7).

The lifecycle and overall voltage hysteresis of Zn//Zn symmetric cells with different
separators using 2 M ZnSO4 as electrolyte was investigated. As shown in Figure 4d,
the cell employing the Cu(II)-PDA/GF separator exhibits a constant voltage profile and
delivers a favorable cycle life of 1800 h at the current density of 1 mA cm−2 and with
a fixed capacity of 1 mAh cm−2, which is much stable than those using a pristine GF
separator or a PDA/GF separator. Notably, the parallel tested cell with a pristine GF
separator suffered a quick cell failure after only 95 h due to short-circuiting, which results
when the GF separator is pierced by the unrestrained growth of dendrite. Enlarged GCD
curves display the decreased voltage hysteresis for the cell with Cu(II)-PDA/GF separator,
indicating improved ion transportation ability. The cells using Cu(II)-PDA/GF separator
also delivered stable plating/striping of 430 h at an increased current density of 2 mA cm−2

and areal capacity of 2 mAh cm−2 (Figure S8) and 260 h at a higher current density of
4 mA cm−2 and 4 mAh cm−2 (Figure 4e), which were far superior to those using a pristine
GF separator and a PDA/GF separator. To comprehensively evaluate the advantages of the
as-prepared Cu(II)-PDA/GF separator, Table S2 shows a comparison of the electrochemical
performance of the cells using this separator and the reported materials. It can be seen that
the Cu(II)-PDA/GF separator enables a Zn anode with excellent stability.

The morphology evolution of the Zn anode after 50 cycles in the symmetric cells using
a pristine GF separator and a Cu(II)-PDA/GF separator was characterized by SEM. As
shown in Figure 5a,b, the cycled Zn anode of the cell with the modified separator presents
a relatively flat surface without any obvious zinc dendrite, and the SEM images of the
cross-section (Figure 5c) also showed a smooth surface without a passivation layer. The
Zn anode in the cell using the pristine GF separator (Figure 5d,e) displayed serious zinc
dendrite growth and the surface of Zn anode is full of vertically grown microsheets, which
may pierce the separator. The SEM image of the cross-section (Figure 5f) also shows a non-
uniform corrosion layer. Therefore, it is confirmed that the Cu(II)-PDA/GF separator could
inhibit the dendrite growth and chemical corrosion effectively, which can also be confirmed
by reduced Rct in the EIS tests. As shown in Figure 5g,h, Rct of the symmetric cells using
the pristine GF separators increased from 468.7 to 1558.0 Ω after 50 cycles, which are
much higher values than those (260.1 Ω, 730.5 Ω) using Cu(II)-PDA/GF separators, further
indicating the serious passivation of the Zn anode using pristine GF separators. In order to
obtain more phase information, the XRD patterns of the Zn anodes after 50 cycles in the
cells with different separators were measured (Figure 5i). Obviously, characteristic peaks
of Zn4SO4(OH)6·5H2O are visible in the XRD pattern of the Zn anode using the pristine
GF separator [39], illustrating that side reactions easily take place on the Zn anode and
produce massive by-products during cycling. In contrast, the peak intensity of by-produces
is significantly decreased when using Cu(II)-PDA/GF separator, further illustrating that
the modified GF separator could effectively prevent electrode passivation.
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1 mA cm−2 and 1 mAh cm−2 in the cells using (a–c) Cu(II)-PDA/GF separator and (d–f) pristine
GF separator. The EIS spectra and fitting results of the symmetric cells using different separators
(g) before cycling and (h) after 50 cycles. (i) XRD patterns of the Zn anode after 50 cycles at 1 mA cm−2

and 1 mAh cm−2 with pristine GF separator and Cu(II)-PDA/GF separator.

In order to evaluate the practical performance of the modified separator, Zn//V2O5
full cells were assembled to study the electrochemical performance. The CV curves of
the cells with Cu(II)-PDA/GF separator shown in Figure 6a display two pairs of redox
peaks at 0.82/1.04 V, and 0.58/0.79 V, which can be indexed to the stepwise Zn2+ intercala-
tion/deintercalation behavior in V2O5 host [40]. After three cycles, it was found that the
redox peaks overlap well, indicating the superior cycling reversibility of the full cells with
a Cu(II)-PDA/GF separator.

Rate capabilities of the full cells are shown in Figure 6b. It can be seen that when the
current density gradually increased from 0.2 to 0.5, 1, and 2 A g−1, the battery assembled
with the Cu(II)-PDA/GF separator decreased from 281 to 276, 265.3, and 240.6 mAh g−1,
respectively. In contrast, the battery assembled with the pristine GF separator (Figure 6b)
maintained 213.7 mAh g−1 at 0.2 A g−1 and then dropped abruptly to 192.4 mAh g−1 at
2 A g−1. Notably, when the current density was returned from 2 to 0.2 A g−1, the battery
with the Cu(II)-PDA/GF separator could provide 258.8 mAh g−1 at the 70th, which is much
higher than that using a GF separator.

Cycling performance of the cells was tested with a constant current charge and a
discharge density of 2 A g−1. As shown in Figure 6c, GCD curves display two pairs of
reversible voltage platforms, which are consistent with the CV results. Figure 6d shows
that the specific capacity is obviously increased in the initial cycles, which can be attributed
to the gradual activation process of V2O5 cathode [41]. After 1000 cycles, the battery
assembled with the Cu(II)-PDA/GF separator delivers a high capacity of 196.1 mAh g−1
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at a current density of 2 A g−1, which is much higher than that assembled with pristine
GF separator of 140.9 mAh g−1. Moreover, the CE value of the Cu(II)-PDA/GF separator
remains steady and at nearly 100% even after long-term cycling, displaying a significant
improvement of the full cell’s performance.
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Figure 6. Effect of Cu(II)-PDA/GF separator on the electrochemical performance of Zn//V2O5

full cells: (a) CV curves of the cell using Cu(II)-PDA/GF separator measured at the scan rate of
0.05 mV s−1; (b) rate performance of the cells using different separators at the current densities
from 0.2 to 2 A g−1; (c) charge/discharge curves of the full cell using Cu(II)-PDA/GF separator;
(d) cycle life and coulombic efficiency of the full cells using different separators at the current density
of 2 A g−1.

4. Conclusions

In summary, the PDA nanopolymer was self-assembled on the surface of the glass
fiber using a self-polymerization process in order to obtain a Cu(II)-PDA co-modified GF
separator. The introduction of PDA effectively improved the zincophile and ion transport
of the GF separator due to the functional groups. Cu(II) doping in the PDA coating layer
was preferentially deposited on a Zn anode to induce uniform Zn nucleation. Due to the
synergistic effect, side reactions and dendrite growth of Zn anodes were effectively de-
pressed. Electrochemical measurements demonstrated that the symmetric cells assembled
with the Cu(II)-PDA/GF separator could cycle for more than 1800 h at the current density
of 1.0 mA cm−2 and with the fixed capacity of 1.0 mAh cm−2. The Zn//V2O5 cells using
the modified GF separator also delivered high specific capacity and good cycling stability
of 196.1 mAh g−1 after 1000 cycles at 2.0 A g−1. This work provides a facile modification
method for glass fibers with interfacial regulation effects for high-performance ZIBs, which
can also be used on other metal-based batteries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries9070387/s1, Figure S1: (a,b) SEM images of pristine GF
separator. Insert in (a) is the photo of pristine GF; Figure S2: EIS test of the stainless steel//stainless
steel cells with different separators; Figure S3: EDS images of Zn foils after Zn deposition for 10 min
at the current density of 1 mA cm−2 in the symmetric cells using Cu(II)-PDA/GF separator; Figure S4:
Electrochemical stability windows of Zn//Ti cells with pristine GF and Cu(II)-PDA/GF separator.
(a,b) LSV curves measured at a scan rate of 1 mV s−1; Figure S5: The SEM images of zinc foils after
assembled with pristine GF separator (a–c) and Cu(II)-PDA/GF separator (d–f) for 48 h; Figure S6:
Coulombic efficiency of Zn plating/stripping on Cu at the current density of 1 mA cm−2 with the
fixed capacity of 1 mAh cm−2 in Cu//Zn cells with different separators; Figure S7: Voltage and
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capacity distribution of Cu//Zn cells with pristine GF separator; Figure S8: Cycling performance
of the symmetrical cells with pristine GF and Cu(II)-PDA/GF separator at the current density of
2 mA cm−2 with the fixed capacity of 2 mAh cm−2; Table S1: Data for GF and Cu-PDA/GF separators
obtained from electrolyte absorption experiments; Table S2: A comparative table of this result with
other same or different separators based ZIBs performance. References [42–52] are cited in the
supplementary materials.
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