
Citation: Zhang, M.; Van Beeck, K.;

Goedemé, T. Enhancing Embedded

Object Tracking: A Hardware

Acceleration Approach for Real-Time

Predictability. J. Imaging 2024, 10, 70.

https://doi.org/10.3390/

jimaging10030070

Academic Editors: Pier Luigi Mazzeo

and Alessandro Bruno

Received: 23 January 2024

Revised: 3 March 2024

Accepted: 11 March 2024

Published: 13 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Enhancing Embedded Object Tracking: A Hardware
Acceleration Approach for Real-Time Predictability
Mingyang Zhang * , Kristof Van Beeck and Toon Goedemé

PSI-EAVISE Research Group, Department of Electrical Engineering, KU Leuven,
2860 Sint-Katelijne-Waver, Belgium; kristof.vanbeeck@kuleuven.be (K.V.B.); toon.goedeme@kuleuven.be (T.G.)
* Correspondence: mingyang.zhang@kuleuven.be

Abstract: While Siamese object tracking has witnessed significant advancements, its hard real-
time behaviour on embedded devices remains inadequately addressed. In many application cases,
an embedded implementation should not only have a minimal execution latency, but this latency
should ideally also have zero variance, i.e., be predictable. This study aims to address this issue by
meticulously analysing real-time predictability across different components of a deep-learning-based
video object tracking system. Our detailed experiments not only indicate the superiority of Field-
Programmable Gate Array (FPGA) implementations in terms of hard real-time behaviour but also
unveil important time predictability bottlenecks. We introduce dedicated hardware accelerators for
key processes, focusing on depth-wise cross-correlation and padding operations, utilizing high-level
synthesis (HLS). Implemented on a KV260 board, our enhanced tracker exhibits not only a speed
up, with a factor of 6.6, in mean execution time but also significant improvements in hard real-time
predictability by yielding 11 times less latency variation as compared to our baseline. A subsequent
analysis of power consumption reveals our approach’s contribution to enhanced power efficiency.
These advancements underscore the crucial role of hardware acceleration in realizing time-predictable
object tracking on embedded systems, setting new standards for future hardware–software co-design
endeavours in this domain.

Keywords: deep learning; object tracking; siamese network; FPGA; real-time system predictability;
hardware acceleration; high-level synthesis; embedded system

1. Introduction

The realm of object tracking has undergone a significant transformation in recent years,
driven predominantly by the advent of deep learning techniques. Among the various
approaches, Siamese networks have emerged as a leading solution, proficiently addressing
the complexities of object appearance, scale variations, and occlusions [1]. Originating
in the domain of image recognition and classification, these networks have been adeptly
adapted to the dynamic requirements of object tracking. However, their deployment in
real-world applications, particularly on embedded devices, poses substantial challenges.
Many application cases require a hard real-time system, that is designed to meet strict time
constraints, with a guaranteed response time for its critical tasks. A hard real-time tracker
should thus have a small execution latency for each video frame, which moreover ideally is a
constant, non-varying number. The real-time predictability of deep learning-based trackers,
especially those initially designed for desktop GPU environments, remains a critical concern.
Field-Programmable Gate Arrays (FPGAs) offer a promising solution, leveraging their
parallel processing capabilities, efficient resource utilization, and reconfigurability to boost
performance and minimize the power consumption of neural networks compared to
conventional CPUs and GPUs [2]. While existing studies have delved into the FPGA
acceleration of neural networks, the specific analysis of real-time predictability in such
implementations has often been neglected. This gap underscores the urgent need for

J. Imaging 2024, 10, 70. https://doi.org/10.3390/jimaging10030070 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10030070
https://doi.org/10.3390/jimaging10030070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-8530-6257
https://orcid.org/0000-0002-3667-7406
https://orcid.org/0000-0002-7477-8961
https://doi.org/10.3390/jimaging10030070
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10030070?type=check_update&version=1

J. Imaging 2024, 10, 70 2 of 17

comprehensive research into FPGA-accelerated Siamese trackers, especially focusing on
integrating complex features, as demonstrated by advanced models like SiamRPN++ [3].

Addressing this gap, our paper presents a dual-faceted approach. Firstly, we present
a novel, detailed analysis of the real-time predictability of components within a deep
learning-based object tracking system. This analysis aims to identify and address the
bottlenecks that impede real-time performance. Based on our findings, we subsequently
propose the design of two dedicated hardware accelerators, specifically tailored to alleviate
the identified bottlenecks. This approach represents a significant shift from conventional
methodologies, which often prioritize accuracy and tracking performance without due
consideration for real-time operational constraints.

Our solution leverages the synergy of a heterogeneous system, combining the versa-
tility of CPU processing with the parallel processing prowess of FPGA technology. This
combination is particularly effective in enhancing the real-time predictability of the tracking
system, which is a crucial requirement for many practical applications. The experimental
results presented in this paper not only demonstrate improvements in runtime efficiency
but also, and perhaps more importantly, mark significant strides in achieving real-time
predictability. These improvements are especially pronounced with the integration of the
dedicated hardware accelerators.

Moreover, an integral aspect of our research delves into the power consumption of
these embedded systems. By measuring and analysing the power efficiency under various
hardware configurations, our study brings to light the energy aspects of hardware accelera-
tion in object tracking. This dimension of power efficiency is critical in embedded systems.
Our findings in this regard offer valuable insights into power usage optimization, thus
contributing to the development of more sustainable and energy-efficient tracking systems.

In summary, this work shines a light on the attainable synergy between hardware
acceleration and real-time object tracking by addressing the often-overlooked aspects of
predictability in related works. By demonstrating substantial improvements in mean
speed, speed variance, and worst-case speed by factors of 6.6, 11.5, and 6.9, respectively,
our methodology showcases a promising blueprint for refining real-time performance
in the realm of object tracking. It sets new standards in the efficient and predictive im-
plementation of Siamese networks in embedded systems, potentially paving the way for
future research focused on balancing performance, predictability, and power efficiency in
real-time applications.

2. Related Work

Visual tracking, a crucial subfield of computer vision, has experienced substantial
advancements over the years. This section revisits the key milestones in object tracking,
highlighting the evolution from traditional methods to deep learning-based approaches,
and focuses on the role of hardware acceleration in embedded systems.

2.1. Object Tracking

Visual tracking began with classical methods, such as the Mean Shift [4–6] and Kalman
Filter [7–9] methods, relying on colour histograms and motion prediction. Despite their
foundational impact, these techniques often struggled in complex scenarios, such as those
involving occlusions and rapid motion changes.

The integration of machine learning brought forth methods like TLD [10] and Struck [11],
which combined tracking and detection mechanisms, improving adaptability to changes
in object appearance. The major transformation, however, occurred with the advent of
deep learning in tracking. CNNs, as seen in MDNet [12] and GOTURN [13], significantly
advanced feature extraction and object localization in tracking. MDNet’s multi-domain
learning and GOTURN’s regression-based approach marked critical improvements. The
use of RNNs, particularly LSTM units in ROLO [14] and GANs in SINT++ [15], further
diversified deep learning applications in tracking, enhancing their capability in complex
visual scenarios.

J. Imaging 2024, 10, 70 3 of 17

Siamese networks, introduced in SiamFC [16], have been particularly effective in object
tracking. Employing a novel cross-correlation layer, this architecture balances accuracy and
speed. The SA-Siam [17] tracker learns semantic and appearance features in two dedicated
branches to keep the heterogeneity of the two types of features. The SiamRPN tracker,
introduced in [18], incorporates a region proposal network (RPN), as proposed in [19], into
the Siamese architecture, thereby improving the accuracy of bounding box prediction. The
SiamRPN++ tracker [3] introduces several complex features to extend the capabilities of
the SiamRPN tracker. Notably, it employs ResNet50 [20] as the backbone network, which is
a departure from the conventionally used AlexNet [21] in previous works. This deeper and
more complex network enhances the extraction of richer and more discriminative features,
thereby boosting the tracker’s adaptability and accuracy across diverse tracking scenarios.
The SiamRPN++ tracker also incorporates feature aggregation from various backbone
levels. This multi-level feature aggregation allows the tracker to collect a broader spectrum
of object information, including high-level semantic features and low-level texture details.
To maximize the utility of the features extracted from different layers of ResNet50, the
authors introduced depth-wise cross-correlation, which generates a fine-grained similarity
map for more precise tracking.

Recent progress in object tracking has witnessed a notable shift towards transformer-
based methods, as these models excel in capturing complex spatial and temporal dynamics.
Trackers like STARK [22], TrDiMP/TrSiam [23], TransT [24], and others, following the
leads of ViT [25], DETR [26], and Swin Transformer [27], have adopted transformers to
enhance tracking capabilities. These trackers utilize the transformer’s powerful feature
extraction and context comprehension capabilities. However, the practical deployment
of these sophisticated models on embedded systems faces significant challenges. Their
high computational requirements and the nascent stage of transformer model quantization
research make them less suitable for low-power, embedded applications where real-time
processing and energy efficiency are paramount.

2.2. Embedded System Acceleration

While Siamese trackers have shown significant advancements in object tracking accu-
racy, their deployment on embedded devices, and particularly in real-time systems, is an
aspect that still warrants exploration. Real-time systems are characterized by their need
for both logical correctness and timely response. In these systems, predictability, which
ensures consistent performance, is critical.

The existing literature includes several works that have taken strides in this area.
For example, a notable work is [28], where the authors introduced a refined Siamese
tracker based on SiamFC, termed MiniTracker. This tracker with post-training network
quantization and pruning was deployed on a ZedBoard with a ZCU102 core, with FPGA
resources manually allocated to different parts of the MiniTracker accelerator. However, the
discussion surrounding the preprocessing and postprocessing stages, which typically run
on the CPU, was notably absent in this work. This omission is significant as these stages
could potentially impact the tracker’s real-time predictability.

Similarly, in [29], the authors optimized a SiamFC-like Siamese tracker for FPGA
implementation. They evaluated the impact of quantization settings and backbone archi-
tecture on tracking accuracy, thus providing insights into the effect of quantization on
the performance of Siamese Neural Networks. However, the precise architecture of the
tracker was not clearly articulated, and the quantized tracker was not implemented on an
actual FPGA, thereby complicating the reproduction and further development of other
Siamese trackers.

The authors of [30] developed a tiny network with low computation requirements to
enhance real-time performance with an acceptable accuracy drop. However, their tracker
was not implemented on embedded devices, but instead on a desktop GPU.

In [31], a Siamese tracker based on the PYNQ framework was implemented on a
ZCU104 board. Two IP cores were designed in this heterogeneous system to accelerate

J. Imaging 2024, 10, 70 4 of 17

the Siamese network and the RPN in programmable logic (PL). The paper, however, did
not clearly describe the Siamese tracker’s exact structure or the quantization setting used,
making reproduction or improvement of the results challenging.

The authors of [32] introduced a hardware–software implementation of SiamFC on
the ZCU104 platform. Their work examined the impact of quantization and parallelization
settings on the accuracy and speed of the SiamFC implementation on FPGA. They provided
a timing analysis of the tracker’s different components, a detail absent in previous works.
However, this analysis did not include the maximum value or the standard deviation of
execution time, which are critical metrics indicating the predictability of a real-time system.

Several gaps are evident in the existing literature on Siamese trackers’ hardware accel-
eration. Previous works focused on implementing SiamFC or similar trackers, neglecting
recent features that enhance tracker performance, such as bounding box regression or
feature aggregation from different levels. While these works claimed to improve real-time
performance, they did not provide evidence of improved predictability in the real-time
tracking system.

3. Real-Time Performance Analysis

In this section, we analyse the real-time predictability of the quantized SiamRPN++
tracker implemented on an embedded system, focusing on identifying potential bottlenecks.
The results of our experiments serve as a baseline for further enhancements.

3.1. SiamRPN++ Tracker

As noted in Section 2, previous hardware implementations of Siamese trackers often
lack complex components such as deep backbones, multi-layer features, and bounding box
regression. Recognizing this gap, we chose the SiamRPN++ [3] tracker for its inclusion
of these features, which not only enhances performance but also adds complexity to the
hardware implementation.

The SiamRPN++ architecture employs a ResNet50 [20] backbone, as shown in Figure 1,
for feature extraction from template and search frames. The ‘neck’ part processes these
features, ensuring dimension uniformity, while the ‘head’ conducts depth-wise cross-
correlation before producing classification and bounding box regression maps.

1 × 1
Conv

★

Backbone

Neck

Reg Head

Cls Head

Reg Map

Cls Map

Neck

1 × 1
Conv

Crop

Postprocessing

Preprocessing

Head

Figure 1. Structure of SiamRPN++ tracker. F© denotes depth-wise cross-correlation. The red box
denotes the predicted bounding box.

Depth-wise cross-correlation, a vital component in object tracking, reduces computa-
tional demands by operating independently on each channel. This efficiency is essential
for real-time tasks and simultaneously improves tracking accuracy by capturing semantic
correlations between features. A comprehensive mathematical analysis of this process will
be detailed later.

Utilizing the generated similarity map, SiamRPN++ creates a classification score map
and a bounding box regression map. During the prediction phase, these maps assist in iden-

J. Imaging 2024, 10, 70 5 of 17

tifying the target object’s location in the search image, combining the highest scoring area
from the classification map with the corresponding adjustments from the regression map.

3.2. Quantization of the Tracker

The first step in implementing the SiamRPN++ tracker on embedded hardware is
its quantization. FINN [33] has been the go-to FPGA acceleration automation framework
for deploying Siamese trackers on FPGA. In FINN’s approach, each layer of the network
intended for deployment is transformed into a separate component. The final network
is then an IP composed of these individual components. Vitis-AI [34], also from Xilinx,
offers an alternative approach, leveraging accelerators with an overlay-style architecture as
opposed to the dedicated circuit architecture found in FINN. The process of implementing a
PyTorch model in FINN becomes complex, requiring the model to undergo a Quantization-
Aware Training (QAT) process with Brevitas [35] (a PyTorch library for neural network
quantization). In contrast, Vitis-AI, with its use of Deep Learning Processor Unit (DPU) [36]
IP (a programmable engine dedicated for convolutional neural network), does not require
such a complicated process. Thus, we opted for Vitis-AI, given our primary aim to enhance
real-time predictability rather than accuracy or latency performance on FPGA.

We employed Post-Training Quantization (PTQ) using Vitis-AI for the trainable parts
of SiamRPN++ (i.e., backbone, neck, and head). This process is intended to efficiently
balance computational resources and quantization accuracy. The main configurations of the
quantization are detailed in Table 1. All data types in the model, including input, weights,
bias, and activation, were quantized. All data types use the symmetric mode, which ensures
that the distribution of quantized values is symmetric around 0. This feature is critical for
reducing the quantization error and thereby improving the model’s accuracy. The ‘diffs’
method is used for all data types. This refers to the quantization algorithm used by Vitis-AI,
which helps to reduce quantization loss and improve the performance of the quantized
models. The round method is ‘std_round’ for input, weights, and bias and ‘half_up’ for
activation. This method determines how rounding is performed during quantization. All
data types are quantized at ‘per_tensor’ granularity, meaning that a single scale and zero
point are used for all values within each tensor. The ‘poweroftwo’ scale type is used for all
data types. This implies that the scale used for quantization is a power of two, which is
more efficient for DPUs.

Table 1. Major quantization configuration.

Quantizable Data Type Symmetric Mode Method Round Method Granularity Scale Type

Input Symmetric diffs std_round per_tensor poweroftwo
Weights Symmetric diffs std_round per_tensor poweroftwo
Bias Symmetric diffs std_round per_tensor poweroftwo
Activation Symmetric diffs half_up per_tensor poweroftwo

After quantization using Vitis-AI, we observed a notable efficiency in the process.
Since the high tracking accuracy was not the main focus, we avoided the more complex
QAT and opted for 8-bit PTQ. The decision to use the VOT2018 [37] dataset for our final
evaluation played a critical role in this context, especially considering the unique challenges
posed by its benchmark. The VOT2018 benchmark is renowned for its rigorous evaluation
protocol, which includes a diverse array of challenging video sequences featuring various
types of object tracking scenarios such as occlusions, rapid movements, and scale changes.
Its re-initialization process, where trackers are required to recover from tracking failures,
underscores the importance of not only accuracy but also the robustness and real-time
performance of the tracking algorithm.

To achieve an acceptable accuracy drop, we also employed the fast fine-tuning method
implemented in the Vitis-AI PyTorch quantizer, which is based on the AdaQuant algorithm [38].
This algorithm performs layer-by-layer optimization to minimize the error between the
quantized and full-precision layer outputs. It involves calibrating the activations and

J. Imaging 2024, 10, 70 6 of 17

fine-tuning the weights with a small set of unlabelled data, thereby avoiding extensive
re-training. For this fine-tuning, we used five videos from the VOT2018 dataset. Meanwhile,
the performance evaluation was performed on the whole dataset.

The results, as shown in Table 2, indicate that despite a slight decrease in accuracy and
expected average overlap (EAO), the quantized tracker maintained an acceptable level of
performance. This balance between efficiency and performance was largely attributed to
the fast fine-tuning process with the AdaQuant algorithm.

Table 2. Tracking performance on VOT2018.

Tracker Name Accuracy Robustness EAO

Full-precision SiamRPN++ 0.600 0.234 0.414
Quantized SiamRPN++ 0.563 0.276 0.346

Following the quantization and fast fine-tuning, we compiled the trainable compo-
nents of SiamRPN++ to be run on DPU. The compilation tool used was “vai_c_xir,” part
of Xilinx’s Vitis-AI suite, which compiles quantized deep learning models into a binary
format suitable for execution on Xilinx hardware devices like DPU. Post-compilation, the
sizes of the SiamRPN++ backbone, neck, and head components were reduced to 46 MB,
12 MB, and 1 MB, respectively, compared to 207 MB for the full-precision PyTorch model,
demonstrating the effectiveness of our quantization and compilation approach.

3.3. Hardware–Software Implementation

Our real-time tracking system leverages the KV260 Vision AI Starter Kit from Xilinx,
designed specifically for high-performance, low-latency vision AI applications and edge
computing. The KV260 combines a quad-core ARM Cortex-A53 application processor with
a dual-core ARM Cortex-R5 real-time processor and an FPGA fabric. This setup provides a
multitude of interface options including Ethernet, USB, and HDMI, enabling a wide range
of connectivity solutions.

The neural network inference of the trainable components in the SiamRPN++ tracker
is executed on the Xilinx DPU B4096, a high-performance accelerator. The management of
this process is facilitated by Vitis-AI Runtime (VART) [39], which offers a comprehensive
low-level API for running AI models on Xilinx hardware. The programmable logic (PL)
overlays and the drivers for our proposed accelerators are handled using the PYNQ 3.0
framework [40]. Operating on an Ubuntu system optimized for Kria System-on-Modules
(SOMs), our setup provides a user-friendly platform with extensive software support,
combining the power of DPU B4096, VART, PYNQ, and Ubuntu for efficient real-time object
tracking. The overall architecture of our hardware system is depicted in Figure 2.

ARM Core

DDR3 Memory

DPU
B4096

Figure 2. System architecture on hardware, illustrating the integration of ARM processors and FPGA
fabric for efficient computing.

J. Imaging 2024, 10, 70 7 of 17

3.4. Real-Time Predictability Analysis

To assess the hard real-time capabilities of our tracker, we conducted a baseline
experiment using the KV260 Vision AI Starter Kit. This experiment aimed to evaluate the
predictability of each component of the tracker in a real-time scenario.

In this experiment, the trainable parts of the backbone, neck, and head of the SiamRPN++
tracker were executed on the DPU, while the preprocessing, depth-wise cross-correlation,
and postprocessing were managed by a single-threaded CPU.

It is common practice in previous works (e.g., [32]) that the cross-correlation op-
erations run on CPU. Therefore, we developed a Python script to run the depth-wise
cross-correlation on CPU, using the scipy [41] library (which provides the function for
single-channel cross-correlation). With the help of this function, the script applies the
kernel separately to each channel of the input, yielding an output with the same number of
channels as the input.

The results, presented in Table 3, highlight considerable variances in performance
metrics across different components of the tracker. The ‘head’ component, in particular,
shows a higher mean processing time, suggesting it as a potential bottleneck. This is
further substantiated by the standard deviation and worst-case metrics, which significantly
influence the overall real-time performance of the tracker.

Table 3. Baseline real-time performance: per frame execution latency (ms) of baseline implementation
running SiamRPN++ with CPU + DPU on KV260.

Preprocess Backbone Neck Head Postprocess Total Tracker

Mean 22.20 90.31 5.83 924.76 3.13 1046.29
Std Dev 14.26 0.08 0.68 11.08 0.06 18.87
Best 1.75 90.12 5.44 913.69 3.04 1019.21
Worst 54.07 91.62 33.83 1156.49 4.13 1303.53

Conversely, the ‘backbone’ and ‘neck’ components, operated on the DPU, exhibit
consistent performance with minimal variation, as reflected in their low standard deviation
values. This consistency is vital in real-time applications, where predictability in processing
time is as crucial as speed.

In conclusion, while the DPU components (‘backbone’ and ‘neck’) demonstrate high
efficiency and predictability, the ‘preprocess’ and ‘head’ components, running on the CPU,
emerge as significant bottlenecks in the real-time performance of the SiamRPN++ tracker
on the KV260 platform. Addressing these bottlenecks is imperative to enhance the tracker’s
overall real-time predictability and performance.

4. Proposed Method

In this section, we present the core innovations of our work: the development of
dedicated hardware accelerators to improve the real-time performance of object tracking
systems. We have designed two accelerators: a padding accelerator and a depth-wise
cross-correlation accelerator. These accelerators aim to address specific bottlenecks in the
SiamRPN++ tracker, enhancing its efficiency and predictability in real-time environments.

We exploited high-level synthesis (HLS) in the design of the accelerators. It allows
us to implement the accelerators with greater efficiency and flexibility compared with
designing with hardware description language. With HLS, it is easy to adapt to the specific
needs of the tracking algorithm and the embedded hardware architecture. In this work, we
used Vitis HLS 2022.2 [42] as the HLS tool for optimal performance with other hardware
and software from Xilinx.

4.1. Padding Accelerator

The padding accelerator is a critical component designed to optimize the prepro-
cessing stage of the object tracking process. This accelerator efficiently handles padding

J. Imaging 2024, 10, 70 8 of 17

operations, which are essential for maintaining consistent input sizes and aspect ratios for
subsequent stages.

4.1.1. Functional Description

Padding operations in image processing involve adding borders of specified pixel val-
ues around an image. In our case, padding is crucial for maintaining consistent dimensions
for input images to the tracking model. The padding operation can be mathematically
formulated as follows:

Ipadded(i, j) =

C if 1 ≤ i ≤ Pt or (M + Pt) < i ≤ (M + Pt + Pb)

or 1 ≤ j ≤ Pl or (N + Pl) < j ≤ (N + Pl + Pr),
I(i − Pt, j − Pl) if Pt < i ≤ (M + Pt) and Pl < j ≤ (N + Pl).

where

• Ipadded(i, j) represents the pixel value at location (i, j) in the padded image.
• C is the constant padding value, typically an average channel value.
• Pt, Pb, Pl , and Pr are the amounts of padding added to the top, bottom, left, and right

sides of the image, respectively.
• M × N are the dimensions of the original image.
• I(i − Pt, j − Pl) indicates the pixel value in the original image corresponding to the

location in the padded image, adjusted for the added padding.

In essence, this formula describes how padding is applied around an image. It adds a
constant value C around the borders of the image, extending its size while preserving the
original image data in its central part.

4.1.2. HLS Design

The pseudocode for the padding accelerator (Algorithm 1) outlines the HLS logic.
The process starts with the ApplyPaddingAndStream procedure, which pads the image
using average channel values and streams the pixel data into the processing pipeline.
This step ensures that each image frame is preprocessed uniformly, regardless of its
original dimensions.

Algorithm 1 Pseudocode for Padding Accelerator

1: Procedure ApplyPaddingAndStream
2: Apply padding with the average channel value and stream the pixel data.
3: Procedure PaddingSingleChannel
4: Apply padding to the top of the image.
5: For each row in the image, apply left padding, stream actual image row data, and then

apply right padding.
6: Apply padding to the bottom of the image.
7: Procedure PaddingIP
8: Initialize input and output streams for each channel.
9: For each channel, call PaddingSingleChannel.

10: Stream out the final padded data for each channel.

In the PaddingSingleChannel procedure, padding is applied to individual image
channels. This step is crucial to maintain the consistency of multi-channel images. The
padding is applied to the top, bottom, left, and right sides of each channel.

Finally, the PaddingIP procedure orchestrates the overall padding process. It initializes
input and output streams for each image channel and calls the PaddingSingleChannel
procedure for each one. This modular approach allows for efficient parallel processing of
each channel, significantly speeding up the overall padding operation.

Through this HLS design, the padding accelerator provides a fast and predictable
preprocessing step, crucial for the real-time performance of the object tracking system.

J. Imaging 2024, 10, 70 9 of 17

4.2. Depth-Wise Cross-Correlation Accelerator

In our pursuit to optimize the real-time performance of object tracking on embedded
systems, we identified the depth-wise cross-correlation operation as a critical component.
This operation, central to the functionality of Siamese trackers like SiamRPN++, plays a
pivotal role in determining the similarity between the tracked object and candidate regions.
However, its intensive computational demands pose a significant challenge for real-time
processing, especially on resource-constrained embedded devices.

To address this challenge, we developed a specialized hardware accelerator for depth-
wise cross-correlation. This accelerator is designed to efficiently compute cross-correlation
operations directly on FPGA hardware, thus offloading the computationally intensive tasks
from CPU and improving the overall real-time performance of the tracking system.

We delve into the mathematical foundations of cross-correlation and depth-wise cross-
correlation, followed by a detailed discussion on the HLS design and implementation of
our accelerator. This approach not only enhances the performance but also contributes
significantly to achieving real-time predictability in object tracking applications on embed-
ded systems.

4.2.1. Depth-Wise Cross-Correlation

As mentioned earlier, cross-correlation measures the similarity of two signals as a
function of the displacement of one relative to the other. In the context of object tracking,
the signals are typically feature maps extracted from images. Mathematically, the cross-
correlation R of two discrete signals f and g is defined as follows:

R(f , g)[n] =
+∞

∑
m=−∞

f ∗[m]g[m + n] (1)

where f ∗[m] is the complex conjugate of f [m], g[m + n] is the m + nth sample of g, and the
sum is over all m.

Depth-wise cross-correlation is a variant of this concept that operates on each channel
of the signals independently. If we denote fc and gc as the cth channels of f and g,
respectively, then the depth-wise cross-correlation Rd used in SiamRPN++ [3], in which the
authors did not provide a mathematical definition, can be defined as follows:

Rd(f , g)[n, c] =
+∞

∑
m=−∞

f ∗c [m]gc[m + n]. (2)

In this case, the cross-correlation is computed separately for each channel and the
results are concatenated to form the final output.

4.2.2. HLS Design

To improve the predictability of the system, we propose a lightweight accelerator for
the depth-wise cross-correlation operations. The pseudocode of our HLS implementation
for the depth-wise cross-correlation accelerator is shown in Algorithm 2.

Our depth-wise cross-correlation algorithm begins with reading filter coefficients
(template features) and pixel data (search frame features) from the memory into the streams,
as ensured by the ReadFromMem function. Simultaneously, it checks the validity of the stride,
height, and width of the image. Upon loading the pixels and coefficients into the streams,
the Window2D function forms windows of pixels, modifying structures to accommodate
new pixels. This function continues to write the window structure into a new stream after
a sufficient number of pixels have been read. The next phase involves the Xcorr function,
which is a single-channel cross-correlation operation. It applies the filter to each pixel
window to compute an output pixel, after loading filter coefficients into a 2D array. These
output pixels are then written into an output stream. The orchestrator of this data flow
is the DWXcorr function. It initializes the input and output streams, and for each channel
in the image, it calls the Window2D and Xcorr functions, facilitating the formation of pixel

J. Imaging 2024, 10, 70 10 of 17

windows and subsequent filtering. Finally, it writes the output pixels to the output stream,
thus completing the depth-wise cross-correlation operation. Our HLS design efficiently
performs this process, leveraging the parallel processing capabilities of FPGA hardware as
much as possible.

Algorithm 2 Pseudocode for depth-wise cross-correlation accelerator.

1: Procedure ReadFromMem
2: Ensure stride, height, and width of image are valid
3: Read filter coefficients from memory into coeff_stream
4: Read pixel data from memory into pixel_stream
5: End Procedure
6: Procedure WriteToMem
7: Ensure stride, height, and width of image are valid
8: Read pixel data from output_stream and write it back to memory
9: End Procedure

10: Procedure Window2D
11: Initialize LineBuffer and Window structures
12: Read pixels from pixel_stream
13: Shift Window and LineBuffer structures to accommodate new pixel
14: After enough pixels have been read, write Window structure to window_stream
15: End Procedure
16: Procedure Xcorr
17: Load filter coefficients into a 2D array
18: for each pixel window in window_stream do
19: Apply filter to pixel window to compute output pixel
20: Write output pixel to output_stream
21: end for
22: End Procedure
23: Procedure DWXCorr
24: Initialize input and output streams
25: for each channel in the image do
26: Call ReadFromMem to read filter coefficients and pixel data from input stream into

coeff_stream and pixel_stream
27: Call Window2D to form pixel windows
28: Call Xcorr to filter pixel windows and generate output pixels
29: Write output pixels to output stream
30: end for
31: End Procedure

5. Experiments and Results

The empirical validation of our tracking system architecture is critical to demonstrat-
ing its efficacy in real-world scenarios. This section presents our conducted extensive
experiments and the results to evaluate the performance and predictability of the proposed
system. We meticulously analyse the system’s behaviour, providing valuable insights
into its real-time capabilities. The results underscore the benefits of our system design
choices and pave the way for further enhancements in the field of embedded real-time
object tracking.

5.1. Heterogeneous System Architecture

Our experimental setup leverages a heterogeneous system architecture, meticulously
crafted to strike a balance between computational power, energy efficiency, and real-time
performance. As illustrated in Figure 3, the core of the system is an ARM processor
interfaced with DDR3 memory. Central to enhancing the data processing pipeline are
the custom-designed accelerators: the padding and depth-wise cross-correlation (xcorr)
accelerators. These specialized hardware components operate in concert with the Xilinx

J. Imaging 2024, 10, 70 11 of 17

DPU B4096, a neural network inference accelerator, to expedite critical aspects of the
tracking algorithm.

ARM Core

DDR3 Memory

Padding
Accelerator

DPU
B4096

DMAs

Xcorr
Accelerator

Figure 3. System architecture on hardware. The double-headed arrows indicate the data flow
between components. The AXI interconnect and control connections are omitted for simplicity. All
the components in green (Xcorr Accelerator, DMA, and DPU) are implemented on PL.

To ensure a seamless flow of data, Direct Memory Access (DMA) channels are de-
ployed. DMAs play a pivotal role by autonomously managing data transfers between
the memory and the accelerators, effectively offloading these tasks from the processor.
This is crucial for reducing system latency and avoiding processor bottlenecks, thus en-
abling the accelerators to function at their optimal capacity. By reducing data transfer
overhead, DMAs contribute to a more predictable and efficient real-time performance,
which is indispensable for time-sensitive applications such as object tracking.

5.2. Resource Usage

The resource usage of different components of the system is crucial for understanding
the efficiency of our design. The resource usage report, as detailed in Table 4, reflects the
effectiveness of our system in utilizing the KV260 board’s capabilities.

Table 4. Resource usage report.

Component LUT LUTAsMem REG BRAM URAM DSP

Total Available 117,120 57,600 233,240 144 64 1248
Platform 16,498 3090 26,565 9 0 0
DPU B4096 50,693 6746 98,895 82 46 710
Xcorr Accel 863 78 1115 0 0 25
Padding Accel 1952 0 2088 0 0 30
Total Used 70,006 9914 128,663 91 46 765
Total Used (%) 59.77% 17.21% 55.16% 64.19% 71.88% 61.30%

From Table 4, we can deduce that the platform’s infrastructure, including the AXI in-
terconnect, clock wizards, and DMAs, consumes a modest proportion of the total resources,
suggesting a lean design. The DPU B4096 continues to utilize a considerable percentage
of the resources, reflecting its role as the primary processing unit for deep learning tasks.
The custom accelerators, namely the depth-wise cross-correlation accelerator (Xcorr Accel)
and the padding accelerator (Padding Accel), demonstrate their efficient design by using a
minimal amount of resources, which aligns with our design goals of creating lightweight
yet powerful accelerators for real-time applications.

Overall, the total resource usage is around 60% for most categories, signalling a well-
distributed load and the potential for scaling or integrating additional functionalities in
the future. This efficient allocation of resources is indicative of our system’s capability to
handle demanding tracking tasks without reaching the limits of the hardware’s capabilities.

J. Imaging 2024, 10, 70 12 of 17

5.3. Real-Time Performance Experiment Design

Our experiments were meticulously designed to evaluate the real-time performance
enhancements achieved through our hardware accelerators. The baseline experiment repre-
sents a typical setup, where a single-threaded CPU is used for preprocessing, depth-wise
cross-correlation, and postprocessing, complemented by the DPU handling the backbone,
neck, and head of the tracker. To exploit the potential of the quad-core processor, the
“multi-threading” experiment engages multi-threaded CPU cores to perform both padding
and depth-wise cross-correlation operations. The “accelerators” experiment represents
our advanced setup, using dedicated accelerators for both padding and depth-wise cross-
correlation to alleviate the computational load from the CPU.

5.4. Results and Analysis

The results of running SiamRPN++ with three different setups on KV260 are shown in
Table 5. In this table, the ‘total tracker’ component encompasses the entire tracking process,
which includes the ‘preprocess’, ‘backbone’, ‘neck’, ‘head’, and ‘postprocess’ components.
The ‘preprocess’ and ‘postprocess’ components handle the initial preparation of the input
data and the final processing of the output data, respectively. The mean and standard
deviation metrics for the ‘total tracker’ component in the table thus provide an overview of
the real-time performance and real-time predictability of the entire tracking process.

Table 5. Real-time Performance (per frame execution latency in ms) of running SiamRPN++
with/without our accelerators. Numbers in bold indicate the best mean and standard deviation
results. Red bold numbers are used when our accelerator method achieves the best results.

Component Metric Baseline Multi-Threading Accelerators

Preprocess

Mean 22.20 6.06 2.90
Std Dev 14.26 10.62 0.13
Best 1.75 1.00 2.74
Worst 54.07 30.38 3.37

Backbone

Mean 90.31 91.17 90.48
Std Dev 0.08 0.21 0.19
Best 90.12 90.24 90.26
Worst 91.62 95.38 91.14

Neck

Mean 5.83 6.48 5.89
Std Dev 0.68 0.56 0.37
Best 5.44 5.67 5.18
Worst 33.83 24.29 22.43

Head

Mean 924.76 445.88 54.23
Std Dev 11.08 14.80 1.57
Best 913.69 410.91 51.40
Worst 1156.49 571.69 86.67

Postprocess

Mean 3.13 3.25 3.25
Std Dev 0.06 0.19 0.09
Best 3.04 3.38 3.11
Worst 4.13 5.02 4.04

Total Tracker

Mean 1046.29 552.89 157.12
Std Dev 18.87 18.28 1.63
Best 1019.21 525.47 155.08
Worst 1303.53 716.29 187.51

In the ‘head’ component, where we identified the primary bottleneck, the mean
processing time in the baseline is 924.76 ms. This drops significantly to 445.88 ms with
multi-threading and further plummets to an impressive 54.23 ms with the use of the depth-
wise cross-correlation accelerator, demonstrating the profound impact of our hardware
optimizations. The drastic reduction in standard deviation from 11.08 ms in the baseline to
1.57 ms with the depth-wise cross-correlation accelerator further underscores the enhanced
predictability and stability of the tracking process.

J. Imaging 2024, 10, 70 13 of 17

Looking at the ‘preprocess’ component, the mean processing time shows a notable
decrease from 22.20 ms in the baseline to 6.06 ms with multi-threading, highlighting the
benefits of utilizing multi-threading in optimizing preprocessing operations. However,
the introduction of the padding accelerator further reduces the mean processing time to
2.90 ms, showcasing the profound efficiency of dedicated hardware acceleration. Most
crucially, the standard deviation in this component sees a remarkable reduction from
14.26 ms in the baseline to just 0.13 ms with the padding accelerator.

The overall tracker performance sees substantial improvements as well. From a
baseline mean of 1046.29 ms, we observe a reduction to 552.89 ms with multi-threading
and a further decrease to 157.12 ms with accelerators, i.e., a mean total speed up with a
factor 6.6. The standard deviation also reduces remarkably, from 18.87 ms in the base-
line to just 1.63 ms with accelerators, indicating a more than 11 times more predictable
tracking process.

The superior hard real-time behaviour of our proposed system can also be observed in
the worst latency numbers: This experiment shows that our system guarantees a runtime
below 187.51 ms per frame, while the baseline needs 1303.53 ms at least. In a hard real-time
sense, the system can hence run almost seven times faster.

These experimental results demonstrate the profound impact of our dedicated hard-
ware accelerators on real-time tracking performance. The substantial improvements ob-
served with the introduction of accelerators, particularly in the ‘preprocess’ and ‘head’
components, underscore their effectiveness in significantly reducing the processing times
and enhancing the overall system predictability. The dramatic decrease in both the mean
processing times and the standard deviation across various components highlights the cru-
cial role these accelerators play in achieving a more efficient and consistent real-time object
tracking implementation. These findings reinforce the importance of employing specialized
hardware solutions in demanding computational tasks, showcasing how dedicated acceler-
ators can transform the landscape of real-time performance in object tracking applications.

5.5. Power Consumption Analysis

The analysis of power consumption forms a crucial component of our study, offering
insights into the energy efficiency of our system across different configurations. The results
of our power consumption experiments are shown in Table 6.

Table 6. Power consumption experiment results. The red bold number indicates the best value in the
energy evaluation.

Configuration Power (W) Mean Frame Latency (ms) Energy (mJ/Frame)

Baseline 0.99 1046.29 1036
Multi-Threading 1.36 552.89 752
Accelerators 1.11 157.12 174

At the baseline level, utilizing a single-threaded CPU in tandem with the DPU results
in a power consumption of 0.99 watts and an energy consumption of 1036 mJ to process
one frame, establishing a standard for energy efficiency against which other configurations
are measured.

Advancing to the multi-threading experiment, the power consumption ascends to
1.36 watts and the energy consumption drops to 752 mJ per frame. This increment in power
consumption is primarily due to the increased computational load managed by the CPU when
processing padding and depth-wise cross-correlation operations in a multi-threaded fashion.

Finally, the experiment employing dedicated hardware accelerators for both padding
and depth-wise cross-correlation demonstrates a power consumption of 1.11 watts. No-
tably, this configuration achieves a more efficient power utilization compared to the multi-
threading setup. Moreover, the energy consumption significantly drops to 174 mJ per frame,
resulting in 5.95 times of energy saving compared to the single-threaded CPU baseline.

J. Imaging 2024, 10, 70 14 of 17

These findings illustrate the energy efficiency of employing dedicated hardware
accelerators. The relatively marginal increase in power consumption compared to the
baseline, coupled with the substantial improvements in performance and predictability,
emphasizes the potential of this approach in power-sensitive embedded systems. Our
system, thus, not only advances the state-of-the-art in real-time object tracking but also
aligns with the imperative need for energy conservation in embedded applications.

6. Conclusions

In this study, we analysed and enhanced the hard real-time behaviour of a deep-
learning-based object tracker, primarily focusing on leveraging hardware acceleration to
address bottlenecks in real-time predictability performance. Our approach involved the
utilization of Vitis-AI for quantizing the SiamRPN++ tracker and the creation of dedicated
hardware accelerators for depth-wise cross-correlation and padding operations, using
Vitis HLS. These components were integrated and executed on a KV260 board, forming a
comprehensive system tailored for efficient object tracking.

The results from our experiments highlight the substantial improvements achieved
through this approach. The introduction of the padding accelerator, in conjunction with the
depth-wise cross-correlation accelerator, significantly enhanced the real-time performance
of the tracking system. The accelerators not only improve processing times with more than
a factor of 6 across various components of the tracker but also demonstrate a remarkable
efficiency in hardware resource utilization, particularly suited for the specific demands of
these operations.

A critical aspect of this study was the emphasis on improving real-time predictability,
an area often overlooked in similar studies. Our results showed substantial reductions
in standard deviations and worst-case execution times for processing times (rendering
the execution 11 times more predictable in terms of computational latency variation),
illustrating a substantial increase in the consistency and predictability of the system’s
performance. This improvement is particularly vital in applications where consistent and
reliable system responses are imperative.

Moreover, the power consumption analysis revealed that the use of dedicated hard-
ware accelerators also contributes to energy conservation. The system maintained a rela-
tively low energy consumption while delivering enhanced performance and predictabil-
ity, an essential attribute for embedded and mobile applications where power efficiency
is crucial.

In conclusion, this work underscores the potential of integrating hardware acceleration
into real-time object tracking systems. By focusing on both speed and predictability, we
have presented a promising approach that not only boosts performance but also ensures
reliability and efficiency. Our methodology sets a foundation for future research and
development in this field, potentially leading to more advanced and robust object tracking
solutions in embedded systems.

However, it is important to acknowledge certain limitations associated with our
approach. Firstly, the adoption of a heterogeneous hardware system, while beneficial for
performance and predictability, could potentially increase the overall cost of an embedded
system. This aspect is particularly significant as cost considerations are often paramount in
the design and deployment of commercial embedded systems. Secondly, the design and
implementation of the hardware accelerators detailed in our study necessitate a degree of
expertise in hardware design, particularly in HLS. This requirement could pose a barrier to
entry for practitioners or researchers without a background in hardware engineering.

Looking ahead, we identify several promising directions for future work to further
enhance the efficacy and applicability of our approach. Firstly, the real-time predictability
of the system can potentially be further improved by optimizing memory management,
which is anticipated to become the new bottleneck as other components become more
efficient. Additionally, a comparative analysis of our method with trackers accelerated on
other forms of embedded hardware, such as embedded GPUs, is crucial for validating the

J. Imaging 2024, 10, 70 15 of 17

efficiency and applicability of our approach across different hardware platforms. Although
the accelerators designed in this study are common in many Siamese trackers, applying
our method to other Siamese trackers could reveal new real-time predictability bottlenecks.
Nevertheless, the methodology introduced in this paper provides a robust framework that
can assist system designers in easily identifying and addressing these potential challenges,
thereby facilitating the development of more reliable and efficient object tracking systems
in a variety of real-world applications.

Author Contributions: Conceptualization, M.Z., K.V.B. and T.G.; methodology, M.Z.; software, M.Z.;
validation, M.Z.; formal analysis, M.Z., K.V.B. and T.G.; data curation, M.Z.; writing—original draft
preparation, M.Z.; writing—review and editing, K.V.B. and T.G.; supervision, K.V.B. and T.G.; project
administration, M.Z., K.V.B. and T.G.; funding acquisition, M.Z. and T.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Chinese Scholarship Council, grant number 201907820021,
and partially by the Flemish Innovation agency VLAIO, Tetra project AI2Source.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to the data is not readily available because of time limitations.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ondrašovič, M.; Tarábek, P. Siamese visual object tracking: A survey. IEEE Access 2021, 9, 110149–110172. [CrossRef]
2. Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 2020, 32, 1109–1139.

[CrossRef]
3. Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; Yan, J. SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–20 June 2019; pp. 4282–4291. [CrossRef]

4. Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell.
2002, 24, 603–619. [CrossRef]

5. Zhou, H.; Yuan, Y.; Shi, C. Object tracking using SIFT features and mean shift. Comput. Vis. Image Underst. 2009, 113, 345–352.
[CrossRef]

6. Hu, J.S.; Juan, C.W.; Wang, J.J. A spatial-color mean-shift object tracking algorithm with scale and orientation estimation. Pattern
Recognit. Lett. 2008, 29, 2165–2173. [CrossRef]

7. Kalman, R.E. A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 1960, 82, 35–45. [CrossRef]
8. Weng, S.K.; Kuo, C.M.; Tu, S.K. Video object tracking using adaptive Kalman filter. J. Vis. Commun. Image Represent. 2006,

17, 1190–1208. [CrossRef]
9. Patel, H.A.; Thakore, D.G. Moving object tracking using kalman filter. Int. J. Comput. Sci. Mob. Comput. 2013, 2, 326–332.

[CrossRef]
10. Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1409–1422.

[CrossRef] [PubMed]
11. Hare, S.; Saffari, A.; Torr, P.H.S. Struck: Structured output tracking with kernels. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 263–270. [CrossRef]
12. Nam, H.; Han, B. Learning Multi-Domain Convolutional Neural Networks for Visual Tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 1–26 July 2016. [CrossRef]
13. Held, D.; Thrun, S.; Savarese, S. Learning to Track at 100 FPS with Deep Regression Networks. In Proceedings of the European

Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016. [CrossRef]
14. Ning, G.; Zhang, Z.; Huang, C.; He, Z.; Ren, X.; Wang, H. Spatially Supervised Recurrent Convolutional Neural Networks for

Visual Object Tracking. In Proceedings of the International Symposium on Visual Computing (ISVC), Las Vegas, NV, USA,
12–14 December 2016. [CrossRef]

15. Tao, R.; Gavves, E.; Smeulders, A. Siamese Instance Search for Tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 1–26 July 2016. [CrossRef]

16. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H.S. Fully-Convolutional Siamese Networks for Object Tracking.
In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 850–865. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3101988
http://dx.doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.1109/CVPR.2019.00441
http://dx.doi.org/10.1109/34.1000236
http://dx.doi.org/10.1016/j.cviu.2008.08.006
http://dx.doi.org/10.1016/j.patrec.2008.08.007
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1016/j.jvcir.2006.03.004
http://dx.doi.org/10.1109/ICACCT.2018.8529402
http://dx.doi.org/10.1109/TPAMI.2011.239
http://www.ncbi.nlm.nih.gov/pubmed/22156098
http://dx.doi.org/10.1109/ICCV.2011.6126251
http://dx.doi.org/10.1109/CVPR.2016.465
http://dx.doi.org/10.1007/978-3-319-46448-0_45
http://dx.doi.org/10.1109/ISCAS.2017.8050867
http://dx.doi.org/10.1109/CVPR.2016.158
http://dx.doi.org/10.1007/978-3-319-48881-3_56

J. Imaging 2024, 10, 70 16 of 17

17. He, A.; Luo, C.; Tian, X.; Zeng, W. A Twofold Siamese Network for Real-Time Object Tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 4834–4843.
[CrossRef]

18. Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High Performance Visual Tracking With Siamese Region Proposal Network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018;
pp. 8971–8980. [CrossRef]

19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015; Volume 28.

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 1–26 July 2016; pp. 770–778. [CrossRef]

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.

22. Yan, B.; Peng, H.; Fu, J.; Wang, D.; Lu, H. Learning Spatio-Temporal Transformer for Visual Tracking. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 10448–10457.
[CrossRef]

23. Wang, N.; Zhou, W.; Wang, J.; Li, H. Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Track-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
20–25 June 2021; pp. 1571–1580. [CrossRef]

24. Chen, X.; Yan, B.; Zhu, J.; Wang, D.; Yang, X.; Lu, H. Transformer tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 8126–8135. [CrossRef]

25. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
[CrossRef].

26. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers.
In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 213–229. [CrossRef]

27. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada,
10–17 October 2021; pp. 10012–10022. [CrossRef]

28. Zhang, B.; Li, X.; Han, J.; Zeng, X. MiniTracker: A Lightweight CNN-based System for Visual Object Tracking on Embedded Device.
In Proceedings of the IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November
2018; pp. 1–5. [CrossRef]

29. Przewlocka, D.; Wasala, M.; Szolc, H.; Blachut, K.; Kryjak, T. Optimisation of a Siamese Neural Network for Real-Time Energy
Efficient Object Tracking. In Proceedings of the Computer Vision and Graphics, Warsaw, Poland, 14–16 September 2020;
pp. 151–163. [CrossRef]

30. Cao, Y.; Ji, H.; Zhang, W.; Shirani, S. Extremely Tiny Siamese Networks with Multi-level Fusions for Visual Object Tracking. In
Proceedings of the 22th International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2–5 July 2019; pp. 1–7.
[CrossRef]

31. Cui, Z.; An, J. Heterogeneous Siamese Tracking System Based on PYNQ Framework. In Proceedings of the 6th International
Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020; pp. 16–20. [CrossRef]

32. Przewlocka-Rus, D.; Kryjak, T. Towards Real-Time and Energy Efficient Siamese Tracking – A Hardware-Software Approach. In
Proceedings of the Design and Architecture for Signal and Image Processing, Budapest, Hungary, 20–22 June 2022; pp. 162–173.
[CrossRef]

33. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), Monterey, CA, USA, 22–24 February 2017; pp. 65–74. [CrossRef]

34. Kathail, V. Xilinx vitis unified software platform. In Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), Seaside, CA, USA, 23–25 February 2020; pp. 173–174. [CrossRef]

35. Pappalardo, A. Xilinx/Brevitas, version 0.10.2; Zenedo: Geneva, Switerland, 2023. [CrossRef]
36. Xilinx. DPUCZDX8G for Zynq UltraScale + MPSoCs Product Guide (PG338), version 4.1; Xilinx: San Jose, CA, USA, 2022.
37. Kristan, M.; Leonardis, A.; Matas, J.; Felsberg, M.; Pflugfelder, R.; Zajc, L.Č.; Vojír̃, T.; Bhat, G.; Lukežič, A.; Eldesokey, A.; et al.

The Sixth Visual Object Tracking VOT2018 Challenge Results. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, Munich, Germany, 8–14 September 2018. [CrossRef]

38. Hubara, I.; Nahshan, Y.; Hanani, Y.; Banner, R.; Soudry, D. Improving post training neural quantization: Layer-wise calibration
and integer programming. arXiv 2020, arXiv:2006.10518. [CrossRef].

39. Xilinx. Vitis AI User Guide (UG1414), version 3.5; Xilinx: San Jose, CA, USA, 2023.
40. Xilinx. PYNQ—Python Productivity for Zynq, version 3.0; Xilinx: San Jose, CA, USA, 2022

http://dx.doi.org/10.1109/CVPR.2018.00508
http://dx.doi.org/10.1109/CVPR.2018.00935
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICCV48922.2021.01028
http://dx.doi.org/10.1109/CVPR46437.2021.00162
http://dx.doi.org/10.1109/CVPR46437.2021.00803
https://doi.org/10.48550/arXiv.2010.11929
http://dx.doi.org/10.1007/978-3-030-58452-8_13
http://dx.doi.org/10.1109/ICCV48922.2021.00986
http://dx.doi.org/10.1109/ICDSP.2018.8631813
http://dx.doi.org/10.1007/978-3-030-59006-2_14
http://dx.doi.org/10.23919/FUSION43075.2019.9011338
http://dx.doi.org/10.1109/ICCAR49639.2020.9108096
http://dx.doi.org/10.1007/978-3-031-12748-9_13
http://dx.doi.org/10.1145/3020078.3021744
http://dx.doi.org/10.1145/3373087.3375887
http://dx.doi.org/10.5281/zenodo.3333552
http://dx.doi.org/10.1007/978-3-030-11009-3_1
https://doi.org/10.48550/arXiv.2006.10518

J. Imaging 2024, 10, 70 17 of 17

41. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

42. Xilinx. Vitis HLS, version 2022.2; Xilinx: San Jose, CA, USA, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543

	Introduction
	Related Work
	Object Tracking
	Embedded System Acceleration

	Real-Time Performance Analysis
	SiamRPN++ Tracker
	Quantization of the Tracker
	Hardware–Software Implementation
	Real-Time Predictability Analysis

	Proposed Method
	Padding Accelerator
	Functional Description
	HLS Design

	Depth-Wise Cross-Correlation Accelerator
	Depth-Wise Cross-Correlation
	HLS Design

	Experiments and Results
	Heterogeneous System Architecture
	Resource Usage
	Real-Time Performance Experiment Design
	Results and Analysis
	Power Consumption Analysis

	Conclusions
	References

