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Abstract: In the last decade, many neural network algorithms have been proposed to solve depth
reconstruction. Our focus is on reconstruction from images captured by multi-camera arrays which
are a grid of vertically and horizontally aligned cameras that are uniformly spaced. Training these
networks using supervised learning requires data with ground truth. Existing datasets are simulating
specific configurations. For example, they represent a fixed-size camera array or a fixed space between
cameras. When the distance between cameras is small, the array is said to be with a short baseline.
Light-field cameras, with a baseline of less than a centimeter, are for instance in this category. On the
contrary, an array with large space between cameras is said to be of a wide baseline. In this paper, we
present a purely virtual data generator to create large training datasets: this generator can adapt to any
camera array configuration. Parameters are for instance the size (number of cameras) and the distance
between two cameras. The generator creates virtual scenes by randomly selecting objects and textures
and following user-defined parameters like the disparity range or image parameters (resolution, color
space). Generated data are used only for the learning phase. They are unrealistic but can present
concrete challenges for disparity reconstruction such as thin elements and the random assignment of
textures to objects to avoid color bias. Our experiments focus on wide-baseline configuration which
requires more datasets. We validate the generator by testing the generated datasets with known
deep-learning approaches as well as depth reconstruction algorithms in order to validate them. The
validation experiments have proven successful.

Keywords: 3D vision; training database; deep learning; 3D reconstruction

1. Introduction

The principle of photogrammetric 3D reconstruction is to recover the depth of a scene
by exploiting the parallax existing on images acquired from different viewpoints. More
precisely, this means matching pixels from one image with others (co-homologous pixels,
i.e., projections of the same 3D point in images). The search space for co-homologous
pixels [1] varies according to the structured (aligned, planar) or unstructured (free position)
configuration of the cameras in the acquisition system. These variations have a decisive
influence on the process of reconstructing a 3D scene from images. In this paper, we
focus solely on 2D camera array configuration, where the principles of simplified epipolar
geometry [2] can be applied. Thanks to them, the search space is reduced to a single line
following the pixel grid of the image, i.e., vertical for vertically adjacent cameras and
horizontal for horizontally adjacent cameras.

In this configuration, the depth computation becomes a disparity computation (i.e.,
the computation of an offset of a number of pixels separating the co-homologous pixels
of 2 successive images in one of the horizontal or vertical axes). The use of deep neural
networks for photogrammetric 3D reconstruction had a significant impact on improving
state-of-the-art performance in terms of speed, accuracy, and robustness of reconstruction
in stereo and light field configurations. However, they require training datasets, of more
or less significant size depending on the camera configuration, usually including ground
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truth information. While reconstruction methods for light field cameras can be trained on a
small number of scenes (state-of-the-art methods can be trained with a few dozen scenes),
this is not the case for stereo and wide-baseline multi-view stereo configurations, which
require a high number of training scenes (several thousand) to be efficient. The main reason
for this is the wide range of correspondence search space. The light field configuration has
a disparity of approximately 10 pixels, while the stereo and camera array configurations
have a disparity range of around 200 pixels. The latter configurations, therefore, require a
larger amount of data to train the network.

Some contributions have attempted to work around this problem by proposing deep
neural network training without the need for ground-truth data, with either unsuper-
vised [3,4] or self-supervised training [5]. Other works propose virtual datasets that have
by construction more accurate ground truth data, and for some of them, more data [6,7].
However, a lot of these datasets only have a few dozen images and are thus more suited
for method evaluation rather than training.

In this paper, we propose a dataset generator, i.e., to create a high number of scenes,
and render them in the form of images and disparity maps, from a user-chosen set of
models and textures. We show that our approach allows for a fast generation of a training
dataset with enough variety to improve the results of deep learning methods for disparity
estimation. We also demonstrate that the proposed dataset is best used for first-step training
before fine-tuning is performed with a state-of-the-art dataset.

After a review of different types of available state-of-the-art datasets in Section 2,
we present our highly configurable generator and describe our training dataset and the
protocol for our experiments in Section 3. The experiments in Section 4 compare the use
of our dataset versus Li et al.’s dataset [7] for training. They highlight the relevance of
our training dataset, and hence such a generator, by comparing use cases with two deep
learning reconstruction methods [7,8], firstly, as a single source, secondly as a primary, and
finally as a fine-tuning dataset. We conclude and address future work in Section 5.

2. Related Work

In this section, we distinguish three types of available data to review the state-of-the-
art datasets/generators. The first is real data, where images are recorded through sensors, such
as cameras, possibly with ground truth using depth cameras, or Lidar sensors. The second is
hand-made virtual data, i.e., scenes that are manually created and rendered with 3D modeling
software but where scene conception and lighting are decided by a human being. The third
type is procedurally generated data, where scene conception is decided by an algorithm.

In Table 1, we summarize the features of discussed training datasets in this section.
For a more extensive review, please refer to [9].

Table 1. Summary of discussed training datasets and ours. MVS: Unstructured multi-view stereo, LF:
light field, #: number.

Reference Nature # Cameras Structure # Captures Resolution with GT
Mayer et al. [6] both 2 stereo ≈25 k (200 real) 960 × 540 X

Li et al. [7] virtual 81 9 × 9 array 353 512 × 512 X

Scharstein et al. [10] real 2 stereo 6 512 × 384 X

Scharstein et al. [11] real 2 stereo 33 2864 × 1924 X

Menze et al. [12] real 2 stereo 400 1242 × 375 X

Schops et al. [13] real 4 MVS 38 6048 × 4032 X

Honauer et al. [14] virtual 81 9 × 9 LF 28 512 × 512 X

Butler et al. [15] virtual 2 stereo 1628 1024 × 436 X

Dosovitskiy et al. [16] virtual 2 stereo ≈22 k 1024 × 768 X

Sabater et al. [17] real 16 camera array 12 2048 × 1088 ×
Ours (for experiments) virtual 25 5 × 5 array 3978 1920 × 1080 X
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2.1. Real Datasets

Most of the real scene datasets were made for testing purposes rather than training.
Before the emergence of machine learning techniques in stereoscopic reconstruction meth-
ods, real scenes were provided as benchmarks for method evaluations, as for example
by Scharstein et al. [10,11]. More recently, several benchmarks were proposed for stereo
reconstruction and unstructured multi-view stereo reconstruction, made of real scenes
associated with their ground truth data, expressed in the form of a disparity or depth
map [11–13]. Early deep neural network methods, such as [18], were trainable on the small
number of scenes, offered by these datasets (around 20 scenes).

In 2015, Menze and Geiger [12] also proposed a set of 200 real training scenes for
the purpose of stereo disparity reconstruction on car-embedded cameras. The scenes are
exclusively driving scenes and serve the purpose of autonomous driving.

However, using real data involves handling the properties and imperfections of
physical image sensors (optical and color distortions). Correspondingly, when depth
is captured, it also means dealing with the inaccuracy of the depth sensor (noise), and
sometimes its inability to provide ground truth values in certain areas (highly reflective,
absorptive and transparent area, etc.). Moreover, due to their nature and size, none of
these real datasets are used as standalone training datasets by current deep neural network
methods. Nevertheless, the datasets can be also used for network fine-tuning, i.e., for
adapting the weights of a pre-trained neural network to a specific context.

2.2. Hand-Made Virtual Datasets

Virtual datasets allow to have precise and complete data with ground truth. In the
context of light field disparity reconstruction, Honauer et al. [14] proposed a benchmark
and a hand-made training dataset with 25 scenes. This low number of scenes, compared to
other configurations, is enough to train state-of-the-art methods for this configuration. Li
et al. [7] proposed a training and a testing dataset for a 9 × 9 wide-baseline camera array
with a disparity range of 50. The testing dataset is composed of 12 virtual hand-crafted
scenes and the training dataset also contains eight hand-crafted scenes.

While most of these proposed datasets have very few scenes, some efforts were made
in improving the scene variety by proposing datasets based on image sequences of animated
scenes instead of still scenes [6,15]. This allows for the creation of a higher number of scenes
than with hand-crafting scenes, within the same time span. However, the scenes generated
by this method do not increase the variety of objects in the dataset.

2.3. Procedurally Generated Datasets

Procedurally generated scenes can be used to have a large amount of data, without the
need for time-consuming human design. For the stereo configuration, Dosovitskiy et al. [16]
proposed a training dataset with various chair models that are randomly positioned. Mayer
et al. [6] proposed training and testing datasets with more variety in models based on the
ShapeNet [19] taxonomy. Furthermore, textures for this dataset are randomized based on
various existing and also procedurally generated images.

For camera arrays, Li et al. [7] proposed a similar process for generating a training
dataset with a nearly photo-realistic rendering. This dataset contains 345 scenes, with
images taken by a 9 × 9 camera array. While these images are very high quality, the
relatively small number of scenes makes it only practical for training lightweight neural
networks. The disparity range is set at 50 pixels disparity range. However, this range can
be extended to 200 pixels if you consider the dataset as a 3 × 3 camera array, by taking
the images on every fourth row and column. This dataset contains scenes with a realistic
rendering, although, they are in small numbers and thus are only efficient for training
lightweight neural networks—around 2 M weights for Li et al.

In summary, the state of the art lacks large datasets when it comes to 3D wide-baseline
camera array reconstruction, and even more so when it comes to network training, as many do
not have the necessary ground truth and/or do not have a sufficient quantity of data. Existing
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deep neural network methods rely on training on datasets of relatively small scale and thus
need to adapt to these small scale datasets, limiting their efficiency. We thus propose a way to
generate data suitable for training more heavyweight and data-sensitive neural networks.

3. Materials and Methods
3.1. Virtual Data Generator
3.1.1. Principle

The goal of our data generator is to be able to: (i) quickly generate a large number of
training scenes, with a great variety, for a two-dimensional camera array of a user-defined
size; (ii) render and save these scenes as different data (RGB, disparity) to provide a dataset
useful for 3D reconstruction methods. To be used in deep neural network supervised
training, these scenes must also have associated disparity ground truth. For this, the
principle is to randomly associate 3D models with a texture each, and randomly position
them in order to render scenes taken from a virtual N ×M camera array with a regular
baseline, equal in the horizontal and vertical direction. The random selection of models
ensures diversity of scene content, while the random assignment of textures to objects
ensures that the method will not learn to recognize an object by its color, like green grass,
blue sky, etc., thus avoiding a shape-color association bias. Similarly, to avoid shape-object
association bias, we apply random scaling to each object on each axis.

Although the generated images are non-realistic, and quite unintelligible for a human
being, when taken as a whole as illustrated in Figure 1, their local geometry mimics the
variety of shapes and colors that can be found in real scenarios. It is thus possible to train
deep neural networks on such scenes.

Figure 1. Example of our generator output. An RGB rendering image of one scene (left) with its
disparity map (right) encoded on three RGB channels (see Section 3.1.3).

3.1.2. Parameters

Our proposed dataset generator allows for several types of parameters to be configured
through its configuration file:

– Camera array configuration.

The number of cameras on each row and column (cam_grid_row, cam_grid_Col), as well
as the baseline (grid_spacing_row, grid_spacing_col), i.e., the space between two adjacent
cameras can be configured, one for each axis. This is one of the main factors in the disparity
range of the created dataset. The virtual camera array can also be selected in off-axis or
parallel disposition with the focus point parameter (focusPoint), although this paper focuses
on the parallel disposition. When the focus point is set to 0, the cameras are positioned in
parallel, otherwise, their vision pyramid is off-center to focus on it.

– Camera parameters.

The configuration is the same for every camera on the array. The configuration of
their intrinsic matrix is realized with the following parameters: image resolution in pixel
(width_pixel, height_pixel), near and far parameters. The vertical field of view (fov) can also
be parameterized allowing for datasets from several types of cameras. As their positions in
the camera array are constrained, we do not propose extrinsic parameter selection. The
extrinsic matrix is fixed as the identity matrix since objects will be placed based on the



J. Imaging 2024, 10, 7 5 of 15

camera field of view. It is modified according to the camera’s position in the grid. In
addition, for future work and the adaptability of our generator, we already integrated the
camera exposures (exposures). This will be useful for multi-exposed recording in a High
Dynamic Range reconstruction context. If several values are entered, each viewpoint is
rendered once with each exposure value.

The parameters in these two sections (Camera array configuration and Camera param-
eters) are used to generate the capture system of our generator (see line 4 of Algorithm 1).

Algorithm 1 CameraArrayDatasetGenerator ()
. A function for generating a dataset with ground truth from a camera Array respecting the

parameters described in the user configuration file

Input: cfgFile . configuration file
Output: cam_grid_row × cam_grid_col RGB images with their disparity maps (see Table 2)

1: cfg = cfgFile contents
2: models = Load the models from the model file folder
3: texs = Load textures from the texture file folder
4: camArray = Generate the camera arrays, initialized with the camera parameters and

camera array configuration defined by the user in cfgFile
5: Create the OpenGL Context with a size set at (cfg.width_pixel, cfg.height_pixel)
6: for nbreCaptureToDo = cfg.number_of_frame_to_render;
7: nbreCaptureToDo > 0; nbreCaptureToDo- = 1 do
8: populateScene()
9: for each cam from camArray do

10: Render the view from cam with its disparity map and save the both in the
cfg.output_dir folder

11: end for
12: end for

Table 2. Parameter list with their name in the configuration file and their value for the experiment.

Parameter Name in Configuration File Experiment Value

camera array configuration

nb Camera in a Row cam_grid_row 5

nb Camera in a Column cam_grid_col 5

baseline in meters in row and column grid_spacing{_row, _col} 0.2

camera focus point (if off-center) focusPoint 0

camera parameters

image resolution in width width_pixel 1920

image resolution in height height_pixel 1080

Z near distance in meters near 0.1

Z far distance in meters far 1000

vertical field of view fov 60

Camera exposures exposures [1.0]

Scene configuration

Minimum and Maximum distances between object and camera array center
(in meters) object_range [2, 500]

Number of different models loaded in the scene n_models 51

number of repetition of model in a scene n_textures 3

rate of hidden visible [0.3, 0.6]

scene number number_of_frame_to_render 4000

Number of different textures in the directory 108
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– Scene configuration.

The major part of the configuration is on the scene. The minimum and maximum dis-
tances of objects can be set (object_range). However, these minimum and maximum values
are not hard limits, as they are only used to position the object centers themselves. Part of
the objects can still be in front of the minimum distance or behind the maximum distance.
As a side-effect, some of the scenes generated do not conform to the desired maximum
disparity. Other configuration parts are the different numbers of models (n_models) and
textures (n_textures) loaded and how many times a given model is loaded with a different
texture on a scene (n_textures). Finally, we propose to set the probability of hiding each
object on each new scene (visible). The probability can be set in a range of probabilities so
that some scenes are more or less full than others. Lastly, the user can set the number of
generated scenes (number_of_frame_to_render). The Algorithm 2 gives step-by-step the con-
struction of one randomly generated scene. In our model folder, we put only the required
untextured models for the training. Random selection from this folder is not needed as we
process models iteratively. This position is reflected in the Algorithm 2.

Algorithm 2 populateScene ()
. A function which randomly insert some randomly textured and distorted objects. The function

random(x,y) generates a random value between x and y with a uniform distribution.

Input: cfg . configuration Structure
Input: models . set of the loaded models
Input: texs . set of the loaded textures

1: proba = random(cfg.visible[0], cfg.visible[1])

2: for (i = 0; i < cfg.n_models ; i++) do
3: for (j = 0; j < cfg.n_textures ; j++) do
4: model = Clone of models[i]
5: tex = Random texture selection from texs

6: dispZMin = MIN(c f g.object_range[0]c f g.rep, c f g.object_range[1]c f g.rep)

7: dispZMax = MAX(c f g.object_range[0]c f g.rep, c f g.object_range[1]c f g.rep)
8: if (random(0,1) − proba) > 0 then
9: zpos = random(dispZMin, dispZMax)

10: Translate the model on the z-axis by zpos
1

c f g.rep

11: else
12: Hide the model
13: end if
14: Randomly translate of model on the x-axis and y-axis to place it in the frustum

of the camera array
15: Randomly scale the model on each axis
16: Randomly rotate of model on each axis

17: Add model to the 3D scene
18: end for
19: end for

– Output.

Each rendered output (an RGB image with its disparity map) is saved in the defined
output directory (output_dir).

3.1.3. Implementation Details

We chose to implement our dataset generator as a webGL application using html and
javascript, with the electron API [20] and threeJS [21]. Indeed, on the one hand, ThreeJs
is a well-known javascript 3D library in the computer graphic world, which has also the
advantage of already having a large number of mesh loaders (obj, ply, fbx, gltf, etc.). On
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the other hand, the web nature of this application allows it to be cross-platform and makes
it easy for others to reuse.

Meshes and textures are each in their own directory, which must contain at least
two items. Given the nature of our mesh data, we are currently only using the obj loader,
but integrating the other loaders should not pose any problems.

The output data (RGB image and disparity map) is rendered from each camera of the
array, using OpenGL rasterization [22] without incorporating any complex lighting effects
(no shadow, no transparency, etc.). We generate the color rendering and the disparity map
with two shader passes. We compute the depth as explained in [23] and we deduce from it
the disparity value with the properties of the cameras in the array. This disparity value δ is
instantly encoded in the shader as described in the following storage section.

The Algorithms 1 and 2 describe the global pipeline and main steps.

– Storage.

We save images and disparity maps as PNG images. Files are named as follows:
{tag}{type}{position}_{exp}.png where:

• tag is a 21 alphanumeric scene label, randomly generated each time a new scene is
rendered. This label has around 4.8× 1032 different possibilities.

• type is either rgb for pictures or depth for disparity maps.
• position is a single number identifying the position of the view on the array. It iden-

tifies the view in a top-to-bottom, left-to-right order, i.e., if the position is (i, j) on a
cam_grid_row× cam_grid_col array, the position number will be i.cam_grid_col + j.

• exp is the exposure factor, a higher number means brighter images, and a lower number
means darker images. The exp value is the exposure value for RGB images and 0 for
ground truth disparity maps (file with type = depth).

The disparity values are encoded in a 32-bit fixed-point precision format, with possible
values ranging from 0 to 8192. The disparity is encoded using the four channels of the image:

• Red channel encoding the coarsest part of disparity with a disparity step of 32.
• Green channel encoding disparity with a step that is 256 times smaller, i.e., 1

8 .
• Blue channel encoding disparity with a step of 1

2048 .
• Alpha channel encoding disparity with a step of 1

524,288 .

3.2. Creation of the Dataset

We propose a Full HD dataset for deep neural network training. It is taken from
a 5 × 5 camera array in a parallel disposition. Image sizes are 1920 × 1080. We set the
cameras near and far at 0.1 m and 1000 m, respectively, and the field of view at 60 degrees.

For models and textures, we took 51 models from the ShapeNet taxonomy [19], each
from a different semantic class, and 100 texture-like images from the Pixabay [24]. In each
scene, models are loaded three times with a random texture. Each textured model has a
probability to be hidden varying between 30 and 60%.

Objects are positioned in a random place within the field of view of the camera array
and at a distance between 2 and 500 m. To smooth disparity repartition the positioning is
not uniform but based on the distance. The likelihood of an object being put at a given
distance is 1√

x with x the distance to the camera array center. This means that objects are
more likely to be put closer to the camera array than further. Combined with our rescaling
making objects that are bigger, gives a smoother distribution.

The baseline for the camera array is set to 0.2 m for the horizontal and vertical axis. This
gives this camera array a disparity range of 128 (from 0 to 128). We rendered 4000 images
and the output datasets have a size of 185 GB and 526 GB, respectively. From this dataset, we
remove the scenes with disparity outside the target range, which leaves us with 3978 scenes.
The Table 2 summarizes the parameter settings. Since we do not experiment on multi-
exposed camera arrays, the exposure value is always set to 1 in our experiments.
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The generated dataset, which is also the one used in our experiments and following
the configuration given in this article, is freely available to the community (see Data
Availability Statement).

3.3. Protocol for Experiments

With the proposed camera array, we conduct experiments on a 3 × 3 configuration by
taking views on every other row and column of our 5 × 5 dataset. For the training dataset,
the disparity range is 0–256 in the 3 × 3 configuration. For experiments, we compare the
results obtained by two deep neural network methods from Li et al. [7] and Barrios et al. [8].
It should be noted that our aim is not to compare these methods with each other, but only
to compare the contribution of our dataset to these methods, without or with a fine-tuning.

– Considered training datasets

As shown in the related work section, no dataset with ground-truth exists in the
literature suitable for training heavyweight and data-sensitive neural networks, in order to
estimate disparities within a context of a wide-baseline camera array. As illustrated in the
Table 1, only the Li et al. [7] dataset has ground truth, even though it was not originally
designed for use in a wide-baseline scenario. The considered training dataset thus are the
datasets described in this paper and the one proposed by Li et al. in [7]. Networks are
trained with the same amount of iterations on either dataset. We then compare the results
obtained by methods on Li et al.’s testing dataset, for the 3 × 3 configurations. We also
propose experiments on training with one of these two datasets and refinement with the
other. The refinement part consists of 10k additional iterations, with a learning rate fixed at
10−5 throughout the process for every network and dataset considered.

– Test metrics

For comparison, we use the metrics bad x that are used by Li et al. in their paper and
also on the Middlebury Stereo website [25]. The metric bad x is the percentage of pixels for
which the absolute error, when the resulting disparity is compared to the ground truth, is
greater than x.

For comparison to ground truth, we use the testing dataset proposed by Li et al. in [7].
This dataset is originally a 9 × 9 testing dataset with a disparity range of 50 (from 0 to 50).
For our experiments, we will use this dataset with a 3 × 3 array by using one in every four
columns. The disparity ranges will thus be 200 for the 3 × 3 configuration. Due to the
different configurations and disparity ranges, we adapt the metrics used by the Middlebury
stereo benchmark [25]. We use for the 3 × 3 configuration, bad 0.5, 1, 2, and 4, similar to
the main metrics on the reference.

– Tested methods

Two deep neural network methods are tested. The first one, proposed by Li et al. in [7],
is a lightweight neural network with less than 2 M weights. It computes a disparity map
mainly through convolution neural networks following the classical structure of disparity
inference with deep neural networks [9].

The second tested method, proposed by Barrios et al. [8], is a neural network that
computes disparity maps in two parts, following a similar structure. The first part computes
a downsampled disparity map and the second step computes a residual disparity map
from low to high resolution. The network has 5 M weights in total, with the second step
counting more than 4 M weights.

These networks are trained on each dataset with the number of iterations or training
time indicated on their respective papers, i.e., 1.5 M iterations for Barrios et al. [8] and
250 k iterations corresponding to the training time indicated on the paper [7].
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4. Results and Discussion
4.1. General Results on the 3 × 3 Configuration

The results with the proposed metrics are shown in Table 3 for the 3 × 3 configuration.
The results shown are the average results of the training performed.

Table 3. Comparison of results between training with either our dataset and the one proposed in Li
et al.’s work [7]. “Bad x” metrics represent the percentage of pixels for which the difference to ground
truth is higher than x. Lower is better. Bold values have the lowest errors for their respective method
and metric.

Method Training Dataset Bad 0.5 Bad 1 Bad 2 Bad 4
Results with a 3 × 3 configuration

Li et al. [7]

Li et al. [7] 23.95 12.58 7.70 5.85
Ours 25.40 11.49 6.46 4.60

[7] fine-tuned with ours 27.27 14.95 10.14 7.74
Ours fine-tuned with [7] 22.90 10.28 5.78 3.96

Barrios et al. [8]

Li et al. [7] 16.60 11.46 8.22 5.75
Ours 14.96 8.27 5.33 3.59

[7] fine-tuned with ours 20.14 12.78 9.19 6.79
Ours fine-tuned with [7] 12.23 7.51 4.60 2.98

On the 3 × 3 configuration, the results show that the use of our training dataset
instead of that of Li et al. strongly improves results for the bad 2 and bad 4 metrics for
both considered neural networks. For example, with Li et al.’s method, the bad 4 metric
is 5.85 when trained with their dataset and 4.60 when trained with ours. While this 3 × 3
configuration is not optimal for Li et al., it remains a possible configuration for their
method and our training dataset shows improvement. With the network from Barrios et al.
using our training dataset improves the results from 5.75 to 3.59 for bad 4. With higher
tolerance thresholds, these metrics can identify the outliers in reconstruction. Since a lower
error rate means greater robustness, we can, therefore, conclude that using our training
dataset instead of Li et al.’s significantly improves the robustness of deep neural networks.
This is especially visible on images with thin elements, for example, on the image shown
in Figure 2. In this figure, the thin elements are correctly reconstructed with a network
trained with our dataset when it is not with networks trained on the dataset of [7]. This
can be seen in the third column of the figure, where bars are more efficiently reconstructed
when our training dataset is used.

When considering fine precision (bad 0.5), the results are different depending on the
method that is considered. While training with our dataset improves the results obtained
with the network from Barrios et al. [8] (with a bad 0.5 of 14.96 versus 16.60), they degrade
the results with Li et al. (with 25.40 versus 23.95). This puts forward the main limitation
of our dataset. As we chose rasterization as our method of rendering, some low textures
and light effects are not taken into account. Our training dataset thus underperforms, even
compared to the one in [7] when images contain low texture and light effects, as can be
seen in Figure 3. The zone below the teddy arm on the right is not reconstructed correctly
when the methods are trained with our dataset.

Moreover, optimal results are obtained when the network trained with our training
dataset is fine-tuned with Li et al.’s dataset. This fine-tuning results in a better reconstruc-
tion rate than without fine-tuning regardless of the network, the training dataset, or the
bad metric considered. These results are shown in the last column in Figures 2 and 3. For
each scene presented, detailed numerical results, shown in Table 4, confirm the conclusion
but also indicate that on some views, results can be degraded by the fine-tuning step.
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Figure 2. Difference of disparity maps between networks trained with ours and Li et al.’s with
examples of images containing thin elements, taken from Li et al.’s [7] and Barrios et al.’s [8] test
dataset. The red squares are zooms of a detailed part of the image.

Figure 3. Difference of disparity maps between networks trained with ours and Li et al.’s with an
example image some bright untextured elements. Images are taken from Li et al.’s [7] and Barrios
et al.’s [8] test dataset. The red squares are zooms of a detailed part of the image.
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Table 4. Comparison of results between training with either our dataset and the one proposed in Li
et al.’s work [7] on some specific views. “Bad x” metrics represent the percentage of pixels for which
the difference to ground truth is higher than x. Lower is better. Bold values have the lowest errors for
their respective method and metric.

Method Training Dataset Bad 0.5 Bad 1 Bad 2 Bad 4
Results for view #1, “Cot”

Li et al. [7]

Li et al. [7] 32.52 20.56 15.95 13.73
Ours 26.72 14.07 9.23 7.00

[7] fine-tuned with ours 29.28 19.14 15.45 13.32
Ours fine-tuned with [7] 29.47 15.14 10.13 7.88

Barrios et al. [8]

Li et al. [7] 32.01 26.77 22.73 18.97
Ours 21.96 14.67 10.01 6.86

[7] fine-tuned with ours 33.10 27.94 24.58 20.96
Ours fine-tuned with [7] 21.51 13.35 8.10 5.20

Results for view #2, “Furniture”

Li et al. [7]

Li et al. [7] 12.72 5.59 2.97 2.14
Ours 24.77 7.84 2.04 1.17

[7] fine-tuned with ours 30.40 16.40 11.42 9.07
Ours fine-tuned with [7] 16.53 5.08 1.96 1.10

Barrios et al. [8]

Li et al. [7] 7.10 3.93 2.47 1.52
Ours 11.41 2.59 1.31 0.66

[7] fine-tuned with ours 10.85 4.97 2.88 1.82
Ours fine-tuned with [7] 5.56 2.43 1.24 0.63

Results for view #3, “Sidebars”

Li et al. [7]

Li et al. [7] 38.98 31.84 26.46 22.87
Ours 38.19 26.22 19.65 15.74

[7] fine-tuned with ours 43.85 35.44 30.06 26.06
Ours fine-tuned with [7] 35.56 26.17 19.56 15.35

Barrios et al. [8]

Li et al. [7] 42.08 36.69 30.97 24.75
Ours 36.65 28.02 22.20 17.44

[7] fine-tuned with ours 45.21 39.40 35.47 30.93
Ours fine-tuned with [7] 34.21 26.98 20.78 15.96

Results for view #4, “Teddy Bears”

Li et al. [7]

Li et al. [7] 22.98 8.23 3.85 2.83
Ours 21.38 6.37 3.54 2.88

[7] fine-tuned with ours 17.07 5.54 3.47 2.84
Ours fine-tuned with [7] 22.86 6.74 3.22 2.18

Barrios et al. [8]

Li et al. [7] 10.51 5.66 3.29 2.05
Ours 8.00 4.66 3.27 2.55

[7] fine-tuned with ours 11.31 5.37 3.11 1.89
Ours fine-tuned with [7] 7.26 4.16 2.51 1.67

As shown in detail in Table 5, the fine-tuning process improves results on some pixels
and degrades them on others. For example, Li et al.’s neural network using our dataset
in initial training with a fine-tuning with the dataset of Li et al. (see Table 5), allows
9.92% and 7.21% of pixels to go from bad 1 to bad 0.5 and vice versa. Those values are
4.13% and 2.50%, respectively, for the method of Barrios et al. We can, however, note that
for both neural networks considered the amount of pixels improved is higher than the
amount of pixels degraded (15.82% vs. 11.15% in the method of Li et al. and 7.71% vs.
5.63% for the method of Barrios et al.), whether this is in total (on the first column of the
tables) or when considering evolution from any two categories (considering two opposed
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categories, e.g., from errors between 0.5 and 1 to error smaller than 0.5 compared with the
inverse evolution).

However, when the training and fine-tuning datasets are swapped, i.e., training is
conducted with the dataset from Li et al. [7] and fine-tuning with our dataset, the results are
significantly degraded. The third rows of each section of Table 3 show that results with this
choice of training are worse than even non-fine-tuned training. We can thus conclude that
our training dataset is not relevant for fine-tuning purposes. As the results are significantly
worse with this reversed training, we do not propose a detailed analysis of the evolution as
we did in the previous case.

Table 5. Evolution in results between training with our dataset with and without fine-tuning on Li
et al.’s dataset [7]. The numbers correspond to the percentage of pixels that change category with the
addition of fine-tuning. Green values under the diagonal show the pixels whose category is improved
with fine-tuning, and red values above the diagonal show the pixels whose category is degraded with
fine-tuning. The white values on the diagonal show the pixel for which there is no change of category.

Evolution between Training with Our Dataset only (Row) and Training with Fine-Tuning (Column)
Li et al. [7] 0 ≤ err < 0.5 0.5 ≤ err < 1 1 ≤ error < 2 2 ≤ err < 4 err ≥ 4

Category improved 0 ≤ err < 0.5 64.65 7.21 1.22 0.18 0.17
15.82 0.5 ≤ err < 1 9.92 3.42 1.07 0.18 0.15

1 ≤ err < 2 1.95 1.46 1.35 0.38 0.23
Category degraded 2 ≤ err < 4 0.26 0.25 0.48 0.57 0.36

11.15 err ≥ 4 0.32 0.27 0.4 0.51 3.05
Barrios et al. [7] 0 ≤ err < 0.5 0.5 ≤ err < 1 1 ≤ error < 2 2 ≤ err < 4 err ≥ 4

Category improved 0 ≤ err < 0.5 81.41 2.50 0.70 0.27 0.17
7.71 0.5 ≤ err < 1 4.13 1.50 0.70 0.24 0.12

1 ≤ err < 2 0.73 0.67 0.92 0.41 0.21
Category degraded 2 ≤ err < 4 0.28 0.23 0.40 0.51 0.31

5.63 err ≥ 4 0.27 0.22 0.33 0.45 2.32

4.2. Comparison with Data-Sensitive Networks

When considering solely the network from Barrios et al. [8], two things must be con-
sidered. First, when comparing training with either our dataset or Li et al.’s alone, Table 3
shows that using our dataset gives better results in every metric, whether it considers
fine reconstruction or outliers. This is mostly due to the refinement step that is more data
sensitive than the network from Li et al. and thus is not efficiently trained by Li et al.’s
smaller-scale training dataset. This is also visible with the results in Table 6. When we only
consider the downsampled disparity map of Barrios et al. [8] that was computed with a
very lightweight network that has an overall structure similar to the one in [7], we observe
the same behavior [7], i.e., better robustness but less overall precision when trained with
our dataset compared to Li et al.’s.

Table 6. Comparison of results between training with either our dataset and the one proposed in
Li et al.’s work [7]. These comparisons of error are conducted for the small resolution and high-
resolution disparity maps obtained by the neural network proposed by Barrios et al. [8]. Bold values
have the lowest errors for their respective method and metric.

Output from [8] Training Dataset Bad 0.5 Bad 1 Bad 2 Bad 4
Results with a 3 × 3 configuration

Small resolution (downsampled)

Li et al. [7] 16.39 11.37 8.42 6.30
Ours 17.15 10.26 7.42 5.43

[7] fine-tuned with ours 20.96 12.86 9.43 7.26
Ours fine-tuned with [7] 14.61 9.60 6.78 4.89
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Table 6. Cont.

Output from [8] Training Dataset Bad 0.5 Bad 1 Bad 2 Bad 4

High resolution (upsampled)

Li et al. [7] 16.60 11.46 8.22 5.75
Ours 14.96 8.27 5.33 3.59

[7] fine-tuned with ours 20.14 12.78 9.19 6.79
Ours fine-tuned with [7] 12.23 7.51 4.60 2.98

Second, fine-tuning is less efficient when conducted on the refinement step of this
method, as proved by the results obtained by turning on or off fine-tuning on the last part
of the network in Table 7.

Table 7. Comparison of quality of results between turning on or off fine-tuning of the refinement part
on the method proposed by Barrios et al. [8]

Variant Bad 0.5 Bad 1 Bad 2 Bad 4
No fine-tuning at all 14.96 8.27 5.33 3.59

Fine-tuning on every part 13.11 8.00 4.99 3.13
Fine-tuning except on the refinement part 12.23 7.51 4.60 2.98

5. Conclusions and Future Work

We introduced a dataset generator to automatically compose scenes and render them
as a set of images and disparity maps with a large variety from a set of user-defined models
and textures. The scenes that we generate are nowhere near realistic in terms of color and
their composition (layout of objects). Nevertheless, they present geometric challenges that
are found in realistic scenes and avoid any shape-color association bias. As we opted for
the very fast but limited rasterization render method, some light effects are not present
in our dataset and methods trained with it cannot process them correctly. However, we
showed that a short fine-tuning step on a smaller dataset that does take these light effects
into account not only resolves this problem but obtains overall more stable results.

Future work includes testing different disparity ranges, from the very short disparity
range as in lightfield configuration to wider disparity ranges, like what was proposed in
this work. The objective would be to assert the amount of data required to train methods
depending on the target disparity range. Another future work possibility is to find a
compromise between the speed of rendering and its quality and accounting for specific
light effects by changing the rendering engine to more modern engines that can provide
fast rendering with a higher visual quality, such as Unreal Engine [26] or NVIDIA Omni-
verse [27]. In addition, it would also be interesting to extend our experiments by using a
testing dataset consisting of real data and ground truths obtained by LIDAR technology.
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