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Abstract: Chest X-ray (CXR) imaging plays a pivotal role in diagnosing various pulmonary diseases,
which account for a significant portion of the global mortality rate, as recognized by the World
Health Organization (WHO). Medical practitioners routinely depend on CXR images to identify
anomalies and make critical clinical decisions. Dramatic improvements in super-resolution (SR)
have been achieved by applying deep learning techniques. However, some SR methods are very
difficult to utilize due to their low-resolution inputs and features containing abundant low-frequency
information, similar to the case of X-ray image super-resolution. In this paper, we introduce an
advanced deep learning-based SR approach that incorporates the innovative residual-in-residual
(RIR) structure to augment the diagnostic potential of CXR imaging. Specifically, we propose forming
a light network consisting of residual groups built by residual blocks, with multiple skip connections
to facilitate the efficient bypassing of abundant low-frequency information through multiple skip
connections. This approach allows the main network to concentrate on learning high-frequency
information. In addition, we adopted the dense feature fusion within residual groups and designed
high parallel residual blocks for better feature extraction. Our proposed methods exhibit superior
performance compared to existing state-of-the-art (SOTA) SR methods, delivering enhanced accuracy
and notable visual improvements, as evidenced by our results.

Keywords: chest X-ray; super-resolution; residual network

1. Introduction

X-ray imaging captures internal body structures, portraying them in a grayscale spec-
trum where the tissue’s absorption of radiation dictates shades; notably, calcium rich bones,
absorbing X-rays most prominently, manifest as bright white in the image [1–4]. Enhancing
the pixel resolution of chest X-ray images is vital for sharpening image clarity, optimizing
diagnostic precision, and identifying subtle abnormalities [5]. In recent years, the utilization
of super-resolution (SR) has taken this enhancement further, refining image details and
potentially unveiling nuanced features essential for precise medical assessments, offering
a solution to improve the pixel resolution of medical images, including those produced
through chest X-rays (CXRs), Magnetic Resonance Imaging (MRI), and Computerized
Tomography (CT) [6]. SR aims to estimate high-resolution (HR) images from one or more
low-resolution (LR) images, allowing for enhanced details and finer representation of image
structures [5–7]. Furthermore, recent studies [5,6,8,9] show that SR can also help deep learn-
ing models to increase their segmentation performance. This technique has shown diverse
applications, ranging from surveillance to medical imaging, offering potential advantages
in medical image analysis [5,6,8,10,11].

In the field of SR, there are two primary approaches: Single Image Super-Resolution
(SISR) and Multiple Image Super-Resolution (MISR) [5,10,12]. MISR is a computer vision
technique that enhances the resolution and quality of an image by fusing information from
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multiple low-resolution input images. SISR focuses on reconstructing the HR output image
from a single LR input image. Although both SISR and MISR methods have advantages,
MISR is more challenging because of the difficulties in obtaining several LR images of
the same object. SISR techniques have garnered acclaim for their elegant simplicity and
remarkable efficacy in HR image reconstruction from a sole LR input [13,14]. CNN-based
techniques have gained considerable traction in the SR field. Previous studies [5,8,14–17]
underscore the benefits of leveraging SISR LR images to augment the effectiveness of
deep learning models, encompassing GAN-based and Residual Group models in the SR
field. However, it is crucial to recognize that GAN-based SR methods pose significant
computational challenges. This is due to the intensive training requirements imposed by
Generative Adversarial Networks (GANs), especially when dealing with high-resolution
images. Additionally, the GAN-based methods with batch normalization behave differently
during training and inference: they rely on batch statistics during training and population
statistics during inference. These factors necessitate powerful hardware and substantial
computational resources.

In our novel approach, we embraced an Enhanced Residual network (i.e., a modified
version of the RIR structure proposed by RCAN [8]) while eschewing the incorporation of a
channel attention mechanism. This deliberate choice mitigates the computational load, par-
ticularly with HR images, rendering the process less computationally intensive and devoid
of time-consuming aspects. Also, we incorporated the naive Inception architecture [18]
into our proposed network to design parts of our proposed network (i.e., the naive In-
ception architecture was proposed for classification; it involves stacking multiple parallel
convolutional pathways of different filter sizes and pooling operations to capture features
at various scales within a single layer). In addition, we adopted dense feature fusion within
our model for multi-stage information fusion.

This research focuses on super-resolving chest X-ray images to enhance diagnostic
precision. This enhancement provides physicians with detailed imagery for more precise
analysis. Additionally, we explore cutting-edge super-resolution techniques, elucidating
the overarching architectural framework depicted in Figure 1. We employ an advanced
deep learning-based approach that utilizes residual learning to elevate the pixel resolution
of CXR images, as depicted in Figure 2. This enhancement provides physicians with
detailed imagery for more precise analysis. Additionally, we explore cutting-edge super-
resolution techniques, elucidating the overarching architectural framework depicted in
Figure 1. Furthermore, we apply bicubic downsampling by adopting the MATLAB function
imresize from HR images with a scale factor of ×4. Subsequently, we add salt-and-pepper
noise with noise levels of 0.005, 0.01, and 0.02 to each dataset.
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Figure 2. Overview of the proposed SR model. In (a), LR-to-HR transformation is depicted using
convolutional layers within a residual-in-residual network with a long skip connection. The output is
processed through an upsampling layer to generate the HR output image. (b) Each residual group
comprises four residual blocks, incorporating multiplications such as 1× 1, 3× 3, and 5× 5, depicted
in the figure. Following these blocks, there is a 1 × 1 convolution. This process repeats for each
residual group, and the outputs are concatenated before passing through a final 1 × 1 convolution
layer. (c) expiation of the RN and RG architecture inside.

The main contributions of this work can be summarized as follows:

• We harness the power of residual learning in medical CXR image SR, offering signifi-
cant advancements in diagnostic precision and image quality.

• We adopted the RIR structure with dense feature fusion and highly parallel residual
blocks comprising different kernel sizes, which enhances the diagnostic potential
of CXR images. Our architecture incorporates four meticulously designed residual
groups and blocks to extract and amplify spatial details. This facilitates the synthesis
of HR CXR images, thereby advancing diagnostic imaging quality.

• Comprehensive experiments show that our proposed model yields superior SR results
to the SOTA approaches.

• We conduct experiments involving salt-and-pepper noise, further demonstrating the
robustness and effectiveness of our proposed approach in challenging imaging conditions.

2. Related Work

Recently, deep learning (DL)-based approaches to computer vision have dramatically
outperformed traditional approaches. Single image super-resolution (SISR) and multiple
image super-resolution (MISR) are the two broad categories into which the known SR
techniques can be grouped [19,20]. This paper will primarily focus on SISR for medical
X-ray images. By leveraging certain image priors, SISR algorithms aim to produce high-
resolution (HR) images from low-resolution (LR) inputs.

2.1. Model-Based Super-Resolution Approaches

SISR algorithms can be categorized based on image priors. These algorithms in-
clude model-based methods, such as edge-based [21,22] models and image statistical
models [20,23,24], patch-based methods [18,24,25], and learning-based approaches. Model-
based approaches for super-resolution in medical imaging focus on incorporating prior
knowledge or constraints of the image formation process to reconstruct high-resolution
(HR) images from low-resolution (LR) inputs.
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One common model-based technique is the Maximum Likelihood Estimation (MLE)
framework [26]. MLE aims to maximize the likelihood of observing the LR image given
the HR image and the degradation process. It models the degradation process, such as
blurring and noise, to estimate the HR image that best explains the observed LR image.

Another widely used approach is the maximum a posteriori (MAP) estimation [22].
MAP incorporates prior information about the HR image, such as smoothness or sparsity,
into the reconstruction process. MAP produces more accurate HR images by balancing
data fidelity and prior information.

Regularization-based methods are also popular in model-based super-resolution [27].
These methods add a regularization term to the optimization problem to control the
smoothness of the reconstructed HR image. The regularization term introduces constraints
to achieve more plausible HR solutions.

2.2. Deep Learning-Based Super-Resolution Approaches

Deep learning-based SR methods employ neural networks to learn complex, non-
linear mappings that enhance image details effectively. These neural networks, often
convolutional neural networks (CNNs), are trained using large datasets to grasp intricate
relationships between LR and HR image patches, allowing for superior restoration of image
details [8,14,16,17,24].

In the realm of super-resolution, various methods exhibit remarkable advancements.
EDSR (Enhanced Deep Super-Resolution) [16] impresses with its highly accurate outcomes
and exceptional image reconstruction quality, attributed to its efficient parallel architecture.
This allows for swift processing—ideal for real-time applications—while maintaining pa-
rameter efficiency with fewer parameters than complex architectures. However, a notable
drawback is EDSR’s demand for significant computational resources, especially for high
up-scaling factors and large images, potentially hindering real-time usage on low- revise
resource devices. On the other hand, VDSR (Very Deep Super-Resolution) [14] stands out
due to Please its deep architecture, effectively capturing intricate image details and being
less susceptible to overfitting, thereby aiding generalization to unseen data. Nevertheless,
training deep models like VDSR poses challenges such as vanishing gradients, necessitating
careful initialization and precise training strategies. Residual Dense Networks (RDN) [17]
enhance information flow through skip connections and dense connectivity. Still, this
advantage is balanced with increased model complexity and heightened memory usage,
potentially limiting deployment on memory-constrained devices. These considerations
highlight the trade-offs between efficiency and complexity in pursuing superior super-
resolution methods. Shifting focus to Residual Channel Attention Networks (RCAN) [8],
this innovative approach integrates an attention mechanism, enabling the model to priori-
tize critical features and significantly enhance reconstruction quality. RCAN introduced
the residual-in-residual (RIR) structure, incorporating residual groups (RG) and long skip
connections (LSC). Each RG comprises Residual Channel Attention Blocks (RCAB) with
short skip connections (SSC). This innovative residual-in-residual architecture enables the
training of very deep convolutional neural networks (CNNs) with over 400 blocks (i.e.,
the number of residual blocks in RCAN), significantly improving image super-resolution
(SR) performance.

GAN-based super-resolution methods, such as SNSRGAN (Spectral-Normalizing
Super-Resolution Generative Adversarial Network) [5], (i.e., using the same dataset and
scale factor as our proposed model) and SRGAN (Super-Resolution Generative Adversar-
ial Network) [28], showcase the immense potential of propelling image super-resolution,
aiming to generate highly realistic high-resolution images. However, it is crucial to ac-
knowledge and address two prominent challenges prevalent in these methods: Training
Instability and Difficulty in Evaluation, which include the noteworthy impact of batch
normalization (BN). BN utilizes batch statistics during training and population statistics
during inference, potentially leading to inconsistencies and suboptimal results when transi-
tioning from training to inference, consequently impacting the final quality of the generated
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high-resolution images. Training GANs for super-resolution introduces instability issues,
often including problems like mode collapse, presenting significant obstacles to effective
training and fine-tuning. Furthermore, accurately evaluating the performance of GAN-
based SR methods remains a formidable task due to the absence of a well-defined objective
metric, making the precise quantification of improvements a challenging endeavor.

This paper introduces a residual network that excludes batch normalization and chan-
nel attention, particularly tailored for X-ray image super-resolution. Notably, performing
super-resolution on X-ray images adds more complexity than normal images (i.e., restoring
fine details on X-ray images is very challenging). This study addresses this complexity
by employing a deep learning-based super-resolution method incorporating a residual
network (RN) specifically designed for chest X-ray images. We concentrate on chest X-ray
images as our target data, aiming to overcome the intricacies of super-resolution effectively.

3. Methodology

This section will introduce the deep architecture and formulation of the proposed
model using a convolutional residual network. The architecture of the model is shown in
Figure 2.

Network Overview

Our proposed network comprises three functional components, as illustrated in Figure 2.
The initial segment of our network employs a single convolutional layer to extract shallow
features, denoted as NSF, from the low-resolution (LR) ILR input.

NSF = WSF(ILR) (1)

where WSF is the convolution layer’s shallow features. These shallow features are then used
for deep feature extraction, denoted as FDF, within the main network. The final functional
component is the upscaling part, denoted as FUP.

IHR = FUP(FDF + NSF) (2)

Deep feature extraction: Following RCAN [8], we adopted the residual-in-residual
(RIR) structure, denoted as NRIR, consisting of four residual groups (RG)—FRG—and a long
skip connection (LSC). Each RG further comprises four residual blocks (RB)—FRB—(refer
to Figure 3) involving a concatenation of three different kernel sizes along with a short skip
connection (SSC).

FDF = NRIR(FSF(ILR)) (3)
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Figure 3. Residual block enhances deep feature extraction through parallel processing with different
kernel sizes (i.e., 1 × 1, 3 × 3, and 5 × 5). The extracted features are then concatenated and fused to
generate the residual block output. A short skip connection is used to concentrate more on extracting
high-frequency details.
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This residual-in-residual structure facilitates the training of a highly performant CNN
with a deep structure for image SR. Remarkably, our approach is less time-consuming than
that of the RCAN model while delivering superior results that surpass the performance
achieved by the RCAN model (i.e., when using the same number of blocks).

Residual Group (RG): Following RDN [17], we adopted dense feature fusion (DFF),
denoted as FDFF, within our RG to better utilize features extracted from the RBs hierarchi-
cally in a global way. Therefore, the features generated from the four RBs are concatenated
along with the RG input and fused using a 1 × 1 convolution layer.

FRG = FDFF(FRB1,FRB2,FRB3,FRB4) (4)

Residual Block (RB): Following Inception [18], we adopted the design of the naive
version without using max pooling, as shown in Figure 3. The improvement of deep feature
extraction within the residual block is achieved by simultaneously processing with various
kernel sizes (namely, 1 × 1, 3 × 3, and 5 × 5), each followed by a LeakyReLU.

T1×1 = Conv1×1 + LeakyReLu(T−1)

T3×3 = Conv3×3LeakyReLu(T−3)

T5×5 = Conv5×5LeakyReLu(T−5) (5)

The features obtained from this process are then merged and blended to create the
output of the residual block.

EDF = Tcon(T1×1, T3×3, T5×5) (6)

where EDF(.) and Tcon(.) denote the RB in deep feature extraction and kernel size output
concatenation. Additionally, a skip connection is incorporated to focus more on capturing
high-frequency details.

FRB = FRB−a + EDF (7)

FRB = LeakyReLu(Fskip) (8)

Upscaling Layer: The final extracted features (output of the RIR part) are then applied
to the pixel shuffler layer to increase the spatial size [22]. Supposing the input to the pixel
shuffler layer is the size of (H, W, C), the output generated is size (H/α, W/α, C/α2), where
C represents the number of input channels and α represents the super-resolution factor (i.e.,
α = 4 in this article). Finally, the output of the pixel shuffler is applied to a convolutional
layer with a kernel size of 3 × 3 to produce the final HR image.

4. Experiment
4.1. Datasets

This paper utilizes two chest X-ray datasets: Chest X-ray 14 [29] and Chest X-ray
2017 [30] and Chest X-ray 2017 comprises 5856 images from pediatric cases, with 4273 labeled
as pneumonia (referred to as CXR 2) and 1583 as normal (referred to as CXR 3). We utilized
the same dataset as SNSRGAN [5]. The dataset is split into training and testing sets, with
550 normal and 320 pneumonia images in the training set and 32 in the test set. The dataset
characteristics and distribution are further illustrated in Table 1.

On the other hand, Chest X-ray 14, referred to as CXR1 in this paper, comprises
112,120 frontal-view chest X-ray images from 30,805 unique patients in the published NHCC
American Research Hospital 2014 database [29]. Each image has a size of 1024 × 1024 pixels
with 8-bit grayscale values [5]. Board-certified radiologists have annotated 880 bounding
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boxes for eight pathologies. For our analysis, we use the 32 annotated images as the testing
set [5] and randomly select 250 images as the training set.

Table 1. Dataset characteristics and distribution.

Scale
CXR1 [29] CXR2 [30] CXR3 [30]

Test Train Test Train Test Train

×2 32 250 87 550 185 880
×4 32 250 87 550 185 880
×8 32 250 87 550 185 880

4.2. Implementation Details

All experiments were conducted on a 16-core Intel(R) Core(TM) i7-11700K processor
with NVIDIA TITAN Xp 32 GB GPUs, ensuring consistency and objectivity. For the training
dataset, we extracted accurate patches with sizes of 16 × 16 and 64 × 64 for input and
ground-truth images, respectively, using a stride of one. This comprehensive dataset
comprises 102,400 input and corresponding ground-truth patches, providing a substantial
volume for robust training. Additionally, we utilized a batch size of 32 during the training
process, and our implementation is based on high-level Python (TensorFlow).

4.3. Training Settings

We employ a bicubic kernel-based downsampling technique with a downsampling
factor of r = 2k (where k ∈ Z) to transform HR images into LR images, following the
methodology outlined in SNSR-GAN. The model training process is optimized using the
ADAM optimizer [31] with parameters β1 = 0.9, β2 = 0.999, and ε = 10−8. We initially
set the learning rate to 2 × 10−4, with a subsequent exponential reduction by a factor
of 0.1 every 120 epochs. Various loss functions are employed during the convolutional
neural network (CNN) training, including L2 (sum of squared differences) and L1 (sum
of absolute differences). As observed by Zhao et al. [5], L1 loss often outperforms L2 loss
when assessing image quality using metrics such as Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM). In our study, we trained our proposed network to
minimize the L1 distance between the original CXR input images and their corresponding
ground-truth images [32].

In this paper, we compare the proposed method with the traditional interpolation meth-
ods, including nearest-neighbor (NN) [1] and bicubic interpolation [2], as well as several
SOTA approaches, including SRCNN [15], VDSR [14], EDSR [16], RDB [17], SNSRGAN [5],
and RCAN [8]. For fair comparison, we retrained on the same datasets we used to train our
proposed model [29,30].

4.4. Evaluation Metrics

In image processing, quality assessment metrics are essential for evaluating the fidelity
of reconstructed content. PSNR assesses quality by comparing the original and recon-
structed signals, considering noise as interference. It quantifies the signal and noise power
relationship, with higher PSNR values indicating superior quality, which is formulated as
Equation (9). It is calculated based on the mean squared error (MSE) between the original
and the processed images, considering the maximum possible pixel value (MAX), such as
255 for an 8-bit image. Higher PSNR values indicate better image quality [33].

PSNR = 10× log10

(
MAX2

MSE

)
(9)

SSIM considers luminance, contrast, and structural information, reflecting pixel-wise
similarity and preserving structural elements, making it a more perceptually meaningful
metric. Formulated as Equation (10), it involves comparing images at multiple resolutions,
capturing both fine and coarse details. The SSIM index is calculated based on the means
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(µχµy), variances (σ2
x + σ2

y ), and covariance (σxy) of images x and y. Constants C1 and C2
are used to avoid instability when the denominator is close to zero. The SSIM value ranges
from −1 to 1, where 1 indicates perfect similarity [34].

SSIM(x, y) =

(
2µχµy + C1

)(
2σxy + C2

)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(10)

Though less common, MSIM (multi-scale structure similarity index) is valuable as
it captures average information loss during image compression, which is formulated as
Equation (11) [34].

MSIM = (IN
i=1(SSIMi)

αi )
1
N (11)

Lower MSIM values indicate superior compression quality, implying more faithful
retention of structural information. These metrics collectively enable a robust evaluation of
image processing methods, contributing to advancements in visual content enhancement
and compression techniques. The specific formula for MSIM involves the product of the
SSIM values at each scale, raised to the power of the corresponding weight (αi). The
weighted product is then raised to the power of the reciprocal of the number of scales (N),
providing a comprehensive multi-scale evaluation of structural similarity across different
image detail levels. This paper complements qualitative assessments with quantitative
measurements using PSNR, SSIM, and MSIM.

5. Results and Discussion
5.1. Comparisons with SOTA Methods

This research paper covers extensive experiments with deep learning-based SR meth-
ods. We are comparing our proposed model to these established approaches. These metrics
offer a robust quantitative assessment. The objective was to enhance chest X-ray images’
visual quality and resolution, specifically those from three distinct datasets: CXR 1, CXR 2,
and CXR 3. To evaluate the performance of these methods, we employed three key quality
metrics—the PSNR, SSIM, and MSIM—to measure the fidelity and similarity between the
super-resolved and ground-truth images. First, we set bicubic interpolation as a baseline
and compared our efficiency against it; we achieved a PSNR improvement of 2.36 dB,
2.86 dB, and 4.47 dB on CXR 1, CXR 2, and CXR 3, respectively. In addition, visual results
have shown that traditional interpolation methods excessively smooth out details, leading
to noticeable results. In other words, these methods compromise fine details, which is
unsuitable for medical images.

Subsequently, we compared our proposed model with SOTA deep learning-based SR
techniques, including SRCNN, VDSR, EDSR, RDN SNSRGAN, and RCAN Table 2.

Table 2. Numerical comparison of super-resolved chest X-ray images, up-scaled by factors of
2×, 4×, and 8×. The PSNR, SSIM, and MSIM are presented with bolded values to indicate the
best performance.

Scale Methods
CXR1 [29] CXR2 [30] CXR3 [30]

PSNR/SSIM/MSIM PSNR/SSIM/MSIM PSNR/SSIM/MSIM

X2

BICUBIC [24] 34.82 dB/0.787/0.86 32.42 dB/0.824/0.873 29.96 dB/0.797/0.875
SRCNN [18] 35.52 dB/0.717/0.891 32.28 dB/0.829/0.929 30.17 dB/0.812/0.891
VDSR [14] 35.62 dB/0.837/0.950 33.85 dB/0.871/0.936 33.83 dB/0.862/0.923
EDSR [16] 35.80 dB/0.896/0.977 34.35 dB/0.873/0.935 33.92 dB/0.892/0.949
RDN [17] 36.72 dB/0.915/0.962 34.65 dB/0.892/0.948 35.12 dB/0.902/0.961
RCAN [8] 36.95 dB/0.926/0.972 35.02 dB/0.901/0.953 36.77 dB/0.908/0.963

PROPOSED 37.11 dB/0.936/0.9825 36.15 dB/0.912/0.968 37.89 dB/0.918/0.979
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Table 2. Cont.

Scale Methods
CXR1 [29] CXR2 [30] CXR3 [30]

PSNR/SSIM/MSIM PSNR/SSIM/MSIM PSNR/SSIM/MSIM

X4

BICUBIC [24] 37.35 dB/0.907/0.940 34.51 dB/0.901/0.910 33.35 dB/0.907/0.910
SRCNN [18] 38.32 dB/0.9392/0.941 35.28 dB/0.921/0.929 35.62 dB/0.912/0.932
VDSR [14] 38.42 dB/0.938/0.940 35.69 dB/0.917/0.936 35.93 dB/0.92/0.938
EDSR [16] 38.60 dB/0.944/0.967 36.02 dB/0.925/0.945 36.82 dB/0.932/0.959
RDN [17] 38.52 dB/0.939/0.972 35.85 dB/0.912/0.968 36.22 dB/0.925/0.958
RCAN [8] 39.55 dB/0.947/0.982 36.92 dB/0.927/0.972 37.77 dB/0.921/0.953

PROPOSED 39.76 dB/0.944/0.991 37.38 dB/0.932/0.989 37.82 dB/0.937/0.982

X8

BICUBIC [24] 29.18 dB/0.773/0.820 28.21 dB/0.751/0.810 28.55 dB/0.767/0.820
SRCNN [18] 29.32 dB/0.792/0.841 29.08 dB/0.781/0.839 29.62 dB/0.792/0.832
VDSR [14] 30.62 dB/0.838/0.890 31.69 dB/0.841/0.896 30.13 dB/0.882/0.898
EDSR [16] 30.91 dB/0.844/0.907 31.02 dB/0.849/0.902 30.62 dB/0.892/0.939
RDN [17] 32.12 dB/0.849/0.912 32.85 dB/0.871/0.928 31.95 dB/0.872/0.928
RCAN [8] 32.87 dB/0.859/0.932 32.92 dB/0.897/0.952 33.87 dB/0.881/0.9453

PROPOSED 33.17 dB/0.865/0.942 33.48 dB/0.912/0.968 34.40 dB/0.901/0.9625

The numerical results of different scale factors, illustrated in Table 2, present quanti-
tative comparisons for ×4 SR. Among all previous methods, our proposed model consis-
tently outperforms others across all datasets. Comparatively, SR methods relying on GANs
produce more visually compelling results than other SOTA approaches. Nonetheless, a
drawback arises regarding information loss when selectively enlarging areas of concern,
as illustrated in Figure 4, which could impact diagnostic accuracy. Upon comparing the
numerical results, we observed that RCAN performs the best after our proposed model.
The enhancement in performance can be attributed to the additions and modifications
incorporated in our model, such as dense feature fusion and highly parallel residual blocks.
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are presented.
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Our study thoroughly explored diverse SR techniques, providing an analysis of their
performance on various chest X-ray datasets. The comprehensive evaluation, which in-
cludes PSNR, SSIM, and MSIM metrics, highlights the potential of our proposed model as a
robust solution for improving chest X-ray image quality. Additionally, we introduced noise
at scale factors of ×2 and ×8 to assess the model’s performance under different conditions,
further demonstrating its versatility and efficacy in enhancing chest X-ray images across
various scenarios Table 2.

Furthermore, we conducted comparisons of datasets scaled by a factor of ×4, eval-
uating the performance of our proposed model against a GAN-based super-resolution
model, specifically the SNSRGAN [5] model. While the SNSRGAN model demonstrated
good performance on grayscale images, our proposed model surpasses its performance, as
illustrated in Table 3.

Table 3. Numerical comparison of super-resolved chest X-ray images, up-scaled by a factor of 4×.
The PSNR, SSIM, and MSIM are presented with bolded values to indicate the best performance.

Methods
CXR 1 [29] CXR2 [30] CXR3 [30]

PSNR/SSIM/
MSIM

PSNR/SSIM/
MSIM

PSNR/SSIM/
MSIM

RCAN [8] 39.55 dB/0.947/0.982 36.92 dB/0.927/0.960 37.77 dB/0.931/0.953
SNSRGAN [5] 35.99 dB/0.924/0.983 35.87 dB/0.910/0.979 36.28 dB/0.915/0.943
PROPOSED 39.76 dB/0.944/0.991 37.38 dB/0.932/0.989 37.82 dB/0.937/0.982

5.2. Comparisons with SOTA Methods on Noisy Images

In this section, we delve into the experimental results concerning the efficacy of our
proposed super-resolution model in enhancing noisy images, particularly those afflicted
with salt-and-pepper noise—random isolated pixels of extreme brightness or darkness that
distort the image [35]. Our investigation utilizes a scaling factor ×4 dataset comprising
chest X-ray (CXR) images deliberately corrupted with varying noise levels (0.005, 0.01, and
0.02) to simulate different degrees of image distortion (Table 4). We compare our proposed
model against several state-of-the-art super-resolution algorithms, including BICUBIC,
SRCNN, VDSR, EDSR, RDN, RCAN, and SNSRGAN for noisy LR images.

Our experimental findings, meticulously outlined in Table 4, underscore the superior
performance of our proposed model across various noise levels and CXR datasets (CXR1,
CXR2, CXR3) on×4 scaling factors. Notably, at a noise level of 0.005, our model consistently
surpasses baseline methods, yielding substantial improvements in Peak Signal-to-Noise
Ratio (PSNR) of 14.29% (CXR1), 12.5% (CXR2), and 12.5% (CXR3), alongside corresponding
Structural Similarity Index (SSIM) values of 0.806, 0.818, and 0.801, respectively.

Table 4. Numerical noisy image comparison of super-resolved chest X-ray images, up-scaled by
a factor of 4×. The PSNR, SSIM, and MSIM are presented with bolded values to indicate the
best performance.

Scale
Methods

CXR1 CXR2 CXR3

Noise PSNR/SSIM/MSIM PSNR/SSIM/MSIM PSNR/SSIM/MSIM

X4
S&P 0.005

BICUBIC [24] 20.60 dB/0.606/0.628 19.23 dB/0.574/0.609 19.20 dB/0.552/0.687
SRCNN [18] 21.90 dB/0.670/0.723 22.35 dB/0.652/0.701 21.90 dB/0.572/0.680
VDSR [14] 23.12 dB/0.691/0.741 26.52 dB/0.684/0.719 23.12 dB/0.590/0.740
EDSR [16] 31.43 dB/0.708/0.791 31.86 dB/0.701/0.881 31.47 dB/0.797/0.807
RDN [17] 32.39 dB/0.797/0.890 32.45 dB/0.827/0.894 32.39 dB/0.806/0.893
RCAN [8] 32.21 dB/0.798/0.842 32.42 dB/0.801/0.870 32.21 dB/0.798/0.842

SNSRGAN [5] 31.67 dB/0.7944/0.890 29.33 dB/0.802/0.8903 31.67 dB/0.794/0.890
PROPOSED 32.43 dB/0.806/0.893 32.57 dB/0.818/0.892 32.43 dB/0.8008/0.8916
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Table 4. Cont.

Scale
Methods

CXR1 CXR2 CXR3

Noise PSNR/SSIM/MSIM PSNR/SSIM/MSIM PSNR/SSIM/MSIM

X4
S&P 0.01

BICUBIC [24]
SRCNN [18]

7.23 dB/0.013/0.011 7.18 dB/0.011/0.012 7.13 dB/0.010/0.011
10.80 dB/0.026/0.034 9.08 dB/0.013/0.022 10.03 dB/0.042/0.023

VDSR [14] 11.75 dB/0.045/0.047 12.28 dB/0.035/0.033 14.23 dB/0.045/0.054
EDSR [16] 19.43 dB/0.22/0.15 17.28 dB/0.19/0.13 18.39 dB/0.170/0.14
RDN [17] 20.47 dB/0.17/0.230 19.27 dB/0.21/0.17 19.23 dB/0.193/0.191
RCAN [8] 20.04 dB/0.28/0.207 18.12 dB/0.19/0.16 18.17 dB/0.174/0.148

SNSRGAN [5] 15.18 dB/0.160/0.19 16.22 dB/0.12/0.19 16.22 dB/0.154/0.172
PROPOSED 21.07 dB/0.305/0.2055 20.13 dB0.221/0.197 20.04 dB/0.217/0.195

X4
S&P 0.02

BICUBIC [24]
SRCNN [18]

6.98 dB/0.011/0.010 6.83 dB/0.0092/0.011 6.62 dB/0.010/0.0091
10.45 dB/0.02/0.028 7.3 dB/0.011/0.019 8.7 dB/0.021/0.019

VDSR [14] 11.80 dB/0.036/0.044 10.27 dB/0.028/0.056 10.43 dB/0.039/0.047
EDSR [16] 19.33 dB/0.263/0.1804 16.95 dB/0.168/0.140 18.02 dB/0.151/0.137
RDN [17] 20.06 dB/0.27/0.20 19.15 dB/0.192/0.197 18.97 dB/0.173/0.17
RCAN [8] 19.65 dB/0.24/0.18 17.23 dB/0.171/0.12 17.15 dB/0.161/0.132

SNSRGAN [5] 14.20 dB/0.13/0.15 7.3 dB/0.011/0.019 15.83 dB/0.142/0.157
PROPOSED 22.04 dB/0.260/0.178 15.23 dB/0.175/0.12 19.04 dB/0.198/0.175

Further analysis reveals the intricate challenges posed by noise levels ranging from
0.01 to 0.02 in LR images, where traditional methods struggle to extract high-level noise
details effectively. However, our proposed RN model demonstrates remarkable capabil-
ities in managing such noise complexities, effectively suppressing noise and recovering
additional image details in most scenarios. The detailed comparison provided in Table 4
highlights the significant advantage of our RN model over existing methods, particularly
in its ability to handle diverse noise levels and enhance image quality. This comparison
solidifies the efficacy of our proposed approach and suggests its potential for integration
with complementary techniques such as super-resolution and image denoising.

5.3. Ablation Study

We evaluate six distinct architectures to illustrate the impact of various components
in the model, as presented in Table 5. All models listed in Table 5 share the same residual
groups and blocks, where RG, RB, and f denote the number of Residual Groups, Residual
Blocks, and filters for each convolutional layer, respectively. Having constructed our
model on the residual-in-residual structure, we conducted a comparison with RCAN.
We assessed the impact of the modified residual block (specifically, the highly parallel
residual block with varying kernel sizes). We examined the influence of incorporating
the channel attention mechanism (CA), which we did not utilize. The first four rows of
results shoFwcase our outcomes with and without the use of the CA; without the use of
concatenation, with the CA; and the CA, while the fifth and sixth rows present the results
of the RCAN model with and without the use of the CA.

The model performs better when not using the CA, contrary to what was suggested in
RCAN. This discrepancy is reasonable, considering the distinct nature of the chest X-ray
images. Furthermore, comparing the results in the second and fifth rows demonstrates that
our proposed model exhibited exceptional performance across all datasets, surpassing the
RCAN method in terms of PSNR.

Furthermore, in our study, we emphasize using skip connections and concatenation.
Specifically, our model integrates concatenation with long skip connection within each
residual block.
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Table 5. Numerical evaluation (PSNR/SSIM) of four distinct models, all featuring an identical
number of residual groups and blocks. The outcomes of the suggested model are bolded.
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3    39.18 dB/0.948 37.83 dB/0.917 37.43 dB/0.937 
4    38.98 dB/0.942 37.41 dB/0.902 37.14 dB/0.935 

RCAN [8] RB CXR 1 CXR 2 CXR 3 

RG = 4, RB = 4  
f = 64 

 CA Concatenation Skip  
connection PSNR/SSIM PSNR/SSIM PSNR/SSIM 

5    39.55 dB/0.947 36.92 dB/0.927  37.77 dB/0.931 
6    39.67 dB/0.94  37.7 dB/0.93  37.59 dB/0.93 

Furthermore, in our study, we emphasize using skip connections and 
concatenation. Specifically, our model integrates concatenation with long skip 
connection within each residual block. 

6. Conclusions 
In this work, we introduced a learning-based super-resolution approach specifically 

tailored to enhance chest X-ray images. By harnessing the inherent strength of the resid-
ual-in-residual structure, we have meticulously designed our network to extract deep 
features effectively. Through the integration of dense feature fusion and the utilization of 
highly parallel residual blocks, we have further fortified the network’s capacity to com-
prehend and model intricate relationships within the images, consequently restoring 
finer texture details and enhancing overall quality. Moreover, through comparative 
analysis with noisy images using various super-resolution models, our findings indicate 
that our proposed model exhibits significant denoising capabilities for low-resolution 
images. Across diverse datasets, our proposed model has consistently demonstrated ex-
ceptional performance, outperforming existing methods in terms of Peak signal-to-noise 
ratio (PSNR). This highlights the remarkable capability of our model to enhance the 
quality of chest X-ray images, thereby positioning it as a robust solution for comprehen-
sive image enhancement in medical imaging applications. 
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In this work, we introduced a learning-based super-resolution approach specifically
tailored to enhance chest X-ray images. By harnessing the inherent strength of the residual-
in-residual structure, we have meticulously designed our network to extract deep features
effectively. Through the integration of dense feature fusion and the utilization of highly
parallel residual blocks, we have further fortified the network’s capacity to comprehend
and model intricate relationships within the images, consequently restoring finer texture
details and enhancing overall quality. Moreover, through comparative analysis with noisy
images using various super-resolution models, our findings indicate that our proposed
model exhibits significant denoising capabilities for low-resolution images. Across diverse
datasets, our proposed model has consistently demonstrated exceptional performance,
outperforming existing methods in terms of Peak signal-to-noise ratio (PSNR). This high-
lights the remarkable capability of our model to enhance the quality of chest X-ray images,
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