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Abstract: Addressing the pressing issue of food waste is vital for environmental sustainability
and resource conservation. While computer vision has been widely used in food waste reduction
research, existing food image datasets are typically aggregated into broad categories (e.g., fruits,
meat, dairy, etc.) rather than the fine-grained singular food items required for this research. The
aim of this study is to develop a model capable of identifying individual food items to be integrated
into a mobile application that allows users to photograph their food items, identify them, and offer
suggestions for recipes. This research bridges the gap in available datasets and contributes to a
more fine-grained approach to utilising existing technology for food waste reduction, emphasising
both environmental and research significance. This study evaluates various (1 = 7) convolutional
neural network architectures for multi-class food image classification, emphasising the nuanced
impact of parameter tuning to identify the most effective configurations. The experiments were
conducted with a custom dataset comprising 41,949 food images categorised into 20 food item
classes. Performance evaluation was based on accuracy and loss. DenseNet architecture emerged
as the top-performing out of the seven examined, establishing a baseline performance (training
accuracy = 0.74, training loss = 1.25, validation accuracy = 0.68, and validation loss = 2.89) on a
predetermined set of parameters, including the RMSProp optimiser, ReLU activation function, ‘0.5’
dropout rate, and a 160 x 160 image size. Subsequent parameter tuning involved a comprehensive
exploration, considering six optimisers, four image sizes, two dropout rates, and five activation
functions. The results show the superior generalisation capabilities of the optimised DenseNet,
showcasing performance improvements over the established baseline across key metrics. Specifically,
the optimised model demonstrated a training accuracy of 0.99, a training loss of 0.01, a validation
accuracy of 0.79, and a validation loss of 0.92, highlighting its improved performance compared to the
baseline configuration. The optimal DenseNet has been integrated into a mobile application called
FridgeSnap, designed to recognise food items and suggest possible recipes to users, thus contributing
to the broader mission of minimising food waste.

Keywords: food waste management; Image processing; deep learning; recipe suggestion; image
recognition; food waste classification

1. Introduction

The global concern of food waste is highlighted in the Food Waste Index Report [1] by
the United Nations Environment Programme, revealing a consistent global average of 74 kg
per capita of wasted food annually, irrespective of income levels from lower-middle to
high-income countries. The volume of food wasted at the household level is much greater
when compared to other food supply chain levels [2]. Notably, food loss at the initial stages
of the supply chain (i.e., during production, processing, or transportation) is predominant
in developing nations [3]. However, this research focuses on the later stages of the supply
chain, where food surplus and wastage are primarily observed, and this phenomenon is
more prevalent in developed countries [3,4].
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There is a general consensus that consumer behaviour is a significant contributor
to food waste in developed countries [5]. For example, the National Resources Defense
Council [6] reported that a significant amount (30—40%) of food waste in America occurs
at the consumer level, with many sources citing “unnecessarily large orders” [7,8] and
poor “consumer choices” [9] as major contributing factors. Consumers in the European
Union (EU) waste 47 million tonnes of food annually [10]. In research conducted by LEI
(Landbouw-Economisch Institut) for the EU Commission [11], Rutten et al. found that
31% of food waste across the supply chain occurs in households. This was corroborated
by Becarova et al. [12], who studied consumption behaviour between Dutch and Slovaks;
Vanham et al. [13], who quantified EU consumer food waste; and Jorissen et al. [14], who
analysed survey results from two EU research centres (in Italy and Germany). The United
Kingdom (UK), where this study was conducted, is no exception. Recent reports show
that food waste in the UK has increased from 7.2 million tonnes in 2014 [15] to 9.5 million
tonnes in 2022 [16]. A study conducted in Scotland alone [17] found that 51% of the food
wasted in Scottish households is avoidable, with a large portion stemming from food not
being used within its use-by time.

As the global increase in waste is projected to surpass population growth by 2050 [18],
food waste is likely to pose significant threats to ecological balance, which will threaten
global sustainable development and human well-being [19]. Recognising the impending
threat of food waste to ecological balance, various computational solutions have been
developed, with advances in computer vision emerging as popular approaches, especially
through deep learning methods. However, most of this research on food waste reduction
has frequently neglected the pivotal role of consumer behaviour (the driving force behind
this research), often concentrating on the management of discarded food. Specifically, many
approaches applying deep learning to separate household food waste images into recyclable
and non-recyclable items [19,20] have been proposed, effectively replacing manual sorting
by individuals and streamlining the waste management process. The research presented
in this study suggests that deep learning applications on food images also hold promise
for innovative solutions, which encourage consumers to optimise the consumption of
available food items. For example, a mobile application called ‘emptymyfridge’ (https:
/ /www.emptymyfridge.com/ (accessed on 29 February 2024)) employs image processing
through bar code scanning to prioritise recipes that match particular food items. This
object recognition aspect enhances user convenience but unfortunately, the application was
developed on proprietary datasets, and the underlying methods are not openly accessible
to the research community. In fact, this is a common issue in consumption-stage food
waste reduction interventions as recent reviews show that existing applications either
lack method clarity [21] or provide little or no robust evidence of results [22]. Moreover,
existing open-access datasets commonly used for food image recognition tasks (such as
‘Food-101" [23], ‘Food-5K” and ‘Food-11" [24]) are aggregated into food categories (e.g.,
meat, dairy, fruits, etc.), making them impractical for individual food item recognition
experiments. Thus, this study aims to “bridge the gap in available datasets” and contribute
a more “fine-grained” and “transparent” approach in utilising existing computer vision
technologies for food waste reduction, with emphasis on practicality in a mobile application
and the substantial influence in inducing consumer behaviour changes.

In this study, a method based on a convolutional neural network (CNN) is presented
that combines computer vision technology with behaviour-orientation strategies to facil-
itate food waste reduction. For the computer vision aspect, the performances of various
CNN architectures are evaluated on a multi-class image classification task performed on a
custom fine-grained food dataset [25]. A custom dataset consisting of 20 food item classes
was developed specifically for this study due to the limitations of existing food image
datasets [26,27] that were primarily categorised into food groups (e.g., dairy, meat, fruit,
etc.) rather than individual food items. The evaluation was based on accuracy and loss
metrics. To achieve the behaviour-orientation aspect of this study, the top-performing
CNN model has been integrated into a mobile application called FridgeSnap [28], which
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was designed specifically to identify food images captured on user device cameras and
recommend suitable recipes, thus encouraging less wasteful consumer behaviour. To en-
courage transparency and allow for the reproducibility of the experiments carried out, the
demonstrator software, along with the Python script to replicate the method, has been
published for the research community on GitHub [29].

This study acknowledges that the idea of image classification has been carried out,
to a large extent, within the area of food and dietary circumstances. However, this study
makes two new contributions as follows:

1. Fine-grained food image dataset: A custom multi-class dataset is developed that
consists of 41,949 images belonging to 20 different individual food item classes [25].
The existing multi-class food image datasets for classification tasks are categorised by
food groups such as dairy, fruits etc. The experiments carried out utilise fine-grained
food images of singular food item classes.

2. Transparent benchmark method: The experimental method, along with code to repli-
cate the experiments, has been published [28], providing a benchmark to objectively
gauge the progress of new methods for fine-grained multi-class food image classifica-
tion. Underlying methods in existing consumption-level applications for food waste
reduction lack clarity due to being concealed in proprietary software, which makes it
challenging to make a meaningful comparison of approaches and results.

The rest of the research is structured as follows: Section 2 provides details about related
work and the necessary background for the techniques and tools used in this experiment.
The experimental data and methodology approach, including details about the experiment
setup and evaluation measures, are presented in Section 3. Findings and results, including
potential threats to validity, are discussed in Section 4. Section 5 presents the findings in
the context of the food waste domain while Section 6 summarises the study and points out
future work.

2. Background and Related Research

For many, the issue of food waste is ignored, which is the key motivation for this
study. Food wastage has occurred at both the consumer and producer levels. At the
consumer level, in the year 2010 alone, ‘7.2 million tonnes” of both food and drink waste
was generated within the UK [30]. This issue goes further than damaging the economic
status of the UK, with an annual average of GBP 730 per family being wasted, based on
statistics from WRAP [31]. This has environmental implications, as statistics indicate the
production of approximately 17 million tonnes of CO; in greenhouse gas emissions [30].
While these statistics are derived from data related to 2010 and 2011, it is reasonable to
assume that these figures have risen with the population growth. Furthermore, increasing
food prices could have a resulting impact on the growth of food waste because “offers’
or ‘deals’ on items may result in the consumer purchasing more of the item than needed.
Food waste is not just caused by over-purchasing, with Visschers et al. [32] highlighting
that families that have children have been found to waste more food than families without
children. This is due to children potentially being indecisive with regard to eating certain
items of food, or the amount of food they will eat, creating a further generator of food
waste. Although international methods have been introduced within the past 13 years
to reduce food waste, these have proved somewhat ineffective with the issue continuing
to grow and the impact it has on both the economy and environment further increasing.
Allison et al. [33] highlighted recent figures to support this, showing that ‘9.5 million tonnes’
of food waste is generated, increasing from ‘7.2 million’ in 2010. Due to this, a greater call
is required for innovative ways and methods to be introduced that can tackle food waste.

As the issue of food waste has continued to increase, the amount of initiatives in-
troduced globally has equally increased. Some of these initiatives have remained at the
framework level without practical implementation, while others have been fully realised
through computational solutions. For example, Principato et al. [34] conducted a study that
focused on understanding the reasoning behind why food is wasted, focusing on young
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individuals in Italy. The study found that a large contributor to the issue was due to a lack
of knowledge, or being misinformed regarding a certain topic. Individuals understand that
food must be discarded if it may no longer be fresh or if the item passes a certain expiration
date. Although both reasons could be seen as valid arguments for food to be wasted, the
authors argue in favour of a framework that provides additional information and guidance
on how to make food last longer. This was corroborated by Poyatos-Racionero et al. [35]
who proposed a framework for intelligent packaging where information regarding the
safety and edibility of an item is presented on the packaging. This includes numerous types
of information such as time, temperature, and freshness indicators. The authors argued
that consumers will gain a greater understanding of when an item must be discarded if
these indicators are available on the packaging at the time of purchase. Other frameworks
have been proposed since then, including Lim et al. [36] who developed a “social recipes’
framework aimed at reducing food waste through recipe sharing. The core idea is that
recipes can be shared through a community-based environment to provide users with tips
about what they can do with leftover food items. This idea of ‘social recipes’ is similar to
the method presented in this study but remains at the framework level without practical
implementation.

Many initiatives have been fully realised through computational solutions. For exam-
ple, ‘SuperCook’ (https:/ /www.supercook.com/ (accessed on 29 February 2024)), an appli-
cation that uses manual text or voice submission of ingredients, can then generate recipes.
These recipes are categorised into areas such as “Breakfast and brunch”. ‘emptymyfridge’
is another application that uses manual ingredient submission to generate recipes that can
be saved. This application uses a form of image processing to allow for barcodes of items to
be scanned and uploaded. ‘Plant Jammer’ (https://www.plantjammer.com/ (accessed on
29 February 2024)) uses a similar method of manually inputting ingredients by selecting in-
gredients on a landing page, these are then turned into recipes, which can be filtered based
on difficulty or dish type. The recipes generated by ‘'Plant Jammer” are generated inside
the application and do not require the use of an external browser or application. Despite
the promising claims reported about these tools, their potential in terms of performance is
often achieved on proprietary datasets and the underlying methods remain unavailable
to the research community. In fact, most of these tools focus more on recipe suggestions
based on manually entered food items, which has many limitations including the database
dictionary size. There is no usage of image-processing-related technologies within any of
the aforementioned applications. As a result, it has not been possible to make a sound
comparison of different tools that promote consumption-stage food waste reduction.

That said, several studies have been published to address the issue of food waste
databases, including benchmark results of popular methods to provide a standard exper-
imental platform for assessing progress. Image processing has been, to a greater extent,
the popular approach within the area of food waste management and/or classification.
The development of image classification models relies heavily on the implementation of
a categorised training dataset, which includes images of the item to be classified with
appropriate label(s) to identify them. Several research studies in this area have used
pre-developed benchmark datasets such as “Food-101 [23], “‘Food-5K’, and ‘Food-11" [24].
Food-5K contains images of both ‘food” and ‘non-food” item classes with 1000 food items
with an equal split of 50% between food item classes. Food-11 contains 16,643 food images
with 11 categories: Bread, dairy products, desserts, eggs, fried food, meat, noodles-pasta, rice,
seafood, soup, and vegetable-fruits. Food-101 contains 101 food categories, with a dataset size
of 101,000 images. Each of the food categories contains 750 training images and 250 testing
images. The Food-101 dataset contains pre-made food item categories, such as spring
rolls, pizza, and spaghetti bolognese. Studies that utilised benchmark datasets include one by
Sengiir et al. [37], who used the Food-5K, Food-11, and Food-101 datasets to carry out food
image classification. The papers achieved a result of 99.20% using Food-5K, 89.33% when
using Food-11, and 79.86% using Food-101; Hooker et al. [38] used the Food-101 dataset and
ResNet-50 to achieve a result of 84.54%. Many other research studies, including Aguilar
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et al. [39], Tan and Le [40], and Dwibedi et al. [41], contributed to the field. Results
from these studies have achieved accuracy values between 76.7% and 97.92%. While the
benchmark datasets, accompanied by evaluation methodologies and performance studies,
provide multiple benchmarks to objectively assess the progress of food waste initiatives,
the class composition of these datasets (i.e., food item groups rather than singular food item
classes) does not support fine-grained, consumption-level experiments that could influence
behaviour change toward reducing food waste.

It is important to note that other similar datasets have been developed to address
specific but related challenges. For example, Chun et al. [42] developed a custom dataset
based on Korean food images for classification purposes. This dataset, generated using
a web scraper, consists of 150,610 food images. Each image is categorized into one of
150 traditional Korean food classes, including Kimchi, Bap, Twigim, and Jeongol. The resulting
classification model trained on this dataset achieved an accuracy of 81%. Mezgec and
Seljak [43] also developed a custom dataset of 631 images using a script that searches the
internet to generate the dataset. This was utilised to perform the ‘beverage’ vs. ‘food” image
recognition task, resulting in a model with 92.18% accuracy. In fact, many studies found in
the literature have combined benchmark dataset(s) with custom-generated ones.

Kagaya and Aizawa [44] used a combination of three datasets (Food-101, Caltech-
256 [45], and a custom dataset collected from Instagram) to perform binary classification
tasks. Caltech-256 is used as the non-food dataset alternative to Food-101, which contains
images of just food items. Moreover, 28,322 non-food images are extracted and used from
the Caltech-256 dataset. The Instagram dataset contains 4230 food images and 5428 non-
food images. The food images collected are of full meals or pre-made food, such as ice
cream or cake. The CNN model trained on the data achieved 99.1% accuracy.

Islam et al. [24] compared the performances of several CNN models on three different
datasets. The idea was to investigate performance variation between binary vs. multi-
class classification tasks. The best accuracy result on binary classification is 98.37% with
a runtime of 12,509 s, while the multi-class task involving 11 food classes achieved a
decreased accuracy of 83.52% with slightly more runtime (125,134 s). Interestingly, the
results of the multi-class tasks showed a continuous decrease in accuracy as the number of
classes increased. Specifically, with 22 classes, the accuracy dropped to 58.72% accompanied
by a significantly increased runtime of 423,316 seconds. This research highlights the issues
of decreased accuracy and increased runtime when working with a larger number of classes.
However, this issue is not replicated in the multi-class study by Chaitanya et al. [23], which
involved 20 and 25 food item classes extracted from the Food-101 dataset. The authors
explored several pre-trained CNN architectures on the data, with the most accurate model
achieving an accuracy of 92.23% for 20 classes. The accuracy was reduced to 91.46% when
using 25 food classes. This underscores the need for an exploratory research approach when
using pre-trained CNN architectures to determine the most suited model for the dataset.

Across the literature, a number of pre-trained CNN architectures have been explored
for performance on various datasets, including AlexNet [46], InceptionNet [47], Nu-
triNet [43], GoogLeNet [48], ResNet [49], etc. These architectures, renowned for their
success in image-related tasks, have not only excelled in food image recognition but have
also catalysed the development of bespoke models in related studies. For example, their
proven success in image-related tasks has paved the way for the creation of a specialised
application for domestic waste management [19] where a bespoke CNN trained on a do-
mestic waste dataset, including food images, was used to separate waste into recyclable
and non-recyclable. In fact, the success of specialised CNNs for image-related tasks extends
beyond food waste domains as shown in [50], where they have proven instrumental in
education for recognising students” emotions in online classrooms. This versatility shows
the adaptability of pre-trained CNNS5s, and their potential to transcend specific domains
and provide valuable insights across a spectrum of applications.

For brevity, the review presented in this study focuses only on pre-trained CNN
applications in the culinary domain. InceptionNet was used the most in research by
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Chun et al. [42] and Chaitanya et al. [23], with results of 81% and 97%, respectively. Other
literature discusses the use of various CNN architectures. For example, NutriNet achieved
an accuracy of 92.18% [43]; AlexNet, GoogLeNet, and ResNet-50 reported an average
accuracy of 58.72% [24], a ‘Bag of Texons” approach yielded an accuracy of 87.44% [51], and
the ‘Network in Network” approach achieved the highest accuracy of 99.1% [44].

Results from the literature indicate that an increased number of classes may decrease
accuracy, as evidenced by two different studies that investigated performance across
various classes [23,42]. This presents the idea that the accuracy of a model not only depends
on the pre-trained CNN architecture but also on the data size, the number of classes, and
their distribution in the dataset. In fact, the differences in accuracy observed in the various
studies highlight the importance of an exploratory approach taken in the research presented
in this study. As the focus of this research was to perform classification on singular food
items, a fine-grained dataset was deemed necessary for the experiments. This is because
popular benchmark datasets such as ‘Food-101" [26] and “Food-11" [27] feature large groups
of food, focusing on full plates rather than singular food items.

3. Methods and Materials

This section presents the methods and materials including details of the developed
fine-grained dataset, the data preprocessing steps undertaken to set up the experiments,
and the research method adopted to address the study aims.

3.1. Research Methodology

When addressing the aim of bridging the gap in available datasets and training a
CNN model capable of automatically identifying food items from images, a comprehensive
design science approach was employed. The initial phase involved the meticulous creation
of a diverse dataset of food images to provide fine-grained labels for individual food items
(see Section 3.2). This dataset served as the foundation for training the CNN model.

The subsequent steps of the design process focused on the exploration of seven
existing CNN architectures, including VGG versions 16 and 19 [52], InceptionNet [47],
ResNet [49], MobileNet [53], DenseNet [54], and Xception [55]. An exploratory phase was
crucial to understanding the performance nuances of these architectures in the specific
context of fine-grained food item recognition, which involves image classification. Through
hyperparameter tuning, the selected architectures were optimised for the classification task.
This iterative approach allowed for a systematic evaluation of each model’s performance,
considering three metrics (i.e., accuracy, loss and experiment runtime).

The design process was inherently iterative, featuring a feedback loop that incor-
porated insights gained from evaluations to refine the model continuously as shown in
Section 3.3. This iterative nature ensured that the CNN model was continually improved
for enhanced accuracy and efficiency. The final selection of the most optimal model took
into account a balance between performance metrics and computational efficiency, aligning
with the practical requirements of integration into a mobile application. Explicit integration
of the CNN model into a mobile application called FridgeSnap has been published as
standalone software [28], including details of the dataset [25] and the source code [29],
to encourage reproducibility. However, a brief discussion is provided on the applica-
tion in this study to mark a seamless transition from the development phase to practical
implementation. Users can leverage the application by capturing photos of their food
items, initiating the trained model through a button to identify the items, and receiving
tailored recipe suggestions. This integration not only represents the successful completion
of the design process but also emphasises the practical utility of the CNN model within a
real-world application.

3.2. Dataset

The experimental dataset collection commenced with systematic retrieval of images via
the Google Images application programming interface (API), which enables users to scrape
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images from a Google Images search results page. Initially, search terms related to 20 food
items were entered into Google Images. These terms included expressions like ‘[food item]
in the fridge’ or ‘[food item] isolated on white background’, where food item represents
one of the 20 food items considered. While the initial attempt involved the Google Images
API, it was later found that this approach did not yield satisfactory results, either due to
lower image quality or an insufficient number of images for building a comprehensive
dataset. Subsequently, a more effective manual scraping technique was employed. Food
items, such as ‘banana in fridge’ or ‘banana isolated’, were manually searched, and images
were saved by right-clicking and downloading. This method provided better control and
resulted in a more extensive collection of high-quality images for the developed dataset.
Given the varying availability of each food item, a limit of 2500 images per food item
was imposed to prevent undue class imbalance. It is noteworthy that not all classes
reached this predetermined limit due to discrepancies in availability. Subsequently, to
ensure dataset integrity and minimise redundancy, a meticulous removal of duplicates was
executed. By leveraging both matching file names and the ImageHash Python library, which
offers support for a spectrum of image hashing algorithms, including average, perceptual,
difference, wavelet, HSV-colour, and crop-resistant methods, duplicates were efficiently
identified and eliminated. This rigorous curation process resulted in an overall reduction
across all classes, culminating in a curated fine-grained dataset comprising 41,949 unique
images of 20 food classes. The retrieved images were then downloaded, converted to . jpg
format, and resized during experiments into dimensions of 80 x 80, 120 x 120, 160 x 160,
or 224 x 224.

The retrieved images included as many variations of each food item as possible
including images of both processed and unprocessed versions, varying camera angles,
juxtapositions with other objects, etc. Example images from the dataset are shown in
Figure 1.

Figure 1. Sample of images contained within the dataset.

However, it is important to acknowledge the inherent limitations, recognising that
certain nuances, such as fuzziness and background illumination, may not have been
comprehensively accounted for. These nuances can be easily obtained through image
augmentation [56], a useful technique used in image processing to increase the diversity of
the training dataset through simple transformations such as geometric and colour space
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changes, image cropping, noise injection, and random erasing. This technique has been
included as a future research direction.

The amount of data contained within each class, including the split for experiments, is
presented in Table 1.

Table 1. Dataset composition with class distribution and split.

Food item class Total Training Testing Validation
Bacon 2040 1306 326 408
Banana 1929 1236 308 385
Bread 2037 1304 326 407
Broccoli 2063 1321 330 412
Butter 2115 1353 339 423
Carrots 2486 1592 397 497
Cheese 2052 1314 328 410
Chicken 2042 1308 326 408
Cucumber 1965 1258 314 393
Eggs 2205 1412 352 441
Fish 2016 1291 322 403
Lettuce 2064 1322 330 412
Milk 2295 1629 407 259
Onions 2224 1424 356 444
Peppers 2022 1295 323 404
Potatoes 2267 1452 362 453
Sausages 2052 1314 328 410
Spinach 2016 1291 322 403
Tomato 2028 1299 324 405
Yogurt 2031 1300 325 406
Total 41,949 27,021 6745 7779

The multi-class food image has been made publicly available on the Kaggle data
repository [25] to facilitate the reuse and reproducibility of the experiments carried out.

For experimental purposes, the data were split into training (80%) and validation (20%).
This is a well-established method in classification tasks, offering a balanced approach to
model development and assessment. To further ensure the robustness of experiments,
within this study, a testing subset is employed within the training data. This subset, com-
prising 20% of the training set, serves as an intermediary checkpoint for model evaluation
during the training process. It helps prevent overfitting, which is a common pitfall where a
model becomes too tailored to the training data and struggles to generalise to new instances.

Importantly, the use of a validation subset strategy addresses the classic issue of “test
set validation’, which is a practice that inadvertently biases model evaluation because the
test set has been compromised during training. Validating models on the test set can lead
to an inflated sense of performance, as models are indirectly exposed to the test data during
training. By holding out a validation subset within the training data, it is ensured that
the test set remains entirely unseen until the model’s training is complete. To maintain
a representative sample distribution, the data split was stratified across the 20 classes.
This means that each class is proportionally represented in both the training and test sets,
avoiding potential biases that could arise from an uneven distribution.

3.3. Experiments

The experiments described in this section are grounded on the underlying hypothesis
that multiple factors contribute to the optimal performance of CNN models as observed in
the literature. Thus, multiple classification tasks involving seven standard CNN pre-trained
models were performed on the dataset presented in Section 3.2 to identify the most optimal
setting for the classification task. This optimal model was derived through a step-wise
development approach as illustrated in Figure 2.
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" 1. Baseline Model )
No of CNN architectures: 7 compare & select
Training parameter: Default best CNN model

Outcome: Best CNN model
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f‘ 2. Parameter Tuning R

No of CNN architectures: 1
Training Parameters: Explore 6 various parameters
Outcome: Best parameter

J
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No of CNN architectures: 1
Training parameters: Best parameters
Outcome: CNN model

Figure 2. High-level diagram of method steps.

All three steps involved classification tasks with a single pre-trained CNN architecture,
except step one, where seven CNNs were explored namely, VGG versions 16 and 19,
InceptionNet, ResNet, MobileNet, DenseNet, and Xception. The overarching purpose
was to compare and select the CNN model(s) with optimum performance on the test
dataset. However, the choice of CNN architectures was deliberate, driven by various
considerations, most notably their high flexibility in accommodating diverse types of image
data and tasks. Flexibility is a crucial criterion in this study, considering the diverse nature
of food images, encompassing different shapes, sizes, and colour distributions. These
networks have demonstrated adaptability across a wide range of image classification tasks,
making them suitable candidates for handling the intricacies present in food classification.
Furthermore, the selected CNN architectures, particularly VGG, ResNet, and InceptionNet,
have established themselves as benchmarks in the field of deep learning. Their widespread
adoption and extensive utilisation in various image classification competitions and research
endeavours underscore their reliability and strong performance across diverse datasets.
Importantly, these architectures have achieved such versatility through pre-training on
massive datasets like ImageNet, which comprises millions of images, including a vast array
of food items.

The performance of these CNNs on multi-class classification tasks has been well-
documented in previous studies, as shown in Section 2. For instance, ResNet, known for
its deep residual learning and effectiveness in addressing the vanishing gradient problem,
along with DenseNet, recognised for its dense connectivity pattern, are particularly suitable
for tackling intricate multi-class classification tasks. Similarly, InceptionNet’s inception
modules and MobileNet’s lightweight design have shown promise in accurately classifying
images from a broad spectrum of categories. In fact, each of the seven CNN architectures
offers distinct approaches to deep learning.

DenseNet [54], for instance, introduces dense connectivity, ensuring each layer is
directly connected to every other layer, promoting feature reuse and efficient gradient
flow. Conversely, Xception [55] extends the Inception architecture [47] by utilising depth-
wise separable convolutions, enhancing computational efficiency without compromising
performance. VGG16 and VGG19, developed by the Visual Geometry Group at Oxford
University [52], follow a simpler design characterised by cascading convolutional and max-
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pooling layers, followed by fully connected layers. VGG19 boasts additional layers com-
pared to VGGI16, resulting in increased model complexity. InceptionNet [47], also known as
GoogLeNet, revolutionised CNN architectures with its inception module, enabling convo-
lutions at multiple spatial scales within the same layer. It leverages 1 x 1 convolutions for
dimensionality reduction, reducing computational complexity. MobileNet [53] is tailored
for mobile and embedded devices, emphasising low latency and computational cost. Its
design incorporates depth-wise separable convolutions to minimise parameters and com-
putational overhead. ResNet [49] introduces residual connections, allowing information to
bypass certain layers, mitigating the vanishing gradient problem and enabling the training
of extremely deep networks. Each architecture offers unique features and optimisations to
address specific challenges in image classification and recognition tasks.

Another crucial factor that influenced this study is the availability of pre-trained
weights for these networks on large-scale image datasets like ImageNet. This pre-training
helps in leveraging transfer learning, allowing the networks to extract relevant features from
the developed food dataset despite its smaller size. This approach is especially beneficial
when working with limited data, as is often the case in specialised classification tasks.

It is important to note that the classification process in each development step (steps 1
to 3) in Figure 2 was conducted on the experimental data split shown in Table 1. The
underlying CNN is trained on the training dataset with the validation set used to explore
performance over several pre-set epochs. Then, the best model is evaluated on the holdout
testing dataset.

3.3.1. STEP 1Bageline Model

As the study was conducted on a custom fine-grained dataset, there is no existing
benchmark study to compare against the optimal model (described in Section 3.3.3). Thus,
this step began with a comparative experiment to evaluate the performances of the seven
CNN architectures on the experimental dataset, ultimately leading to a baseline model. It
is important to note that a fixed experimental setting was used in this step for each CNN,
including ‘160 x 160" image size, batch size = “16’, epoch = ‘50’, and dropout = ‘0.5’
The learning rate is set to ‘0.001” to minimise the model’s weight updates throughout
the training process. When using a learning rate of 0.001, the weights are updated by
0.1% (0.001) of the gradient of the loss function with respect to those weights during each
iteration of training. This means that the weight updates are relatively small compared to
higher learning rates. Since the weights are adjusted by a small amount, the model does not
learn much from the training data and, thus, will not adapt to intricate patterns or improve
its performance on the task by much. As a starting point, the root mean square propagation
("RMSProp’) [57] optimiser and rectified linear unit (ReLU) [58] activation function were used.
The RMSProp was chosen arbitrarily and ReLU has become widely adopted as the default
activation function for training deep neural networks due to its versatility across various
task domains and network types, as well as its low computational complexity. The model
that achieved the best performance at this step was used in subsequent steps to derive
the optimal model. Results of the baseline experiments are detailed in Section 4.1, which
shows that the DenseNet [54] model achieved the best performance at this step. Thus,
subsequent experiments utilised the DenseNet architecture.

3.3.2. STEP 2Parameter Tuning

In this step, the best model (from the previous step) was subjected to hyperparameter
tuning, which involves multiple iterations of experiments where different combinations of
parameters are explored to find the best configuration that maximises the model’s perfor-
mance. This aim is to strike a balance between underfitting (too simple) and overfitting (too
complex) by finding the optimal values for the parameters. The optimisation experiments
were exploratory and conducted iteratively using a semi-automated approach as follows:

First, seven optimisation algorithms on the CNN were explored including stochastic
gradient descent (“SGD’) [59], ‘RMSProp’, ‘Adagrad’ [60], ‘Nadam’ [61], ‘Adam” and “Adamax’ [62].
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These algorithms adjust the weights and biases of the network during training in order to
minimise the loss function and improve the model’s predictive accuracy.

The best optimiser was used subsequently to test the CNN on four image sizes including
‘80 x 807, “120 x 1207, “160 x 160" and ‘224 x 224’. This allows for the evaluation of the
model’s robustness and generalisation across varying resolutions, which is important for
assessing performance on different devices and real-world scenarios. This is particularly
important because the model was intended for use within FridgeSnap [28], a mobile appli-
cation that suggests recipe(s) based on food image(s) taken from the user’s device camera.
Finally, this study explored performance with five activation functions including ‘ReLU’,
‘Sigmoid’, ‘Tanh’, ‘Swish’ [63] and Gaussian error linear unit (‘GELU") [64].

3.3.3. STEP 30ptimal Model

In this step, an optimal model was implemented based on the best parameters identi-
fied in the previous step (see Section 4.3). The resulting model was evaluated and compared
to baseline performance according to the metrics defined in Section 3.4.

3.4. Evaluation Metrics

The evaluation of CNN classification models commonly revolves around aggregate
metrics derived from a confusion matrix shown in Figure 3.

Prediction
Class; Class,
True False
- Positive Negative
2 (C11) (Ca)
§ o
9]
<
False True
o Positive Negative
§ (C12) (C2)
@]

Figure 3. Simple 2 x 2 confusion matrix.

C11 represents the number of Class; predicted correctly; Cy; is the number of Class;
predicted correctly; Cy; is the number of Class; predicted incorrectly; and Cp; is the number
of Class, predicted incorrectly.

In this study, the " accuracy’ metric was defined as a calculation of how often the
predicted class label matches the actual class label, reflecting the overall correctness of
a classification model. Its value deduced from the confusion matrix can be represented
mathematically as Equation (1) [65]:

Cii +Cx»
Ci1+Cin+Cy +Cp2

Accuracy = 1

Additionally, the loss function, which quantifies the discrepancy between predicted
and actual labels was computed. For this, ‘cross-entropy” loss was used, which is one
of the most popular loss functions for classification tasks. It calculates the negative log-
likelihood of the predicted class probabilities given the true class labels. This penalises
larger deviations between predicted and true probabilities, thus encouraging the model to
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make confident predictions. Cross-entropy loss is not directly derived from the confusion
matrix but rather from information theory and probability theory expressed mathematically
in Equation (2) [65]:
H(p,q) = = }_p(i)log(q(i)) (2)
1

where H(p, q) is the ‘cross-entropy’ between the true probability distribution p and the
predicted probability distribution 4. i represents the individual classes. p(i) is the true
probability of class i. (i) is the predicted probability of class i.

In the context of the CNN classification tasks, (i) represents the output of the network
after applying a softmax activation function, which transforms the network’s raw output
scores into a probability distribution. The ‘cross-entropy’ loss penalises larger differences
between the predicted probabilities (i) and the true probabilities p(i), encouraging the
model to adjust its parameters to minimise the overall loss.

3.5. Experimental Setup

This section presents detailed information about the experiment setup to facilitate
the reproducibility of results. The experiment was conducted with Python programming
language [66]. VGG versions 16 and 19 [52], InceptionNet [47], ResNet [49], MobileNet [53],
DenseNet [54], and Xception [55] were executed using their default TensorFlow implemen-
tations [67], which use the keras.applications module to load pre-trained CNN models.

For VGG versions 16 and 19 models, the VGG16 and VGG19 classes, respectively, from the
tensorflow.keras.applications module were used. From the same module, this study
used the InceptionV3 class for the InceptionNet model; ResNet50 class for the ResNet
model; MobileNet class for the MobileNet model; DenseNet121 class for the DenseNet
model, and the Xception class for the Xception model.

These classes allow for multiple parameters to be set during initialisation, such as the
weights and include_top. The weights parameter is used to specify whether to load the
pre-trained weights for the model and it can take the values ‘ImageNet’ to load the weights
trained on the ImageNet dataset, or ‘False’ to train without any pre-trained weights. The
include_top parameter is used to indicate whether to include the fully connected layers
of the model or not. It can take two values—True’, which includes the fully connected
layers, or ‘False’, which excludes the fully connected layers. This study set the weights
and include_top parameters to ‘ImageNet” and ‘False’, respectively, for all the models.

The 'ImageNet’, parameter allowed for pre-trained weights from the ImageNet dataset
to be loaded. However, the training parameters of each of the layers were set to non-
trainable by indicating ‘False’ for include_top parameters. This step deactivates the
backward propagating step in the CNN models so that only the features based on the
model, which was trained on the ImageNet dataset, were extracted for further processing.
This is shown on line 7 of code Listing 1, which represents an example Python code using
DenseNet Architecture. The snippet in line 10 allows for iteration through the model layer
using a for loop. Line 6 snippets were used to set the trainable parameter of each layer
to ‘False’. The snippets in lines 13-17 add additional layers on top of the base model.
Specifically, line 14 creates a new layer by applying the ‘Flatten” operation to the output
of the base_model. The Flatten layer reshapes the output tensor from the bas_model into
a one-dimensional tensor (i.e., a vector). This is typically done when transitioning from
convolutional layers to fully connected layers in a neural network architecture. In line 15,
a new fully connected layer (‘Dense’) with 1024 units and a ‘swish’ activation function is
added. The output of the previous Flatten layer ‘X" serves as the input to this new fully
connected layer. Each unit in this layer is connected to every neuron in the previous layer,
and the 'swish’ activation function is applied element-wise to the output of this layer. Line
16 applies dropout regularisation to the output of the previous fully connected layer x’.
Dropout is a technique used to prevent overfitting by randomly setting a fraction (here,
50%) of the input units to zero during training, which helps prevent units from co-adapting
too much. Finally, a dense layer with 20 units and a ‘softmax” activation function is added.
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This layer produces the final predictions of the model. Each unit in this layer represents
a class, and the "softmax’ activation function is applied to convert the raw output into
probability scores for each class, ensuring that the output values sum up to 1.

Listing 1. Example Python code with DenseNet.

from tensorflow.keras.applications import DenseNet121
from tensorflow.keras.layers import Flatten, Dense, Dropout

5 from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import~Adam

s # Load DenseNet121 model with weights from ImageNet, excluding top (

classification) layers
base_model = DenseNet121(weights=’imagenet’, include_top=False)

# Freeze the layers of the base model
for layer in base_model.layers:

layer.trainable = False
# Add additional layers on top of the base model
x = Flatten() (base_model.output)
x = Dense (1024, activation=’swish’) (x)
x = Dropout (0.5) (x)
7 predictions = Dense (20, activation=’softmax’)(x) # Assuming you have 20

classes for“classification

# Create the model
model = Model (inputs=base_model.input, outputs=predictions)

# Load additional data to train the model (not shown in this code snippet)

# Compile the model
model.compile (optimizer=Adam(1lr=0.001), loss=’categorical_crossentropy’,
metrics=[’accuracy’])

# Print model summary
model . summary ()

Freezing layers in a pre-trained neural network is a common practice used to prevent
them from being updated during the training process. This was specifically important in the
experiments because early layers of pre-trained CNN capture broad and low-level image
features, which have broad applicability. Freezing these layers allowed for leveraging the
pre-trained CNNs’ feature extraction capabilities while focusing training efforts on the
specific task, especially given the modest dataset available for experiments. In addition,
the training data used may be closely aligned with ImageNet data so freezing the layers
helps to avert possible overfitting and curtail trainable parameters, diminishing the risk of
the model memorising data. The process also accelerates training since static layers do not
undergo weight updates, thus expediting computations.

As explained in Section 3.3.1, the baseline experiments were conducted with batch
size: 167, epoch: ‘50’, image size: ‘160 x 160, epochs: ‘50°, optimiser: ‘RMSProp’, ac-
tivation function: ‘ReLU’, dropout: ‘0.5” and learning rate: ‘0.001’. However, the best
model from this method step (i.e., DenseNet—see Table 2) was subsequently fine-tuned
(in Section 3.3.2) to identify optimal parameters for training and the outcome is presented
‘later” in Table 3. These parameters (also noted in Section 3.3.3) were used to develop
the optimal model for comparison with the baseline. For the optimal model, the batch
size was set to ‘32" and the number of epochs was set to ‘50’. These values were chosen
after testing increasing and decreasing the value and observing the difference this had
on the accuracy and the runtime of the model. The batch size of ‘32" was chosen as it
generated the most accurate results without having a negative impact on the runtime of
the model or the graphics processing unit (GPU) of the training machine which has the
following specification-Processor: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz; GPU:
NVIDIA GeForce RTX 2070 with Max-Q Design 16GB; RAM: 16GB. In some cases, it was
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observed that the model would run into memory issues if the batch size was increased to a
larger number.

For the experiments, the dataset was divided into three subsets: training, testing,
and validation as shown in Table 1. Initially, 20% was set aside for validation, while
the remaining 80% was further partitioned into 80% for training and 20% for testing
(during training and optimisation). For each training iteration, the testing set was used to
determine the best model (over a pre-defined set of epochs) on which to test. The validation
set was kept unseen during training to avoid overfitting. The validation was implemented
using the tf.keras.callbacks.EarlyStopping class, which is a callback monitor used to
stop training if performance does not improve for a certain number of epochs, thereby
preventing overfitting.

This study uses the TensorFlow built-in tf.keras.metrics.Accuracy class to com-
pute the ‘accuracy’ metric while the tf.keras.losses.CategoricalCrossentropy class
was used to compute the ‘loss’ metric.

4. Results

This section presents the results of experiments to fulfil the method steps described in
Section 3. For clarity, the results are presented in separate sections, from Section 4.1 to Section 4.3,
each representing outcomes of the experimental steps illustrated in Figure 2. A more in-
depth analysis and interpretation of the results in the context of the study’s goal—to assist
consumers in reducing food waste through recipe suggestions is provided in Section 5.

4.1. Baseline ModelsTgp 1

Table 2 presents the performances of all seven pre-trained CNNs (in descending order
of “Validation Accuracy’) when applied to the experimental dataset.

Table 2. Results of the comparative analysis between seven pre-trained CNN architectures.

Training Training Validation Validation Runtime
CNN
Accuracy Loss Accuracy Loss (ms)

DenseNet-(baseline) 0.74 1.25 0.68 2.83 4150.94
Xception 0.72 1.25 0.62 3.33 5097.21
VGG-16 0.65 1.55 0.51 8.47 5211.48
InceptionNet 0.55 1.79 0.51 3.05 2495.73
MobileNet 0.38 2.49 0.55 2.34 2859.40
VGG-19 0.53 1.93 0.45 6.74 7187.57
ResNet 0.09 294 0.11 11.99 4919.54

Note: Accuracy results are represented as floating point values between 0 and 1. The best result on each metric is
highlighted in bold type font. This is the baseline also highlighted in ‘grey’. Experiments were conducted with
batch size: ‘16, epoch: ‘50’, image size:160 x 160’, optimiser: ‘RMSProp’, activation function: ‘ReLU’, dropout:
‘0.5" and learning rate: ‘0.001".

The DenseNet model (baseline) emerged as the front runner, boasting a training
accuracy of 74% and validation accuracy of 68%. This model achieved a lower training
loss of 1.25, indicating that it learned efficiently without overfitting. The runtime of
4150.94 ms demonstrates that the model strikes a good equilibrium between performance
and computational efficiency.

In contrast, other models like Xception, VGG-16, InceptionNet, MobileNet, VGG-19,
and ResNet exhibit varying levels of performance across training and validation. Although
some models exhibit higher training accuracy, their validation accuracy is comparatively
lower, implying overfitting or a lack of generalisation. These findings stress the importance
of the data split method used in this experiment to ensure that models are evaluated
appropriately to ensure that they not only achieve high accuracy on training data but also
perform well on unseen test data, as demonstrated by DenseNet. The purpose of generating
and training the baseline model is to allow for the most accurate CNN to be determined
based on a pre-set value of parameters. The highest performing CNN from this test is
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carried forward and a number of set parameters are then tested to evaluate the performance.
It could be argued that this testing phase is not necessary and all CNNs should be tested
when carrying out parameter testing. However, as the parameters applied to the CNN
testing were basic and not complex, including low batch sizes, number of epochs, and
standard image sizes, any low-performing CNNs that were observed may not gain much
from increasing the parameters slightly. In the example of ResNet, the accuracy across both
training and validation was low with values of ‘0.09” and “0.11" respectively, with a high
runtime of '4919.54 s'. Increasing various parameters such as increasing the value of epochs,
or the batch size, may not have much of an impact on the ResNet results. As such, carrying
out the CNN testing early can determine whether a certain CNN is effective for this type of
image classification training and the type of dataset used. Although some earlier observed
literature may determine that ResNet performs well, it is dependent on both the dataset
and the situation it is applied. As such, this early CNN testing phase allows for those CNNs
that do not conform to the situation to be eliminated early, saving both time and resources.

This research considers the best-performing CNN (i.e., DenseNet) as the baseline
model optimised in subsequent experimental steps and used for measuring the contribu-
tions of the optimal approach presented in Section 4.3.

4.2. Parameter Tuningstep »

Table 3 summarises the results of parameter tuning on the DenseNet CNN architec-
ture. Various parameters, including the optimiser, image size, dropout, and activation,
were explored.

The Adagrad optimiser demonstrated superior performance compared to others. This
optimiser excelled in both training and validation metrics, with a training accuracy of ‘0.99’,
training loss of ‘0.04’, validation accuracy of ‘0.76’, and validation loss of ‘0.96’.

When considering different image sizes, the model’s performance varied. The
224 x 224 image size proved to be optimal, yielding a training accuracy of ‘0.99’, training
loss of “0.01’, validation accuracy of ‘0.78’, and validation loss of ‘0.92". This suggests that a
larger image size contributes positively to the model’s ability to generalise and perform
well on unseen data.

Examining dropout rates, both ‘0.1” and ‘0.5 exhibited similar and optimal outcomes
during training. Both configurations achieved a training accuracy of ‘0.99" and a training
loss of “0.01". However, the dropout rate of ‘0.5" demonstrated superior validation per-
formance, achieving a higher accuracy of ‘0.78" compared to ‘0.77" achieved by using a
dropout rate of ‘0.1’. Additionally, the ‘0.5” dropout rate led to a lower validation loss of
‘0.92’, suggesting improved generalisation performance and better prevention of overfitting
compared to the ‘0.1” dropout rate.

In terms of activation functions, the Swish activation function stood out as the most
effective. With a training accuracy of ‘0.99’, training loss of ‘0.01’, validation accuracy of
‘0.79’, and validation loss of ‘0.92’, Swish surpassed other activation functions. Its ability
to introduce non-linearity to the model while maintaining smoothness contributed to
its success.

Table 3. Results of parameter tuning on DenseNet CNN architecture.

Parameter Training Training Validation Validation Runtime
Accuracy Loss Accuracy Loss (ms)
SDG 0.99 0.02 0.76 1.63 3711.01
% Adam 0.77 0.69 0.70 243 3823.47
S RMSProp 0.74 1.25 0.68 2.83 4150.94
= Adagrad 0.99 0.04 0.76 0.96 3811.85
% Adamax 0.99 0.04 0.75 1.87 3893.97

Nadam 0.78 0.66 0.70 2.35 4757.08
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Table 3. Cont.
Parameter };raining Training Validation Validation Runtime
ccuracy Loss Accuracy Loss (ms)
g 80x80 0.81 0.63 0.65 121 1331.29
@ 120 x 120 0.95 0.21 0.72 1.03 2149.88
0 160 x 160 0.99 0.04 0.76 0.96 3811.85
S 224 x 224 0.99 0.01 0.78 0.92 6644.99
[5 0.1 0.99 0.01 0.77 1.02 6615.02
2' 0.5 0.99 0.01 0.78 0.92 6644.99
Z RelU 0.99 0.01 0.78 0.92 6644.99
8 Sigmoid 0.98 0.12 0.77 0.83 6651.85
<>E Tanh 0.99 0.02 0.77 0.98 6735.93
&= Swish 0.99 0.01 0.79 0.92 6689.80
&E) GELU 0.99 0.01 0.78 0.88 6670.22

Note: All results are represented as floating point values between 0 and 1 except for ‘Runtime’. The best result on
each parameter is highlighted in bold type font.

4.3. Optimal ModelsTep 3

The findings from Section 4.2 provide valuable insights into the impact of different
parameters on the DenseNet model’s performance. Specifically, Adagrad as an optimiser,
a larger image size of 224 x 224, a moderate dropout rate of ‘0.5, and the Swish activa-
tion function were identified as optimal choices for deploying the DenseNet model. A
comparison of this optimal version with the baseline is shown in Table 4.

Table 4. Baseline vs. final results.

CNN Training Training Validation  Validation Runtime
Accuracy Loss Accuracy Loss (ms)

DenseNet (baseline) 0.74 1.25 0.68 2.83 4150.94

DenseNet (optimal) 0.99 0.01 0.79 0.92 6689.80

Note: Accuracy results are represented as floating point value between 0 & 1. The best overall result highlighted
in ‘grey’ was produced by the optimal model, albeit with higher runtime than the baseline model.

Several notable differences emerged between the baseline and optimal configurations.
The baseline setup yielded a training accuracy of ‘0.74’, while the optimal configuration
demonstrated a substantial improvement, achieving an impressive ‘0.99". A similar trend
was observed in the training loss, where the baseline registered ‘1.25’, contrasting sharply
with the optimal’s significantly lower value of ‘0.01’. Similar trends were replicated in
the validation metrics, where the baseline accuracy stood at ‘0.68’, while the optimal
configuration showed a considerable boost to ‘0.79". Simultaneously, the validation loss in
the baseline was ‘2.83’, markedly reduced to ‘0.92" in the optimised version.

Despite these improvements in performance metrics, it is important to note that
the runtime also increased in the optimal configuration, rising from ‘4150.94" ms in the
baseline to ‘6689.80 ms’. This highlights the trade-offs between computational efficiency
and enhanced model accuracy. Both experiments were obtained over 50 epochs as shown
in Figure 4 but it seems that some of the parameters used in the optimal configuration are
complex, leading to higher computational costs.
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Figure 4. Results of the optimal approach showing accuracy and loss.

5. Discussion

It is important to put the experiment results into context especially to show how (and
to what extent) this study addressed the research aim, which focuses on a multi-class image
classification task. Specifically, a discussion is made surrounding the reasons behind the
results in Section 4 and its implications for global food waste management.

DenseNet emerged as the preferred architecture based on the baseline results in
Section 4.1, showing remarkable accuracy (training = 74%, validation = 68%) and com-
putational efficiency (4.1 s). Its dense connectivity pattern facilitates effective feature
propagation, leading to accurate learning across diverse food classes. The DenseNet archi-
tecture’s success is further evidenced by a reasonable training loss of 1.25 and a validation
loss of 2.83, which is indicative of successful convergence without overfitting. In contrast,
Xception architecture closely follows DenseNet with a training accuracy of 72% and a
validation accuracy of 62%. While Xception leverages depth-wise separable convolutions
for efficiency, it comes at a slightly longer runtime of 5097.21 ms, implying a discernible
trade-off between accuracy and computational cost. Meanwhile, VGG-16, characterised
by its deep architecture, achieves competitive training accuracy (65%) but grapples with
challenges in generalisation, ultimately resulting in a lower validation accuracy of 51%.
Despite signs of overfitting, VGG-16s computational intensity is evident in its runtime of
52s.

InceptionNet, which is strategically designed for multi-scale feature capture, achieved
a training accuracy of 55% and a validation accuracy of 51%, placing it on par with VGG-
16. Notably, InceptionNet achieves this commendable accuracy with enhanced efficiency,
boasting a runtime of 2.4 s. This efficiency underscores its proficiency in capturing diverse
features across different scales, making it a compelling choice for tasks demanding both
accuracy and computational effectiveness. In contrast, MobileNet strikes a harmonious
balance between accuracy and efficiency, exhibiting a lower training accuracy of 38% and a
validation accuracy of 55%. With a runtime of 2.8 s, MobileNet positions itself as one of
the faster models, demonstrating a favourable compromise between computational speed
and accuracy. However, VGG-19 encounters challenges similar to VGG-16, grappling with
overfitting and a noticeably slower runtime of 7.1 s. This emphasises the inherent trade-off
between accuracy and computational cost for these deep learning architectures.

Surprisingly, ResNet’s performance is notably poor across all metrics, yielding a train-
ing accuracy of 9% and a validation accuracy of 11%. This unexpected outcome indicates
its inherent difficulties in learning effective residual mappings for the intricate differences
of the modest food image dataset as shown in Figure 5. According to Nichani et al. [68],
increasing depth in later blocks of ResNet leads to a more drastic increase in test error
compared to increasing depth in earlier blocks. This was corroborated by a recent study
conducted with ResNet of different layer depths—18, 34, 50, and 152 [69]. The study shows
that ResNet performance is determined by the richness of semantic features of the datasets
rather than the depth. The study also found that freezing most layers of ResNet and only
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training the last fully connected layer does not improve the accuracy and efficiency of
transfer learning. This emphasises the challenges that ResNet faced in distinguishing
between the intricate data composition and proximity between classes. The condensed
representation provided by the principal component analysis (PCA) in Figure 5 reveals
subtle variations and overlaps, highlighting the need for a detailed understanding of class
boundaries. In the context of CNN architectures, these findings highlight the importance
of a resilient architecture capable of capturing and learning intricate features to navigate
inter-class relationships. Specifically for ResNet, Wang et al. [69] suggested that fine-tuning
all layers offers a practical way to reach the best performance based on the amount of
available data. This will be explored further in future work but it is worth noting that
ResNet exhibits a relatively fast runtime of 4.9 s, highlighting a compromise in accuracy for
computational efficiency.

PCA Visualization of Validation Set
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Figure 5. Principal component analysis of the validation dataset.

While the unexpected outcome of ResNet prompts a thorough reassessment of its
suitability for the particular task examined in this study, this falls outside the comparative
analysis aimed at establishing a baseline architecture, where DenseNet emerged as the
most accurate and computationally efficient option. The results of parameter tuning on
the DenseNet as presented in Table 3, reveal intriguing insights into the impact of various
parameters on training and validation performance. In the context of optimisers, the SDG
and Adagrad stood out with exceptional training accuracy (99%), outperforming other opti-
misers. Adagrad, in particular, demonstrated dominance by achieving the best validation
accuracy (76%) and the lowest validation loss (0.96), indicating superior generalisation.

The operational characteristics of optimisers play a crucial role in the trajectory of
model convergence, particularly in the context of complex multi-class classification tasks.
For example, the fixed learning rate of traditional SDG may have hindered its adaptability
to varying complexities within different food classes. This reinforces the importance of
carefully selecting optimisers based on their operational strategies, with Adagrad proving
to be a favourable choice for enhancing the adaptability and generalisation capabilities
of DenseNet on the fine-grained food image dataset. The high performance is probably
due to Adagrad’s adaptive learning rate approach, which dynamically adjusts learning
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rates based on historical gradients. Such adaptability has proved pivotal in addressing
challenges inherent in multi-class food image classification, where certain features may be
infrequent or sporadic across the dataset [70].

Moving onto the impact of image size on performance, it is evident that larger image
sizes led to improved accuracy. The transition from 80 x 80 to 224 x 224 resulted in a
gradual increase in both training and validation accuracy. Notably, the model trained on
224 x 224 images achieved the best overall performance, with a training accuracy and
validation accuracy of 99% and 78%, respectively. This emphasises the importance of
image resolution in capturing minute details within images, ultimately enhancing the
model’s performance.

Regarding the dropout rate, the model’s sensitivity to dropout values is minimal, as
both ‘0.1” and ‘0.5” dropout rates yielded comparable high accuracy scores. This suggests
that DenseNet is relatively robust to changes in dropout rates for this specific task. However,
a dropout rate of 0.5 was chosen as it achieved marginally better performance in terms of
validation accuracy and loss.

Exploring activation functions, it is notable that ReLU, Swish, and GELU consistently
led in performance across all metrics. These activation functions exhibit strong nonlinear
characteristics, aiding in capturing complex relationships within the data. Swish, with its
smoothness and non-monotonicity [71], emerged as the optimal choice, achieving the high-
est validation accuracy (79%) and the lowest validation loss (0.92). This shows the pivotal
role of activation functions in shaping the decision boundaries of the model, with Swish
standing out as the most effective choice for DenseNet in this food image classification task.

The parameter tuning process, as evidenced in Table 3, guided the selection of Adagrad
as the optimal optimiser for DenseNet. The adaptability inherent in Adagrad’s learning
rate, particularly its emphasis on infrequent features within the dataset, played a pivotal
role in achieving superior generalisation. This adaptability is reflected in the final model’s
performance, highlighted in Table 4, where the optimal DenseNet configuration yielded
substantial improvements compared to the baseline. Notably, the optimal DenseNet
exhibited a training accuracy of 99%, a training loss of 0.01, a validation accuracy of 79%,
and a validation loss of 0.92, outperforming the baseline in all metrics. The associated
runtime of 6.6 s indicates a computational compromise for the enhanced model accuracy.
This integration of parameter tuning and subsequent optimisation underscores the crucial
role of meticulous parameter selection in overcoming the unique operational challenges
posed by multi-class classification tasks, ultimately leading to the realisation of optimal
model performance.

This study’s achievement in developing an optimal DenseNet model represents a
significant stride toward practical implementation in real-world applications. Specifically,
the optimal model, fine-tuned through meticulous parameter selection, now serves as
the core image estimator in FridgeSnap [25], a mobile application designed to minimise
food waste. This innovative application offers users a seamless experience by allowing
them to capture images of food items as shown in Figure 6a,d,e. Each time a food image is
captured, the user is asked to select the correct item from a shortlist of predictions presented
with confidence levels in descending order (Figure 6b) and the user selection is confirmed
(Figure 6¢). Each confirmed food is added to an itemised list (Figure 6g) and the user can
also enter food items manually as shown in Figure 6f. Leveraging the enhanced capabilities
of the optimal DenseNet, FridgeSnap provides the user with insightful suggestions for
recipes based on the identified contents as shown in Figure 6h. A full demonstration
of the application is available on YouTube (FridgeSnap demonstrator available at https:
/ /www.youtube.com/watch?v=YhYpCkvr_So (accessed on 29 February 2024)) and the
complete integration and deployment source code are available on GitHub [29].
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Figure 6. Results of automatic and manual food image capture and recipe suggestion on FridgeSnap.

The FridgeSnap application was developed in parallel to the image classification
model. The application is further described in [25]. The application works by embedding
the developed model in the backend, allowing users to take images of singular food items
which are detected and then further processed into recipes using an APIL. The application
was tested without real users using CogTool (https://www.cogtool.org/ (accessed on
29 February 2024)), which allows for replication and evaluation of user actions within
the application. Each action is recorded with a timestamp as a measure of success when
carrying out usability testing for the application, as users should be able to easily navigate
through the application. In this project, common actions within FridgeSnap include the
user signing up, signing in, taking an image of an item, and generating a recipe. Table 5
highlights each user action within the application, along with a recorded timestamp.

It is evident from the results that taking an image of an item is more effective for the
user, than manually entering the item, with a total difference in time of ‘8.4 s” between
the two actions. The results further emphasise the simplicity of the developed application.
Users can sign into the application, take an image of an item, and generate a recipe in less
than one minute. However, it is important to note that the time may increase if users have
a slower input speed, although this test is not dependent on user input speed.
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Table 5. CogTool results.

Task Average Time Taken to Carry out Task
Sign up 47s
Reset password 71s
Sign in 1.7s
Take image of item 54s
Add item manually 13.8s
Remove item from list 13.6 s
Search for recipes 13.6's
Open favourite recipes 154s
Open discovered recipes from favourites 169s

The deployment of FridgeSnap further serves a purpose beyond user convenience,
aligning with a broader commitment to environmental sustainability. By minimising food
waste through the thoughtful utilisation of perishables, FridgeSnap contributes to the
crucial mission of fostering a more sustainable future. This technological integration,
bridging the gap between advanced image recognition and practical utility in everyday
life, exemplifies the tangible impact that well-tuned deep learning models can have on
addressing pressing societal challenges. It is important to note that the application is
not intended to be a comprehensive solution to the global issue of food waste. Rather, it
serves as an alternative and a source of support for consumers. It addresses the problem
of consumers’ lack of knowledge about food usage by offering a list of easy-to-follow
online recipes.

In essence, this study not only advances the understanding of optimal model configu-
rations but also extends its implications into real-world applications, showing the potential
of artificial intelligence (Al) in fostering environmentally conscious practices.

6. Conclusions

In this study, an exploration is made surrounding the various CNN architectures
for the complex task of multi-class classification tailored toward the study’s aim to per-
form fine-grained food image recognition involving 20 singular food item classes. The
approach employed in this task shares similarities with existing approaches (discussed in
Section 2) [23,24,37,39], which primarily involves adjustments in pre-trained CNN architec-
tures for improved performance. However, it distinguishes itself by focusing on a more
granular classification task. Unlike previous work that often classifies food images into
broader categories (such as meat, dairy, and fruit), the task of this study focuses on the
classification of individual food items (e.g., carrot, banana, chicken, fish, egg). This poses a
unique challenge, given that the complexity of a multi-class classification task increases
with the number of classes. In this specific experiment, the intricacies of classifying indi-
vidual food items (n = 20) are tackled, departing from conventional research that typically
deals with fewer classes.

The investigation initially explored seven pre-trained CNN architectures that are com-
monly used in similar studies. However, the attention of this study converged on DenseNet
as the architecture of choice due to its exceptional baseline performance on predetermined
parameters, including the RMSProp optimiser, ReLU activation function, ‘0.5" dropout rate,
and a 160 x 160 image size. DenseNet emerged as the front runner, achieving a baseline
training accuracy of 74%, validation accuracy of 68%, and computational efficiency of 4.1 s.

Subsequent parameter tuning, encompassing six optimisers, four image sizes, two
dropout rates, and five activation functions, further enhanced DenseNet’s capabilities. The
optimised model demonstrated remarkable improvements, showing a training accuracy
of 99%, training loss of 0.01, validation accuracy of 79%, and validation loss of 0.92. The
study’s success lies not only in refining insights from exploratory experiments into optimal
model configurations but also in translating these findings into real-world applications.
Specifically, the deployment of the optimised DenseNet in FridgeSnap bridges the gap
between advanced image recognition and practical utility, exemplifying the tangible impact
of well-tuned deep learning models on addressing pressing societal challenges. This techno-
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logical integration serves as a testament to the potential of Al in fostering environmentally
conscious practices and shows the role of CNNs in changing the general approach to food
waste management.

7. Future Work

Although this study has presented a model that achieved a high accuracy at 79%,
it is evident that future work holds promising avenues for exploration and refinement,
particularly architectures that exhibited suboptimal performance, such as ResNet, warrant
deeper scrutiny. The unexpected underperformance of ResNet across all metrics prompts
further investigation into its specific challenges and potential adaptations to better suit
the nuances of the fine-grained food image dataset. Future research would involve the
development of a custom CNN architecture or the application of current methods in a novel
context, for example through fine-tuning ResNet’s structural parameters or considering
ensemble approaches to harness the strengths of multiple models.

Additionally, expanding the experimental dataset to encompass a more extensive array
of singular food items holds the potential to enhance the model’s ability to generalise across
diverse culinary items. A broader range of food items in the dataset could introduce new
challenges and intricacies, offering a more comprehensive evaluation of the selected CNN
architectures. This expansion could involve incorporating regional or cultural variations in
food items, capturing a richer diversity that aligns more closely with real-world scenarios.
Moreover, increasing the dataset size may contribute to mitigating overfitting concerns and
improving the models” performances. In fact, an effective way of improving the dataset
variation is through image augmentation [56]; this will be explored in future work.
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