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Abstract: The state of health (SOH) evaluation and remaining useful life (RUL) prediction for
lithium-ion batteries (LIBs) are crucial for health management. This paper proposes a novel sequence-
to-sequence (Seq2Seq) prediction method for LIB capacity degradation based on the gated recurrent
unit (GRU) neural network with the attention mechanism. An improved particle swarm optimization
(IPSO) algorithm is developed for automatic hyperparameter search of the Seq2Seq model, which
speeds up parameter convergence and avoids getting stuck in local optima. Before model training,
the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm
decomposes the capacity degradation sequences. And the intrinsic mode function (IMF) components
with the highest correlation are employed to reconstruct the sequences, reducing the influence of
noise in the original data. A real-cycle-life data set under fixed operating conditions is employed to
validate the superiority and effectiveness of the method. The comparison results demonstrate that
the proposed model outperforms traditional GRU and RNN models. The predicted mean absolute
percent error (MAPE) in SOH evaluation and RUL prediction can be as low as 0.76% and 0.24%,
respectively.

Keywords: lithium-ion battery; lifetime prediction; deep learning; sequence to sequence (Seq2Seq);
gated recurrent unit (GRU); improved particle swarm optimization (IPSO)

1. Introduction

Lithium-ion batteries (LIBs) have attracted tremendous interest in the past decade, and
the development of related technologies has also been actively promoted [1,2]. Benefiting
from high energy and power density [3], low self-discharge rate [4], long lifespan [5],
and being almost pollution-free [6], LIBs have been broadly employed in plenty of di-
verse areas, such as energy storage systems, aerospace industries, electric vehicles, and so
forth [7–9]. The inner electrochemical reactions of the battery enable energy storage and
release. Nonetheless, during the continuously repeated charging and discharging process,
the irreversible side reactions [10] may trigger issues like the loss of active materials, the
reduction of lithium-ion inventories, and the thickening of the solid electrolyte interphase
(SEI), which in turn will result in the performance deterioration [11], principally in terms of
fade in available capacity and increase in internal resistance. For most application scenarios,
the failure threshold is normally 80% of the rated capacity or double the initial internal
resistance, and the number of cycles when the battery reaches the failure threshold is
known as the end-of-life (EOL) point [12,13]. Further utilization of the failed battery will
bring about a fast drop in capacity and power performance and an inability to meet the
safety and reliability needs of the system and, in severe circumstances, can even lead to
disaster and economic loss [14]. Therefore, it is critical to diagnose the state of health (SOH)
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and to prognose the remaining useful life (RUL) in order to maximize the available time of
the asset, provide proper scheduling maintenance, and safeguard the system.

Establishing an aging model that can extract the degradation characteristics of LIBs
is the basis for evaluating the SOH and predicting the RUL [15]. Typically, it is an auto-
regression prediction system capable of predicting battery aging characteristics based
on operational monitoring data, such as voltage, current, temperature, impedance, and
capacity, as input. Moreover, there are strong couples of battery capacity and the number
of charge or discharge cycles. Hence, operational data on the battery capacity and the
corresponding number of cycles are usually used to characterize the SOH and to predict
the RUL [16]. Compared to the internal resistance data, the capacity-oriented data is
more commonly cited because it better reflects the service time of the system and is also
adopted in this study [17]. The existing literature for battery lifetime prediction is typically
categorized into model-based and data-driven methods.

Model-based methods generally start with a mathematical model that can describe
the dynamic degradation behavior of LIBs. For example, the equivalent circuit models
(ECMs) [18] usually employ electrical components to characterize the external properties
of the battery. Electrochemical models [19] construct partial differential equations based
on the invisible electrochemical reactions inside the cell, depicting how internal changes
affect external properties. Empirical [20] or semi-empirical models [21] employ test data
and integrate physical–chemical principles to establish a functional relationship between
capacity degradation and cycle numbers. Based on the pre-established models, state
estimation algorithms are pretty necessary for battery RUL prediction by updating the
relevant parameters, such as the Kalman filter (KF) [22], particle filter (PF) [23,24], and
corresponding improved algorithms, like the extended Kalman filter (EKF) [25–27], and
unscented particle filter (UPF) [28,29]. Even though these techniques have attained high
accuracy, there are certain drawbacks [30]. First, subject to the limited understanding of
battery degradation mechanisms, it is difficult to establish an accurate and universal aging
model that can be utilized as a basis for battery lifetime prediction; second, these filters
only sometimes perform well. For example, the PF always suffers from particle degeneracy
problems, while the EKF only works well when the observation noise variance is slight [31].

The data-driven algorithms based on machine learning (ML) have been increasingly
embraced and have derived promising results. Instead of exploring the mechanism of
battery degradation, this approach uses a non-explicit mathematical form to input the
extracted health characteristics directly and then outputs the predicted lifespan. Many
ML methods have achieved remarkable output results, such as support vector machine
(SVM) [32], support vector regression (SVR) [33], relevance vector machine (RVM) [34],
and Gaussian process regression (GPR) [35]. In particular, deep learning (DL) methods
based on neural networks have been demonstrated as powerful techniques for simulat-
ing nonlinear and time-varying battery systems, estimating SOH, and predicting RUL.
Niu et al. [36] achieved battery fault state estimation and RUL prediction with a deep belief
network. Wu et al. [37] developed a feedforward neural network using the importance
sampling to pick charge–voltage curves and learn their relationship with battery RUL.
Zhang et al. [38] proposed the long short-term memory (LSTM) network to realize the
long-term dependence of capacity degradation, which successfully avoided the gradient
dispersion defect of traditional recurrent neural networks (RNNs). Chen et al. [39] used
different dimensional convolutional neural networks (CNNs) and LSTM to achieve early
battery lifetime prediction. Due to capacity regeneration [40], Li et al. [41] combined empir-
ical mode decomposition (EMD) with LSTM and Elman network to predict the capacity
sequence at different frequencies, respectively. Song et al. [42] used the gated recurrent
unit (GRU) to predict RUL, which can reduce the number of parameters by 20% compared
to LSTM. Qian et al. [43] proposed a sequence-to-sequence (Seq2Seq) model that can ac-
curately predict future long-term SOH when only restricted historical data are available.
Meanwhile, some heuristic search algorithms, including the genetic algorithm (GA) [44],
artificial bee colony [45], and particle swarm optimization (PSO) [46], play essential roles
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in the hyperparameter optimization, which significantly improves the accuracy of DL in
battery lifetime prediction.

Although these methods can predict the battery degradation trend, the predictions are
invariably made within a narrow window, and the precise SOH estimations of multiple fu-
ture steps are challenging to obtain. Moreover, the battery capacity sometimes rallies from
the decreasing trend as the number of cycles increases, which inevitably compromises the
prediction accuracy. To overcome these shortcomings and acquire long-horizon prognostics
even in the presence of capacity regeneration, in this paper, we propose a novel predic-
tion method for LIB capacity degradation, incorporating complete ensemble EMD with
adaptive noise (CEEMDAN), the GRU-based Seq2Seq model with attention mechanism,
and the improved particle swarm optimization (IPSO) algorithm, denoted as CGSAI. It can
implement both online SOH evaluation and iterative RUL prediction for batteries under
fixed operating conditions, which consist of the following five steps. Firstly, the battery
capacity degradation sequence is decomposed by the CEEMDAN to obtain the intrinsic
mode functions (IMFs) within different frequency bands and the corresponding residual
value. Secondly, the capacity degradation sequence is reconstructed for subsequent model
training using the IMF components with the highest correlation. Thirdly, the Seq2Seq model
with the attention mechanism based on the GRU has been built to predict battery lifetime.
Subsequently, an IPSO algorithm making dual improvements to the traditional PSO from
inertia weight and learning factor is developed for automatic hyperparameters search of
the Seq2Seq model. Finally, on the one hand, incremental learning is performed by utilizing
the latest online capacity data to update model parameters and predict subsequent cycle
capacity values, achieving the SOH evaluation. On the other hand, the prediction results
are continuously fed into the model trained with the historical data for iterate prediction
until the capacity output falls below the failure threshold, fulfilling the RUL prediction.

The main contributions and innovations of this paper can be summarized as follows.

• A novel lifetime prediction framework for LIBs is proposed that can simultaneously
implement the SOH evaluation and RUL prediction;

• The non-smooth and nonlinear battery capacity degradation time series is decom-
posed utilizing the CEEMDAN algorithm, and the IMF components with the highest
correlation are used to reconstruct the sequence, which effectively avoids the influence
of the noise in the original data;

• A GRU-based Seq2Seq model is established, and the prediction results are enhanced
by introducing the attention mechanism;

• An IPSO algorithm is developed to speed up the hyperparameter search process and
avoid being trapped in local optima, thus improving the model accuracy.

The subsequent sections of this paper are organized as follows: Section 2 presents
the battery cycle life test and capacity degradation data. Section 3 describes the proposed
life prediction framework and related theoretical knowledge. Section 4 elaborates on the
experimental results. And finally, in Section 5, the conclusions are summarized.

2. Battery Lifetime Testing and Capacity Degradation

To research the declining characteristics of LIBs, it is usually necessary to construct
a battery test platform and perform cyclic aging life tests on the cells, which in turn can
obtain the capacity degradation data. Figure 1 presents the battery aging characteristics
test platform, which consists of three main components: the Arbin-BT2000 battery test
equipment for charging and discharging tests, a constant temperature control chamber for
controlling the ambient temperature of the battery, and a computer for human–computer
interaction with monitoring and storage of test data.

Several soft pack ternary polymer LIBs of high specific energy type from Life’s Good
(LG) company were used in this study. The battery has a rated capacity of 36 Ah, the
negative electrode material is graphite, and the positive electrode material is typically a
mixture of nickel, cobalt, and manganese, also known as NCM. Detailed information is
listed in Table 1. All cells underwent a constant current–constant voltage (CC-CV) charging
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protocol with the current rate of 1C in the CC phase. After charging to the upper cut-off
voltage of 4.15 V, the cells entered the CV phase, kept the voltage constant, and continued
charging until the current dropped to 0.05C and then stopped charging. A constant current
(1C) discharge was implemented until the voltage reached the lower cut-off limit of 2.5 V.
Between repeat cycles of the standard charge and discharge regime, the cells also needed
to rest for 2 min. During the cyclic aging test, the cells were placed in a 35 °C chamber to
ensure continuous ambient temperature. The true discharge capacity can be calculated
from the voltage and current measured in real-time during each cycle and, therefore, can be
regarded as the temporal maximum available capacity, characterizing the battery’s health
status. After each 100 charge/discharge cycle, the cells were ushered in for a performance
check to recalibrate the maximum available capacity under present conditions. The chamber
temperature should be set to 25 °C before the performance test experiment, and the cells
must be held in it for a while so that the temperature is consistent inside and outside. The
above steps are repeated until the cell reaches EOL and stops the experiment. The failure
threshold is set to a 20% decay of the rated capacity, i.e., from 36 Ah to 28.8 Ah.

Arbin-BT2000

Chamber

Computer

Figure 1. The battery test platform.

Table 1. Parameters of the battery for the cycle life test.

Parameters Value

Negative electrode material Graphite
Positive electrode material LiNixCoyMn1−x−yO2

Rated capacity 36 Ah
Nominal voltage 3.6 V

Maximum charging current 36 A
Allowable voltage range 2.5∼4.2 V

The capacity degradation evolution trajectories can be described by the discharge
capacity versus the number of cycles, as illustrated in Figure 2. Since these capacity
degradation data are sequentially arranged in the order of cycle numbers, they can be
considered a type of time series. It is worth remarking that since these cells are cycled
under the same protocol, they follow a similar deterioration route at the early aging stage,
and all exhibit a linear decrease trend. However, as the cycle continues, the capacity
suddenly and sharply accelerates the decay and rapidly reaches the failure threshold,
leading to an overall non-linear deterioration. Such gustily accelerated aging after a period
of expected degradation can induce deviations in the lifetime profiles, probably attributed
to the ongoing degradation of the kinetic properties due to the lithium precipitation from
the negative electrode during the aging process, thereby weakening its performance. These
discrepancies are dependent on specific cells and their degradation mechanism. It can
also be observed from Figure 2 that the capacity degradation is not strictly monotonically
decreasing but has local capacity regeneration phenomena, which is manifested in the fade
curve as an unexpected increase at certain cycle numbers. It is because the performance
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tests after every 100 charge/discharge cycles will change the battery temperature and
current rate, which results in significantly higher capacity readings for some cycles after
testing compared to the few cycles before testing. Furthermore, in addition to the capacity
regeneration-induced abrupt changes in the capacity degradation curve, there are also
some unsmooth ‘spike’ points and outliers that deviate significantly from the overall trend,
as shown in the enlarged subgraph. Some are due to the testing equipment itself, while
others are caused by incorrect data resulting from unexpected experimental conditions,
commonly called noise. These pose additional challenges for accurate lifetime prediction.
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Figure 2. The capacity degradation evolution trajectories of experimental cells ( the subplot zooms in
portions of the curves with obvious outliers).

In a series-connected battery pack system, a dramatic capacity degradation of a single
cell can seriously diminish the performance of the whole pack and even lead to safety
problems. Therefore, it is crucial to develop a lifetime prediction model. The data obtained
from the battery cyclic aging life tests can be used to evaluate the performance of the
developed model in practical applications, especially for scenarios where the operating
conditions are largely maintained stably.

3. Methodology
3.1. The Overall Framework

In this paper, we propose a novel LIB lifetime prediction approach entitled CGSAI for
simultaneous SOH estimation and RUL prediction, with an overall framework presented
in Figure 3. The expanded description is elaborated below.

First, the capacity degradation time series are obtained through the battery cyclic
aging lifetime test experiment, for which the recorded original data are preprocessed to
recorrect outliers. Then, due to the noise and capacity regeneration phenomena caused by
the performance test, the CEEMDAN algorithm is required to decompose the preprocessed
sequence, extract the main components, and reconstruct the capacity degradation sequence.
In the reconstructed battery capacity degradation time series, for a specific time step t,
the w data before it constitutes an input sequence, while the k data after it comprises the
corresponding output sequence. Since both inputs and outputs are sequences, this forms
the Seq2Seq prediction problem. Later, a GRU-based Seq2Seq network with an attention
mechanism is built to predict the battery lifetime. At the same time, an improved PSO
algorithm is implemented to automatically optimize the network’s hyperparameters and
achieve the optimal network structure. Finally, when evaluating SOH, the model will
continuously obtain the latest online data on capacity degradation, perform incremental
learning, dynamically update the parameters, and predict the capacity value for the subse-
quent cycles. As for the RUL prediction, the model will use the historical data for training,
outputting the capacity value, and refeeding it back as input for iterating the prediction,
eventually deriving the battery RUL.
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Battery cyclic aging life test

IMF1

IMF2

…

IMFn

Residual

CEEMDAN

Sequence

Reconstruct

Data  Preprocess

GRU-Encoder GRU-Decoder

Attention

Hyperparameter 

Optimization

GRU-based Seq2Seq

SOH Evaluation

RUL Prediction

IPSO

Incremental 

Learning

Iterative 

Output

… CtCt-w+2

C1

Ct-w+1

C2
… Cw Cw+1 Cw+2 Cw+k

…

C2 C3
… Cw+1 Cw+2 Cw+3 Cw+k+1

…
……

Ct+1 Ct+2 Ct+k
…

……

…… ……

Input

Output

Sequence-to-Sequence Data Architecture

Figure 3. The overall framework of the proposed lithium-ion battery lifetime prediction approach.

3.2. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

The CEEMDAN algorithm is an enhancement of the EMD algorithm, which solves
the transfer of white noise from high to low frequencies by continuously adding pairs of
positive and negative Gaussian white noise during decomposition [47]. This adaptive noise
processing effectively simplifies the parameter search in the traditional EMD algorithm
and reduces the influence of mode mixing in the decomposition results.

As previously mentioned, the signal awaiting decomposition is the preprocessed
capacity degradation time series, which can be expressed as C(n). Then the detailed steps
to decompose the signal by using the CEEMDAN algorithm are as follows.

For the C(n), the Gaussian white noise ω(n) that meets the standard normal distri-
bution is added M times to construct the sequence waiting to be decomposed. It can be
expressed by the following equation

CGi(n) = C(n) + ε0ωi(n), i = 1, 2, 3, · · · , M (1)

where CGi(n) is the sequence with the addition of white noise, ε represents the signal-
to-noise ratio of the original signal to the white noise, and ωi(n) is the white noise of
i-th order.

The EMD decomposition is implemented separately on the new M sequences CG to
obtain the first-order IMF components, and the mean of all the first-order IMF components
is taken as the first-order IMF of the CEEMDAN, which satisfies the following equation

IMF1(n) =
1
M

M

∑
i=1

IMFi
1(n) (2)

Then, the residual component r1(n) is derived by subtracting the IMF1(n) from the
C(n). It is expressed as the following equation:

r1(n) = C(n)− IMF1(n) (3)

Add the first-order IMF component derived by EMD decomposition of only white
noise to the residual component as the new signal to be decomposed, continue to implement
EMD decomposition, and repeating the steps of Equation (2) will yield the second-order
IMF component, as given in the following:

IMF2(n) =
1
M

M

∑
i=1

E2(r1(n) + ε1E1(ωi(n))) (4)

where Ej(·) denotes the decomposition process for solving the j-th order IMF component.
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For the residual components of second and subsequent orders, all can be calculated by
using the formula below.

rj(n) = rj−1(n)− IMFj(n), j = 2, 3, · · · , J (5)

Continuing to add the j-th order component of white noise to the residual part, the
(j + 1)-th order IMF component can be calculated by the following equation:

IMFj+1(n) =
1
M

M

∑
i=1

Ej+1(rj(n) + ε jEj(ωi(n))) (6)

After repeating the steps of Equations (5) and (6) until the residual signal cannot be
decomposed, all the processes of CEEMDAN are completed. The original signal C(n)
is ultimately decomposed into a combination of J IMF components and residual terms,
described in the following equation:

C(n) =
J

∑
j=1

IMFk + r(n) (7)

The IMFs of each order obtained from the decomposition represent the vibration
modes inside the original sequence with different frequencies and amplitudes, which can
characterize distinct features in the signal, respectively. In order to acquire the features that
best characterize the capacity degradation trend of LIBs, correlations need to be calculated
between the IMFs of each order and the original sequence. The correlation between the two
sequences is generally calculated using the Pearson correlation coefficient [48], expressed
by the following formula:

ρX,Y =
cov(X, Y)

σXσY

=
∑n

i=1(Xi − X̄)(Yi − Ȳ)√
∑n

i=1(Xi − X̄)2
√

∑n
i=1(Yi − Ȳ)2

(8)

where X and Y are two sequences, cov(X, Y) denotes the covariance, σX and σY indicate
the standard deviation, and the X̄ and Ȳ represent the mean value.

Here, the IMF obtained from the CEEMDAN with the highest correlation to the
original sequence after preprocessing is adopted to reconstruct the capacity degradation
sequence. The specific results of decomposition and reconstruction are given in Section 4.1.

3.3. GRU-Based Seq2Seq Model with Attention Mechanism
3.3.1. Gate Recurrent Unit Neural Network

The GRU has improved the computation on hidden states of traditional RNNs by
introducing the reset gate and update gate mechanism to control the information flow [49].
It makes up for the deficiency of RNN’s poor memory for long-timescale sequences and
better captures the dependencies between time series data with large time step distances.
The architecture of the GRU network is presented in Figure 4.

In the GRU, the reset gate is employed to regulate the influence of the previous
moment’s hidden state on the candidate hidden state at the current moment, which is
calculated as follows:

rt = σ(Wr · concat[xt, Ht−1]) (9)

where Wr is the weight of the reset gate, concat[xt, Ht−1] indicates the input of the reset
gate, which is stitched from the current moment input xt and the hidden state Ht−1 at the
previous moment in the feature dimension. σ(·) refers to the sigmoid activation function,
which takes values between 0 and 1.
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tanh

1-

 Hidden State：

 Input：

Candidate 

Hidden State
Reset Gate: Update Gate:

rt zt

  

Output：

xt

yt

Ht-1
Ht

Figure 4. The internal structure of the GRU neural network.

After obtaining the reset gate output, multiply it with the previous moment hidden
state and calculate it with the current moment input to obtain the candidate hidden state,
as shown in the following equation:

H̃t = tanh(WH̃ · [rt � Ht−1, xt]) (10)

where WH̃ is the candidate hidden state weight, q means the element-by-element multipli-
cation, and the hyperbolic tangent function is denoted as tanh, which takes values between
−1 and 1.

The update gate governs the influence of the candidate hidden state containing the
current moment information on the hidden state update process, and its computational
expression is given as follows:

zt = σ(Wz · concat[xt, Ht−1)] (11)

where Wz is the weight of the update gate. The range of values for the update gate is
between 0 and 1, like the reset gate.

In this case, the hidden state at the current moment is derived from the following
equation:

Ht = (1 − zt)� Ht−1 + zt � H̃t (12)

Eventually, the output of the network yt is as follows:

yt = σ(Wr Ḣt) (13)

Therefore, the GRU neural networks can effectively improve the prediction accuracy
of recurrent neural networks for long-time sequences by maintaining short-term memory
through the reset gate and adapting long-term dependencies through the update gate.

3.3.2. Sequence-to-Sequence Model with Attention Mechanism

The Seq2Seq model is a kind of deep learning model based on the RNN applicable for
sequence prediction, which breaks the limitation that the sequence length must be fixed
in traditional RNN [50]. It generally comprises three parts: encoder, decoder, and context
vector, as shown in Figure 5.

For the current moment t, the encoder maps the input sequence to the context vector
Ct that stores the semantic information in the input sequence. The following equation can
derive the hidden state ht of the encoder output:

ht = Encoder(xt, ht−1) (14)

where Encoder(·) denotes the encoder neural network model; here, the GRU network is
used. xt is the input at the current moment, ht−1 is the hidden state of the encoder at the
previous moment, and for the initial state h0, it is usually set to 0.
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C1

Embedding
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...

Decoder

GRU GRU GRU GRU GRU

GRU GRU GRU GRU GRU

x1 x2 xt-1 xt

h0 h1 h2 ... ht-1 ht

s0

y1

s1 s2 ... st-1 st

y2 ... yt-1 yt

Ct-1

C2

Ct

...

Figure 5. The structure of Seq2Seq model with attention mechanism.

The attention mechanism dynamically adjusts the attention weights to change the
model attention level on different parts of the input sequence, enabling the decoder output
at different time steps to accurately capture the corresponding parts of the input sequence
and improve the model prediction accuracy. The attention weights are calculated based on
the similarity between the decoder current hidden state st and the i-th output hidden state
hi of the encoder, as shown in the following equation:

αi,t =
exp(ei,t)

∑T
k=1 exp(ek,t)

(15)

where αi,t is the attention weight, which characterizes the correlation between the i-th
element of the input sequence and the current output, T is the length of the input sequence,
and ei,t denotes the similarity, which is calculated by the following equation:

ei,t = a(st, hi) (16)

where a(·) represents the similarity calculation function, which usually uses feedforward
neural networks.

Taking a weighted average of the computed attention weights and the output of the
encoder, the context vector at the current moment is derived as follows:

Ct =
T

∑
i=1

αi,thi (17)

Finally, the decoder output at the current moment is derived as follows:

yt = g(yt−1, st, Ct) (18)

where g(·) is the output function of the decoder as well as the GRU network.
Using the GRU-based Seq2Seq model with the attention mechanism to predict battery

life makes it possible to focus the prediction results more accurately on the specific part of
the corresponding capacity degradation sequence, reduce the prediction error, and improve
the model generalization ability.

3.4. Improved Particle Swarm Optimization Algorithm

The PSO algorithm is a global optimization algorithm based on group information
intelligence, which can execute efficient exploration in the hyperparameter space and finally
obtain the optimal global solution [51]. Therefore, it has been widely employed and studied
in deep learning models for hyperparameter search optimization.

In the PSO algorithm, each potential optimization problem solution can be represented
by a particle in the search space, where the dimension of the particle corresponds to the
number of hyperparameters to be optimized, and the particle movement expresses the
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progress of the search process. Each particle has two attributes: position and velocity. The
position is a vector composed of the current values of the hyperparameters, while the
velocity determines the direction and magnitude the particle moves. The particles evaluate
the quality of their current position based on the fitness function. During the movement
process, the best position found by each particle itself is called the individual best, while
the best position found by the entire swarm of particles is called the global best. Iterations
update the speed and position of the particles, and finally, the global optimum satisfying
the conditions is reached.

Suppose that N particles are initialized in the D-dimensional parameter space, and for
each particle, its position vector Xi and velocity vector Vi are given as follows:

Xi = (xi1, xi2, xi3, · · · , xiD), i = 1, 2, · · · , N (19)

Vi = (vi1, vi2, vi3, · · · , viD), i = 1, 2, · · · , N (20)

After setting the fitness function, the PSO updates the particle velocities by the follow-
ing formula:

Vk+1
i = ω · Vk

i + c1r1(Pbestk
i − Xk) + c2r2(Gbestk − Xk) (21)

where Vk+1
i is the velocity of the current particle i in the k + 1-th iteration, ω is the inertia

weight of the particle, Pbestk
i denotes the individual best, Gbestk is the global best, c1 and

c2 are learning factors, and r1 and r2 are random numbers in the interval [0, 1].
Then, the positions of the particles are updated, as given in the following equation:

Xk+1
i = Xk

i + Vk+1
i (22)

where Xk+1
i is the updated particle position.

In the early iterations of the classical PSO, the value of ω is relatively large, and the
particles move faster, making it easier to escape local optima and exhibit a strong global
search capability. As the iterations proceed, the value of ω gradually decreases, the particle
movement becomes slower, and the global search capability weakens, making it more
prone to getting trapped in local optima. Typically, c1 and c2 are set to the same value
ranging from 0 to 2. However, this can lead to oscillations between global and local searches,
reducing the search efficiency and increasing the number of iterations required.

Therefore, we propose an IPSO algorithm that makes two improvements to the tradi-
tional PSO. On the one hand, the variation of ω is controlled using a quadratic recession,
which is calculated as follows:

ω = ωmax −
ωmax − ωmin

k2
max

× k2 (23)

where ωmax and ωmin denote the maximum and minimum values of inertia weights, re-
spectively, k is the number of iterations, and kmax is the total number of iterations.

On the other hand, let c1 decrease with each iteration while the value of c2 is increased
oppositely. The improved computational formulas are as follows:

c1 = cmax −
k × (cmax − cmin)

kmax
(24)

c2 = cmin +
k × (cmax − cmin)

kmax
(25)

where cmax and cmin denote the maximum and minimum values of the learning factor,
respectively.
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By making dual improvements to the inertia weight and learning factor, the IPSO
algorithm balances the global and local searches during the search for hyperparameters.
This speeds up the search process and delivers an improvement in the accuracy of the
search. The specific results of hyperparameter optimization are described in Section 4.2.

4. Result and Discussion

To verify the performance of the proposed model, SOH evaluation and RUL prediction
are performed for each cell separately, and the performance is compared with the traditional
RNN model and the stacked GRU model. The code runs on Python 3.8, the deep learning
framework used is Tensorflow 2.6, and the hardware platform is a Win10 64-bit workstation
with an Intel(R) Xeon(R) Gold 5218 CPU @2.30GHz and an NVIDIA GeForce RTX 3090
24GB graphics card.

4.1. The Reconstruction of Capacity Degradation Sequences

The results of each order IMF components and residuals obtained by CEEMDAN
for the preprocessed battery capacity degradation time series are displayed in Figure 6.
The most correlated IMF components (IMF5 for all three cells) are marked with red lines
for observation. It can be clearly observed that when the CEEMDAN algorithm is imple-
mented, the intermittent signal components (IMF1 and IMF2) containing high frequencies
with approximately zero-averaged amplitudes are obtained first. Then the sequence’s
low and medium-frequency components (IMF3 and IMF4) are extracted. Finally, the com-
ponent with the largest amplitude (IMF5) and the residue term with many non-periodic
perturbations of tiny amplitude is attained. Among them, IMF5 shows the most significant
magnitude and smooth curve similar to the original capacity degradation sequence, indi-
cating that it characterizes the most critical degradation trend in the capacity degradation
sequence of LIB and plays an essential role in explaining capacity degradation. The small
amplitude of the residual term (less than 1 × 10−14 in absolute value) further indicates that
the sequence is well decomposed, and most of the signals can be described by the IMF
component.

Table 2 gives the Pearson correlation coefficients between the preprocessed capacity
degradation time series and the IMF components of each order. From Table 2, it can be
noticed that the initial IMFs obtained during the decomposition are not strongly correlated
with the battery capacity degradation. As the decomposition proceeds, the subsequent
IMFs become increasingly related to capacity degradation, and the IMF with the highest
correlation is gained at the end of the decomposition process. By reconstructing the capacity
degradation time series using the IMF component with the highest correlation, the primary
trend of the degradation can be captured to the greatest extent while minimizing the impact
of noise. The reconstructed sequences are then used as the training data for the deep
learning model to predict future capacity degradation. This approach can help the model
avoid learning irrelevant features and improve its generalization ability.

Table 2. The Pearson correlation coefficients between preprocessed capacity degradation series and
IMFs.

Battery No. IMF1 IMF2 IMF3 IMF4 IMF5

#1 −0.0004 −0.0123 −0.3072 −0.0672 0.9923
#2 0.0030 0.0054 −0.3169 0.0693 0.9964
#3 0.0053 0.0027 −0.3010 −0.1919 0.9932
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Figure 6. The results of battery capacity degradation sequence by the CEEMDAN decomposition.
(a) The result of cell #1. (b) The result of cell #2. (c) The result of cell #3.

4.2. Hyperparameter Optimization

When building the deep learning model for battery lifetime prediction, the model
hyperparameters must first be determined, such as the number of layers, the number
of neurons per layer, and the learning rate. Generally speaking, more layers will confer
stronger learning ability to the model in deep learning. However, overly deep networks
also increase the model complexity and tend to cause overfitting. Since the cycle life of all
batteries does not exceed 1500 cycles, and the sample size of the capacity degradation is
not very large, it is inappropriate to set an excessively deep network. Here, the number
of layers for the encoder is set to 2, and for the decoder is set to 1 layer. The length of the
input sequence is set to 10, and the size of the output sequence is set to 5. The remaining
hyperparameters that need to be optimized are the number of neurons in each layer of
the encoder, the number of neurons in the decoder, and the learning rate of the entire
network. Therefore, the search space for hyperparameters is six dimensions. Then, each
hyperparameter is constrained within a certain range: the number of neurons in each layer
ranges from 8 to 4096, with an increasing step size of 8. The learning rate varies from 10−5

to 10−2, with an increasing step size of 5 times, and any learning rate exceeding the upper
limit is directly set to the upper limit value.

The model uses the mean square error (MSE) as the loss function and the stochastic
gradient descent (SGD) as the optimizer to update the gradient and guide the convergence
of parameters. The fitness function of the IPSO algorithm optimizes the hyperparameters
by tracking the loss of the model. Initializing the positions and velocities of 50 particles and
executing 200 iterations, the loss variation trend of the IPSO algorithm during the search of
each cell model is demonstrated in Figure 7 compared with the traditional PSO algorithm.
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Figure 7. The variation trend of loss for the IPSO algorithm and traditional PSO algorithm.

Figure 7 demonstrates that as the number of iterations increases, both the PSO and
IPSO exhibit a decreasing trend in loss, indicating that the algorithms are searching along
the appropriate direction of hyperparameters. However, the traditional PSO algorithm falls
into a locally optimal solution at about 50 iterations and cannot further reduce the loss.
In contrast, the IPSO algorithm performs comparably to the PSO algorithm after about
25 iterations. And it can jump out of the local optimum as the iterations proceed, achieving
better convergence. Compared with the traditional PSO algorithm, the IPSO algorithm
performs better regarding iteration speed and final results.

The optimal combination of hyperparameters discovered by the IPSO algorithm is
given in Table 3. As can be seen, the number of neurons required to establish the model
varies due to the different lengths of the capacity degradation time series. Specifically,
batteries with shorter cycle life require fewer neurons overall, and the number of neurons in
the first encoder layer is more than that in the second layer, which is to extract the features
of the input sequence better. Meanwhile, the number of neurons in the decoder layer differs
slightly from that in the second layer, which can better decode the features and generate the
output sequence. The optimal combination of hyperparameters determined by using the
IPSO algorithm is used to build the model and trained to achieve the prediction of battery
lifetime ultimately.

Table 3. The optimal combination of hyperparameters.

Battery
No.

Neurons in
1st Layer

Neurons in
2nd Layer

Neurons in
3rd Layer

Learning
Rate

#1 2504 1072 1048 1 × 10−5

#2 2112 968 944 1 × 10−5

#3 2456 1032 1016 1 × 10−5

4.3. Online SOH Evaluation

The online SOH evaluation is enabled by incremental learning of the online data. For
each cell, the existing capacity degradation data is treated as historical data and utilized to
train the initial model. As the battery is cycled, new online capacity data is accessed and
fed into the initial model. Then, the parameters are updated to improve the model accuracy
to fit the latest data.

The amount of historical data utilized for training influences the initial model accuracy,
which in turn determines the subsequent incremental learning outcomes. Training a model
for online SOH evaluation with various quantities of historical data can also be referred to
predict from different start points (SPs). In this section, online SOH evaluation is conducted
in the early (SP = 20%), middle (SP = 50%), and late (SP = 80%) periods of battery operation,
and accordingly, data before SP are used to train the model. The stacked conventional GRU
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and RNN models without the Seq2Seq structure are compared to validate the improvement
of the proposed method on model accuracy through incremental learning. The number of
network layers and other hyperparameters used for comparison are the same as those of
the Seq2Seq model.

The results of the online SOH evaluation for the three cells are illustrated in Figure 8.
As can be observed from the figure, for all cells, the conventional GRU and RNN models
fail to learn the relatively accurate battery decline trend when only the first 20% of the
data are used to train the initial model. Therefore, even if the capacity data is continuously
updated for incremental learning, the two models need help reducing errors and showing
significant differences in the subsequent SOH evaluation. In the linear battery decline stage,
the SOH evaluation result of the RNN model is almost the same as the true value, which is
more reliable. In contrast, although the GRU model can also portray this linear decline, the
prediction deviates far from the actual value. When entering the late decline stage, the bat-
tery shows an apparent nonlinear degradation. The RNN model cannot capture the change
of this declining trend, while the GRU model can track this accelerated aging behavior but
is unable to reduce the prediction error. Evidently, the Seq2Seq model proposed in this
paper benefits from applying the attention mechanism, accurately predicting both capacity
recovery during linear degradation and accelerated aging during nonlinear degradation.
The resulting curves are almost identical to the actual SOH changes. Moreover, as the
amount of training data used to establish the initial model increases, the model accuracy
also improves. Overall, the SOH evaluation results obtained using the Seq2Seq model are
the closest to the actual situation, followed by the GRU model. The performance of the
RNN model is limited by its own architecture, and even when using 80% of the data for
training, it is still unable to predict the nonlinear degradation of the battery accurately.

The numerical values of the mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE) of the SOH evaluation results for
each model at different SPs of these cells are listed in Table 4. The smaller the metrics values
in the table, the better the predictive performance of the model. It is clear from the table
that for all cells, whether in the early (SP = 20%), middle (SP = 50%), or late stage (SP = 80%)
of use, the proposed Seq2Seq model performs the best in the SOH evaluation. Moreover,
as the amount of training data increases, the predictive performance of all three models
improves. In other words, more training data lead to more accurate predictive models.
Among them, the prediction performance of the Seq2Seq model, when using only the first
20% of data for training, is even better than that of the traditional GRU and RNN models
trained with 80% of the data. Specifically, when evaluating the SOH at 20% of the cycle life,
the Seq2Seq model outperforms the traditional GRU and RNN models in terms of all three
metrics compared to monitoring at 80% of the battery lifetime.

Meanwhile, for the three cells, the GRU model has worse results than the RNN model
for SOH evaluation at 20% of the cycle life, except for the RMSE metric on cell #2, where
the GRU model’s 0.5390 is slightly smaller than the RNN model’s 0.7440. However, when
the training data increase to 50%, the three metrics of the GRU model and the RNN model
become superior and inferior to each other. And when the amount of training data reach
80%, all metrics of the GRU model are smaller than those of the RNN model. The changing
trend of the GRU and the RNN model in predicting metrics is consistent with the SOH
evaluation results shown in the previous figures. Although the GRU model can track the
accelerated degradation of the battery, it predicts the linear degradation of the battery
poorly in the early and middle stages of use. On the other hand, although the RNN model
can accurately predict the linear degradation of the battery, it cannot capture the nonlinear
accelerated aging of the battery in the later stages of use.
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Figure 8. The results of online SOH evaluation from different SPs for the cells. (a) Cell #1 SP = 20%.
(b) Cell #1 SP = 50%. (c) Cell #1 SP = 80%. (d) Cell #2 SP = 20%. (e) Cell #2 SP = 50%. (f) Cell #2
SP = 80%. (g) Cell #3 SP = 20%. (h) Cell #3 SP = 50%. (i) Cell #3 SP = 80%.

Table 4. The assessment metrics of the SOH evaluation results for each model.

Battery
No. SP

Seq2Seq GRU RNN

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

#1
20% 0.0261 0.0434 0.0762 0.5642 0.8569 1.6588 0.2093 0.5600 0.6479
50% 0.0104 0.0321 0.0326 0.3195 0.5295 0.9457 0.1989 0.5996 0.6254
80% 0.0025 0.0119 0.0076 0.0408 0.1254 0.1277 0.1276 0.5281 0.4171

#2
20% 0.0160 0.0276 0.0461 0.3485 0.5390 1.0326 0.2966 0.7440 0.9243
50% 0.0076 0.0181 0.0223 0.2224 0.5496 0.6877 0.2439 0.7139 0.7754
80% 0.0050 0.0170 0.0154 0.0230 0.0767 0.0719 0.1266 0.4856 0.4144

#3
20% 0.0256 0.0506 0.0767 0.6807 0.9547 1.9913 0.3151 0.7742 0.9718
50% 0.0077 0.0184 0.0232 0.2426 0.4798 0.7322 0.2372 0.6039 0.7342
80% 0.0030 0.0110 0.0092 0.0642 0.1907 0.2007 0.1603 0.6018 0.5209

The results above provide additional evidence of the superiority of the Seq2Seq model
proposed in this paper. Furthermore, this accurate prediction of future multi-step SOH
evaluation implies a small error when using the model to predict all subsequent capacity
decays. This provides a reasonable basis for long-horizon iterative RUL prediction.

4.4. Iterative RUL Prediction

The iterative RUL prediction is performed by using the reconstructed capacity data of
the remaining two cells and the first 30% and 50% of the recession data of the test battery
as training, and the model parameters are not changed once the model is trained. The
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model is then employed to predict the subsequent capacity, and the predicted capacity is
considered input data to continue the iterative prediction until the model output capacity
is below the battery failure threshold to obtain the RUL prediction results.

Similarly to the online SOH evaluation, the iterative RUL prediction for each cell at
30% SP and 50% SP for the Seq2Seq model and the conventional GRU and RNN models
are illustrated in Figure 9. The abscissa is the cycle number, the ordinate is the cell capacity,
and the black horizontal dashed line is the capacity failure threshold of the cell, which here
is 28.8Ah. By finding the intersection of the prediction curve and the failure threshold,
the corresponding value on the horizontal axis is identified as the end-of-prediction (EOP)
of the battery cycle life. The difference between the EOP and the SP cycle number is the
predicted RUL of the battery.
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Figure 9. The results of iterative RUL prediction. (a) At 30% SP for cell #1. (b) At 30% SP for cell #2.
(c) At 30% SP for cell #3. (d) At 50% SP for cell #1. (e) At 50% SP for cell #2. (f) At 50% SP for cell #3.

As can be noted from the figure, the Seq2Seq model has a more complete and accurate
learning of the battery capacity degradation trend due to the use of the entire capacity
degradation time series data of the remaining two cells for training. It performs better
than other methods when dealing with long-cycle time series, and the prediction curves
are closer to the real curves. As shown in Figure 9a–c, when we train the model using
the degradation data of the remaining two cells and the first 30% of the test cell, the EOP
values obtained by the Seq2Seq model on the three cell data sets are 959, 1037, and 964
cycles, respectively. Compared with the corresponding real EOL values of 974, 1076, and
995 cycles, the differences are 11, 39, and 31 cycles. It indicates that fine-tuning the model
using only the first 30% of the degradation data can obtain a relatively good trajectory of
the capacity degradation on the iterative RUL predictions. However, the EOP predictions
still have errors of more than 10 cycles.

When the data are increased to the first 50% SP, the EOP values obtained by the
Seq2Seq model on the three cell data sets are 970, 1059, and 994 cycles, respectively, as
displayed in Figure 9d–f. The differences are only 4, 17, and 1 cycles compared to the
corresponding actual EOL values. Although the conventional GRU model has relatively
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effective prediction results in the linear degradation stage of the battery, it is affected by
cumulative errors during the iterative prediction process. Therefore, compared with the
prediction results of the Seq2Seq model, the GRU model enters the non-linear degradation
process earlier, with predicted EOP values of 937, 1047, and 972 cycles, separately. The
conventional RNN model shows significant errors at the beginning of prediction, which
are gradually corrected during iterative prediction in the linear degradation stage. The
predicted curve becomes closer to the actual value. However, with further iteration, the
RNN model accumulates more prediction errors. As the battery enters the nonlinear
accelerated aging, the model is unable to predict this degradation trend and still maintains
the linear degradation, leading to the most significant deviation from the actual value, with
predicted EOP values of 1187, 1637, and 1401 cycles, correspondingly.

To further expound the superiority of the proposed Seq2Seq model in predicting
long-timescale LIB capacity degradation sequences, Table 5 presents detailed RUL actual
values, predicted values, absolute errors (AE), relative errors (RE), as well as the MAE,
RMSE, MAPE, and decision coefficient (R2) of the predicted sequences for the three cells at
50% SP.

Table 5. The assessment metrics of the RUL prediction results for each model at 50% SP.

Battery
No. Model Real

RUL
Predicted

RUL AE RE (%) MAE RMSE MAPE (%) R2

#1
Seq2Seq

487
483 −4 −0.8214 0.0880 0.2196 0.2668 0.9922

GRU 450 −37 −7.5975 0.1985 0.5895 0.5881 0.9325
RNN 700 213 43.7372 0.1946 0.4033 0.5768 0.9532

#2
Seq2Seq

538
521 −17 −3.1598 0.0723 0.2154 0.2426 0.9902

GRU 509 −29 −5.3903 0.1242 0.3623 0.4133 0.9782
RNN 1099 561 104.2751 0.2613 0.6193 0.8769 0.9132

#3
Seq2Seq

498
497 −1 −0.2008 0.0700 0.1801 0.2545 0.9950

GRU 475 −23 −4.6185 0.1746 0.4703 0.6285 0.9697
RNN 904 406 81.5261 0.2234 0.5203 0.8072 0.9289

From the table, it can be seen that the AEs between the RUL predicted by the Seq2Seq
model and the true values are −4, −17, and −1, and the REs are −0.8214%, −3.1598%, and
−0.2008%, which are numerically much lower than the prediction errors of the other two
models. In terms of the evaluation metrics of the predicted sequence and the true capacity
degradation sequence, the Seq2Seq model also outperforms the other two models to a large
extent, and the evaluation metrics of the GRU model are generally better than those of the
RNN model. However, on the cell #1 data, the MAE, RMSE, MAPE, and R2 of the GRU
model are 0.1985, 0.5895, 0.5881, and 0.9325, respectively, which are slightly inferior to
0.1946, 0.4033, 0.5768, and 0.9532 of the RNN model. This is because when calculating the
evaluation metrics between sequences, it is necessary to maintain consistency in sequence
length. For the Seq2Seq model and the GRU model, since the predicted sequence length
is shorter than the true sequence length, the calculation is based on the shorter sequence.
In contrast, the RNN model predicts a much longer sequence than the true sequences and
needs to adopt the true sequences as the calculated benchmark. In the case of cell #1 data,
the predicted sequence length of the GRU model is 937, and the true sequence length is
974, so only the evaluation metrics between 937 pairs of data points are calculated. The
predicted sequence length of the RNN model is 1187, and the evaluation metrics between
974 data points need to be calculated. Moreover, the RNN model has lower prediction
errors in the linear degradation stage of cell #1 compared to the GRU model. Hence, the
evaluation metrics of the RNN model on cell #1 data are slightly better than those of the
GRU model. The values of the decision coefficient for the three models are higher than 0.9,
indicating that the predicted curve is very close to the true curve. The R2 of the Seq2Seq
model is as high as 0.99, further demonstrating the superiority over the other two models.
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In summary, the proposed Seq2Seq model has a stronger learning ability for long-
timescale LIB capacity degradation sequences, and the iterative RUL prediction results are
more stable and accurate.

5. Conclusions

SOH evaluation and RUL prediction are crucial for the battery management system.
In this paper, we propose a new lifetime prediction framework for LIB called CGSAI, which
can simultaneously achieve the above two functions. This new method first uses the CEEM-
DAN method to decompose the battery capacity degradation sequence, which solves the
problems of mode mixing, endpoint effects, and sieving iteration-stopping criteria brought
about by the traditional EMD. Meanwhile, the IMF component with the highest correlation
is selected to reconstruct the degradation sequence as the training data, effectively avoiding
the influence of noise in the original data on prediction accuracy. Then the GRU-based
Seq2Seq model is established, and the attention mechanism is introduced to dynamically
assign attention weights to each time step during the calculation process based on the cur-
rent decoder state and encoder output, improving network prediction performance. Next,
we improve the traditional PSO algorithm from both the inertial weight and learning factor
aspects and use the improved IPSO algorithm for automatic hyperparameter search of the
Seq2Seq model to speed up convergence and avoid local optima, thereby improving the
efficiency and accuracy of optimization. Finally, SOH evaluation and RUL prediction are
realized using online capacity measurements and updated historical data, respectively. On
the battery data set under fixed working conditions, the proposed method outperformed
traditional GRU and RNN models. The predicted MAPE on the online SOH evaluation
can reach a minimum of 0.76%, the absolute error on the iterative prediction of RUL is not
more than 17 cycles, and the MAPE is not more than 0.27%.
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