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Abstract: Although prostate cancer is one of the most common causes of mortality and morbidity
in advancing-age males, early diagnosis improves prognosis and modifies the therapy of choice.
The aim of this study was the evaluation of a combined radiomics and machine learning approach
on a publicly available dataset in order to distinguish a clinically significant from a clinically non-
significant prostate lesion. A total of 299 prostate lesions were included in the analysis. A univariate
statistical analysis was performed to prove the goodness of the 60 extracted radiomic features in
distinguishing prostate lesions. Then, a 10-fold cross-validation was used to train and test some
models and the evaluation metrics were calculated; finally, a hold-out was performed and a wrapper
feature selection was applied. The employed algorithms were Naïve bayes, K nearest neighbour
and some tree-based ones. The tree-based algorithms achieved the highest evaluation metrics,
with accuracies over 80%, and area-under-the-curve receiver-operating characteristics below 0.80.
Combined machine learning algorithms and radiomics based on clinical, routine, multiparametric,
magnetic-resonance imaging were demonstrated to be a useful tool in prostate cancer stratification.

Keywords: radiomics; machine learning; MRI; prostate cancer

1. Introduction

According to America Cancer Society, the estimated numbers of new cases and deaths
from prostate cancer in the USA in 2021 are more than 240,000 and over 30,000, respec-
tively [1]. As the prognosis of prostate cancer is strictly related to its biologically aggressive
behavior, early detection and accurate risk stratification play a key role in ensuring the
best outcome for patients [2]. In summary, clinically significant prostate cancer needs to be
discriminated from low-grade disease to propose an adequate treatment to the patient [3].
To this end, magnetic resonance imaging (MRI) emerged as the most accurate imaging
modality for the detection of clinically significant prostate cancer and actually plays a
major role in the diagnostic pathway of the disease, since MRI is able to guide targeted
biopsies [4,5]. Nevertheless, this technique has some limitations, such as the contrast-agent
administration, a moderate specificity and the need for a high level of expertise to be
correctly interpreted [6,7].
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In recent years, radiomics and machine learning (ML) have shown their potential to
extract quantitative features and elaborate them with complex algorithms to improve both
the diagnosis and prognosis of patients.

Several authors demonstrated the advantage of the application of radiomics and
ML, not only in prostate cancer but also in other fields of oncology [8–10]. In addition,
recently, systematic reviews described the promising role of these techniques in prostate
cancer [11–15]. The results of these studies suggested that, while MRI radiomics and ML
approaches can reach high diagnostic accuracy in detecting severe prostate cancer and thus
should be further investigated, the high heterogeneity of these studies has prevented their
application in real life, indicating the need for standardized pipelines and the concomitant
use of reliable benchmarks.

As a result, the aim of the present study is to evaluate the ability of the combined
radiomics and ML approach using several ML algorithms (tree-based, instance-based and
based on the a priori probability theory) on a publicly available dataset of MRI images,
elaborated by Cuocolo et al. [16], in differentiating a clinically significant from a clinically
non-significant prostate lesion.

Figure 1 summarizes the research workflow, which starts with MRI acquisition and
ends with ML analysis.

Figure 1. Workflow of the research.

2. Materials and Methods
2.1. Dataset

A total of 299 verified prostate lesions were included in this study. Specifically,
the lesion annotation masks were obtained from an online open repository (https://
github.com/rcuocolo/PROSTATEx_masks, accessed on 1 July 2020) and coupled with the
source MRI images, which can be found in the PROSTATEx training dataset (https://wiki.
cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges, ac-
cessed on 1 July 2020) [16,17]. The ground-truth of the public dataset is obtained with a
manual annotation. The 3 × 3 lesion and gland zone coordinate masks, freely available
on a public repository (https://github.com/rcuocolo/PROSTATEx_masks, accessed on
1 July 2020), were retrieved by slice-by-slice seg-mentation on T2-weighted (T2w) and
apparent diffusion coefficient (ADC) images, by the residents, with a subsequent check and
eventual refinement by a radiologist. Of these 299 prostate lesions, 76 harbored clinically
significant prostate cancer (cut-off = Gleason grade group ≥ 2) [18]. T2w and ADC maps
images were used for the extraction of radiomic features. Images were obtained by two
Siemens 3T MRI scanners, the MAGNETOM Trio and Skyra, without an endorectal coil.
The acquisition of T2-w images was performed using a turbo-spin echo sequence with a
resolution of around 0.5 mm in plane and a slice thickness of 3.6 mm. The ADC map was
acquired by the scanner software from the diffusion-weighted imaging (DWI) (a single-
shot echo planar imaging sequence with a resolution of 2 mm in-plane and 3.6 mm slice
thickness, and with diffusion-encoding gradients in three directions) with three b-values
(50, 400, and 800). Several algorithms were used to standardize signal intensity. Specifically,
the T2-estimate map was obtained by using the MRI signal equation with an automated
process [19] and the ADC map was automatically acquired from the diffusion-weighted
images using the MRI scanner software. Figure 2 shows a clinically significant and a
clinically non-significant lesion.

https://github.com/rcuocolo/PROSTATEx_masks
https://github.com/rcuocolo/PROSTATEx_masks
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges
https://github.com/rcuocolo/PROSTATEx_masks
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Figure 2. Magnetic resonance images from a clinically significant (A,B) and a non-clinically significant
(C,D) prostate cancer lesion. Both are located in the peripheral zone; the clinically significant lesion,
found in the right middle-posterior location (white arrows), appears as a nodular and well-defined
area of low signal on both T2w (A) and ADC map (B). Conversely, the non-clinically significant
lesion, found in the left middle-posterior location (white arrow heads), appears wedge-shaped, with
no bulging on T2w (C) and only is mildly hypointense on the ADC map (D). Both lesions were
deemed worthy of targeted biopsy.

2.2. Radiomics Features Extraction

Images underwent a preprocessing stage before feature extraction, including resam-
pling to isotropic voxel, the normalization of pixel intensity values and discretization [20].
A freely accessible software (PyRadiomics, v 3.0) was used for image pre-processing and
feature extraction [21]. Z-score normalization was paired with scaling by a factor of 100 and
a grey level value shift of +300, resulting in a final expected intensity range of 0–600. Dis-
cretization prior to first-order feature extraction was implemented using a fixed bin width of
5. Laplacian Gaussian filtering (sigma values= 1, 2, 3, 4, 5) and wavelet decomposition (all
high- and low-pass filter combinations along the three axes) were applied, in addition to the
original images. These settings were based on recommendations from the software develop-
ers and previous experiences in the literature [22]. Feature stability was tested for multiple
segmentations on a random sample of 30 lesions (in total, masks from three operators were
used), by calculating intraclass correlation coefficient and using a cut-off of 0.75. Low vari-
ance features were then excluded using a variance threshold of 0.01. Highly intercorrelated
features (Pearson pairwise correlation > 0.8) were discarded, leaving a final number of
60 stable, informative features. Radiomic features are subsequently extracted to the prostate
segmentation to simplify the detection, similarly to a previous published study [23]. A de-
tailed description of the extracted radiomic features is available in the official PyRadiomics
documentation (https://pyradiomics.readthedocs.io/en/latest/features.html, accessed on
1 July 2020).

2.3. Statistical Analysis

An inferential statistical analysis was performed by means of Levene’s test to assess
the equality of variances for each feature of the two classes. Moreover, an unpaired t-test
was carried out to assess the differences in the mean values for each feature between the
two classes. Both statistic tests were implemented assuming a two-tailed distribution and a
confidence level equal to 95% (definition of statistical significance: p-value < 0.05). The main
purpose of this analysis was to understand whether the radiomics features extracted from
the images could distinguish the significance of the lesion.

https://pyradiomics.readthedocs.io/en/latest/features.html
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SPSS Software for Statistics v. 25 was used to perform the statistical analysis.

2.4. Machine Learning

Afterward, a ML analysis was conducted to evaluate the predictive power of the
extracted features in classifying significant and non-significant lesions.

The following ML algorithms were implemented.
Decision Tree (DT) is based on an ordinary tree structure, which is made-up of a

root, nodes, branches and leaves [24]. A DT starts from the root, then moves downward.
The node from which the tree starts is named the root node, while the node where the
chain ends is named the leaf node. Two or more branches can be extended from each
internal node; in this case, it is not a leaf node. A node represents a certain feature while
the branches represent a range of values [8]. J48 DT, which uses the C4.5 algorithm [25],
was considered in the present work.

Random Forest (RF) [26], considered a classification task, is an ensemble of unpruned
classification trees generated from the random selection of training set instances. Random
features are selected in the induction process. A prediction is made by aggregating the
ensemble predictions using the majority vote strategy. The Information Gain Ratio was
used as a split criterion.

Gradient Boosted Tree (GBT) builds one DT at a time to fit the residual of the trees
that precede it [27]. In the case of a binary classification, as in this study, a scalar score
function is formed to distinguish the two classes. Given the training data and the classes
related to each training instances, the goal of GBT is to choose a classification function that
minimizes the aggregation of some specified loss function [27].

Ada Boost (ADA-B) is part of the boosting algorithms, in which several individual
classifiers, DT in the case under study, are produced iteratively, and each classifier tries to
accurately classify the training data [28]. The classifier uses an adaptive resampling strategy
to choose the training samples. Each iteration assigns a weight to the dataset so that the
next integration concentrates on reweighted datasets that were previously misclassified.
The final classifier is a weighted sum of the ensemble predictions [29]. The advantage of
the ADA-B algorithm is significant for solving several issues, including two-class problems,
as in the case under study.

Naïve Bayes (NB) is based on the assumption that features are independent within
a class in order to simplify the learning process [30]. Although this is an unrealistic
assumption, NB competes well with more sophisticated classifiers [31], finding concrete
applications in several scenarios including medical diagnosis [32].

K Nearest Neighbor (KNN) requires, in addition to training data, a fixed k value
to search the k-nearest data based on distance computation. If the k found instances of
different class labels, the classifier predicts that the class of the unknown example would
be the same as the majority class [33]. Different distance metrics have been proposed in the
scientific literature; for our purpose, we considered the Euclidian distance.

Two workflows of analyses were carried out using two different validation strategies
for all the ML algorithms.

The first analysis used a 10-fold cross-validation to validate the predictive models by
including all 60 radiomics features [34].

The second analysis used a hold-out validation; the dataset was divided into two
non-overlapping parts and these two parts were used for training (70%) and testing (30%),
respectively. This validation allows to avoid the problem of overfitting that is present
in a re-substitution validation to be removed [35]. This analysis was performed using
a feature selection method by means of a wrapper method based on backward feature
elimination [36]. The usefulness of this method relies on the elimination of useless features
and the building of a more reliable model based on a reduced set of features.

The main difference between the models was the presence of a feature selection step.
The performance of the proposed predictive models was evaluated through the follow-

ing evaluation metrics: accuracy, sensitivity, specificity, area under the receiver operating
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characteristic curve (AUC-ROC) [37] and accuracy max, computed as the maximum value
among the accuracies obtained in the ten cycles of 10-fold cross-validation.

ML algorithms were implemented through the artificial intelligence platform Knime
Analytics Platform (version 3.7.1), which is increasingly diffused in the scientific liter-
ature [38–40] and has achieved an interesting performance when compared with other
platforms and programming languages.

3. Results

The following subsections show the univariate statistical analysis results for the
radiomics features and the ML analyses.

Altogether, 466 out of the 2576 features were considered stable after the inter-observer
intra-class correlation analysis. An additional reduction was performed by removing zero
variant features (n = 54 removed). Then, 352 out of the remaining 412 were excluded due
to their high pairwise correlation, leaving 60 radiomic parameters in the dataset.

3.1. Statistical Analysis

Levene’s test was employed to verify the equality of variances, and then the univariate
statistical analysis was performed through a t-test. Table 1 shows the descriptive statistics
and the p-value of the t-test for all the radiomic features.

Table 1. Descriptive statistics for the 60 radiomic variables and comparison between significant (0) and non-significant
(1) lesions. Feature names are structured as follows: “MRI sequence”, “image type (original or filtered)”, “feature class”,
“feature name”, each separated by an underscore.

Variable Class Mean ± std. dev. t-Test p-Value

t2_original_shape_MeshVolume 0 0.11 ± 0.13
0.003 **1 0.18 ± 0.19

t2_original_firstorder_10Percentile 0 0.47 ± 0.20
0.002 **1 0.40 ± 0.15

t2_original_glcm_Imc2 0 0.65 ± 0.26
0.007 **1 0.56 ± 0.26

t2_original_glcm_Idm 0 0.59 ± 0.16
0.0981 0.62 ± 0.15

t2_logsigma10mm3D_firstorder_90Percentile 0 0.24 ± 0.15
0.1191 0.21 ± 0.13

t2_logsigma10mm3D_ngtdm_Busyness 0 0.15 ± 0.15
0.042 *1 0.20 ± 0.19

t2_logsigma10mm3D_gldm_DependenceVariance 0 0.37 ± 0.21
0.001 ***1 0.46 ± 0.21

t2_logsigma20mm3D_firstorder_90Percentile 0 0.44 ± 0.19
0.8741 0.44 ± 0.15

t2_logsigma20mm3D_glcm_DifferenceVariance 0 0.19 ± 0.16
0.5061 0.17 ± 0.15

t2_logsigma20mm3D_glszm_LargeAreaLowGrayLevelEmphasis 0 4.76 ± 1.17
0.3451 6.16 ± 9.36

t2_logsigma30mm3D_glcm_Contrast 0 0.15 ± 0.13
0.1121 0.12 ± 0.11

t2_logsigma30mm3D_glrlm_LongRunEmphasis 0 0.25 ± 0.17
0.015 *1 0.31 ± 0.19

t2_logsigma30mm3D_ngtdm_Busyness 0 0.15 ± 0.15
0.1811 0.17 ± 0.13

t2_logsigma40mm3D_firstorder_10Percentile 0 0.63 ± 0.17
0.0721 0.66 ± 0.12

t2_logsigma40mm3D_firstorder_90Percentile 0 0.44 ± 0.17
0.033 *1 0.49 ± 0.14

t2_logsigma40mm3D_firstorder_InterquartileRange 0 0.38 ± 0.17
0.5711 0.39 ± 0.19

t2_logsigma40mm3D_glcm_Idm 0 0.50 ± 0.17
0.0541 0.54 ± 0.16

t2_logsigma40mm3D_glcm_InverseVariance 0 0.85 ± 0.11
0.3251 0.86 ± 0.08

t2_logsigma40mm3D_glszm_SizeZoneNonUniformity 0 0.07 ± 0.10
0.0641 0.11 ± 0.14
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Table 1. Cont.

Variable Class Mean ± std. dev. t-Test p-Value

t2_logsigma50mm3D_firstorder_Minimum 0 0.58 ± 0.17
0.7081 0.57 ± 0.14

t2_logsigma50mm3D_firstorder_Variance 0 0.17 ± 0.15
0.026 *1 0.22 ± 0.17

t2_logsigma50mm3D_glcm_Autocorrelation 0 0.16 ± 0.15
0.006 **1 0.22 ± 0.16

t2_logsigma50mm3D_glcm_Contrast 0 0.11 ± 0.11
0.4651 0.10 ± 0.82

t2_logsigma50mm3D_glrlm_LongRunEmphasis 0 0.26 ± 0.16
0.4131 0.28 ± 0.18

t2_logsigma50mm3D_glszm_LargeAreaEmphasis 0 5.40 ± 1.16
0.1721 7.50 ± 1.13

t2_logsigma50mm3D_gldm_LargeDependenceHighGrayLevelEmphasis 0 0.09 ± 0.10
0.003 **1 0.13 ± 0.11

t2_waveletLLH_glcm_JointEnergy 0 0.28 ± 0.19
0.9271 0.28 ± 0.15

t2_waveletLHL_firstorder_90Percentile
0 0.21 ± 0.15

0.2131 0.19 ± 0.12

t2_waveletLHH_glcm_JointEnergy 0 0.45 ± 0.21
0.3051 0.47 ± 0.17

t2_waveletHLL_glrlm_LongRunEmphasis 0 0.36 ± 0.16
0.2171 0.38 ± 0.17

t2_waveletHLL_ngtdm_Busyness 0 0.14 ± 0.14
0.0591 0.17 ± 0.17

t2_waveletHHL_firstorder_Variance
0 0.24 ± 0.14

0.2441 0.22 ± 0.11

t2_waveletHHL_glszm_LargeAreaLowGrayLevelEmphasis 0 0.40 ± 0.08
0.3861 0.06 ± 0.15

t2_waveletHHL_ngtdm_Busyness 0 0.17 ± 0.17
0.047 *1 0.22 ± 0.19

t2_waveletLLL_firstorder_Energy 0 0.10 ± 0.14
0.1311 0.13 ± 0.15

adc_original_firstorder_10Percentile 0 0.58 ± 0.16
0.001 ***1 0.47 ± 0.18

adc_original_glrlm_LongRunEmphasis 0 0.31 ± 0.18
0.6121 0.32 ± 0.17

adc_logsigma10mm3D_glcm_Contrast 0 0.10 ± 0.11
0.7181 0.09 ± 0.09

adc_logsigma10mm3D_glcm_Idm 0 0.54 ± 0.21
0.2651 0.57 ± 0.19

adc_logsigma10mm3D_ngtdm_Strength 0 0.11 ± 0.15
0.0701 0.09 ± 0.09

adc_logsigma30mm3D_firstorder_90Percentile 0 0.11 ± 0.14
0.001 ***1 0.09 ± 0.09

adc_logsigma30mm3D_glcm_DifferenceAverage 0 0.35 ± 0.19
0.1631 0.38 ± 0.16

adc_logsigma30mm3D_glrlm_LongRunEmphasis 0 0.26 ± 0.16
0.1401 0.23 ± 0.12

adc_logsigma30mm3D_glszm_GrayLevelNonUniformity 0 0.16 ± 0.13
0.001 ***1 0.25 ± 0.21

adc_logsigma40mm3D_glcm_InverseVariance 0 0.66 ± 0.16
0.6941 0.65 ± 0.16

adc_logsigma40mm3D_glszm_LargeAreaHighGrayLevelEmphasis 0 4.28 × 102 ± 1.22 × 102
0.4721 5.39 × 102 ± 9.64 × 102

adc_logsigma50mm3D_firstorder_10Percentile 0 0.50 ± 0.18
0.1001 0.54 ± 0.19

adc_logsigma50mm3D_glrlm_RunPercentage 0 0.58 ± 0.15
0.0511 0.62 ± 0.12

adc_logsigma50mm3D_glszm_ZoneVariance 0 6.50 × 102 ± 1.39 × 101
0.7201 5.99 × 102 ± 8.49 × 102

adc_waveletLLH_glcm_JointEnergy 0 0.27 ± 0.16
0.5721 0.29 ± 0.18

adc_waveletLLH_glrlm_LongRunEmphasis 0 0.19 ± 0.12
0.015 *1 0.24 ± 0.16

adc_waveletLHL_firstorder_90Percentile
0 0.36 ± 0.14

0.9261 0.36 ± 0.13

adc_waveletLHL_firstorder_Kurtosis
0 0.10 ± 0.10

0.004 **1 0.15 ± 0.14
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Table 1. Cont.

Variable Class Mean ± std. dev. t-Test p-Value

adc_waveletHLL_firstorder_90Percentile
0 0.22 ± 0.12

0.0601 0.25 ± 0.12

adc_waveletHLL_glcm_Imc2 0 0.46 ± 0.23
0.9841 0.46 ± 0.20

adc_waveletHLL_glcm_Idm 0 0.53 ± 0.16
0.7431 0.53 ± 0.14

adc_waveletHLL_glrlm_RunVariance 0 0.28 ± 0.15
0.05 *1 0.32 ± 0.18

adc_waveletHHL_glcm_Contrast 0 0.07 ± 0.12
0.8341 0.08 ± 0.10

adc_waveletHHL_glszm_LargeAreaEmphasis 0 4.70 × 102 ± 8.20 × 102
0.0641 8.26 × 102 ± 1.58 × 101

adc_waveletLLL_glcm_Imc2 0 0.88 ± 0.17
0.4771 0.89 ± 0.12

* = 0.01 < p < 0.05; ** = 0.001 < p < 0.01; *** = p < 0.001.

The statistical analysis showed that 16 features, out of a total of 60, were useful to
distinguish a significant from a non-significant lesion (p-value < 0.05).

3.2. Machine Learning Analysis

The ML analysis was performed twice.
First, all 60 radiomics features were given as input to the six algorithms and the

10-fold cross-validation was employed to compute the evaluation metrics; the results of
this analysis are shown in Table 2.

Table 2. Evaluation metrics (%) of the models computed on all 60 features with the 10-fold cross-
validation.

Algorithms Accuracy Accuracy Max Sensitivity Specificity AUCROC

J48 74.2 83.3 35.5 87.4 0.567
ADA-B 74.6 86.7 42.1 85.7 0.720

RF 77.9 83.3 48.7 87.9 0.713
GBT 74.9 86.2 34.2 88.8 0.682
NB 68.9 80.0 56.6 73.1 0.650

KNN 73.2 76.7 18.4 91.9 0.643

From this, the following results can be seen: the best algorithms were RF, according to
their accuracy (77.9%), NB, which achieved the highest sensitivity (56.6%), KNN, with the
highest specificity (91.9%), and ADA-B, which obtained the best AUCROC (0.720) and the
highest accuracy max (86.7%).

Then, the dataset was divided, with 70% in the training set, and 30% in the test
set, as per hold-out cross-validation. The training set was used to perform backward
feature elimination, starting from all 60 features, and a set of variables was chosen for each
algorithm. Finally, the evaluation metrics were computed on the test set for each algorithm
by implementing 10-fold cross-validation. The results are shown in Table 3.

From this, the following results can be seen: the best algorithms were RF, again
according to accuracy (82.1%) and also regarding specificity (91.0%), J48, which achieved
the highest sensitivity (56.5%), and GBT, which obtained the best AUCROC (0.774). GBT
and J48 achieved the highest accuracy max during the 10-fold cross-validation (100%). The
application of backward feature elimination on the best algorithm, RF, made the algorithm
select 39 features, which are shown in the Appendix A.
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Table 3. Evaluation metrics (%) of the models computed using hold-out, backward feature elimina-
tion, 10-fold cross validation.

Algorithms Number of Features Accuracy Accuracy Max Sensitivity Specificity AUCROC

J48 16 82.2 100 56.5 91.0 0.635
ADA-B 14 81.1 88.9 52.2 91.0 0.708

RF 39 82.2 88.9 39.1 97.0 0.730
GBT 50 76.7 100 43.5 88.1 0.774
NB 15 70.0 88.9 21.7 86.6 0.546

KNN 25 74.4 88.9 30.4 89.6 0.676

4. Discussion and Conclusions

The present study describes 60 stable, uncorrelated and non-invariant radiomics features,
extracted from MRI images, which previously underwent a quality assessment [16], and used
to distinguish significant from non-significant prostate cancer lesions through an ML approach.
Firstly, a univariate statistical analysis was performed to prove that these 60 features were
useful in distinguishing the lesions by themselves (16 of them were revealed to be statistically
significant). Secondly, J48, ADA-B, RF, GBT, NB and KNN were implemented twice: i) they
were applied with a 10-fold cross-validation on all 60 features; ii) a different ML workflow
was employed, including a backward feature elimination strategy to identify the best subset
of features, maximizing the evaluation metrics (i.e., accuracy).

Several studies have used a similar approach, combining radiomics and ML, for the
diagnosis and characterization of prostatic lesions, aiming to differentiate clinically signifi-
cant from non-significant lesions, and thus to stratify patient’s risk [13]. This differentiation
is considered crucial in the management of prostate cancer patients for different causes: i)
a growing number of prostate lesions, discovered through prostate-specific antigen (PSA)
screening, are often clinically insignificant [41]; ii) in cases of clinically non-significant
prostate cancer, the method of choice is active surveillance, whereas clinically significant
lesions undergo surgical and medical treatment [42]; iii) then, the definition of clinically
significant cancer becomes even more urgent [43].

A further analysis by subgroups showed that eight groups had used an ML approach
while four used deep learning [44–47]. In the latter case, the used algorithms were convo-
lutional neural network, artificial neural network and transfer deep learning with a pooled
AUC-ROC of 0.78. Instead, in the former case, the ML algorithms used were NB, linear
regression, RF, logistic regression, and support vector machine, with a pooled AUC-ROC
of 0.90.

Another interesting finding is the variability of the sequences used; three
studies [48–50] employed a similar approach to ours, relying on T2 and ADC acquisi-
tions with a pooled AUC-ROC of 0.90. Abraham et al. [44] and Bonekamp et al [51] also
associated DWI with a pooled AUC-ROC of 0.81, which presented a lower stability in the
extracted radiomic features [52]. Similarly, the use of automated analysis on T1- and T2-w
sequences—without the need for gadolinium-based contrast medium—was also recently
described [53,54].

Dynamic contrast-enhanced sequences were combined with baseline T2 and ADC
sequences in two studies [55,56], resulting in a pooled AUC-ROC of 0.85. In addition,
other studies extracted radiomic features from images of advanced MRI sequences that
are not normally used in prostate MRI protocols, limiting the resulting algorithm’s clinical
applicability [16].

Moreover, among the studies analyzed by Cuocolo et al., only five, like ours, started
from a public archive, the Cancer Imaging Archive (https://www.cancerimagingarchive.
net/, accessed on 1 July 2020) [44–48,57]. The others were based on data from single
institutions, thus limiting the reproducibility and standardization of the algorithms used.

Of note, Papa et al. proposed a deep neural network architecture for classifying
clinically significant prostate lesions of non-contrast-enhanced MRI images using Con-
ditional Random Fields as a Recurrent Neural Network to enhance the classification

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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performance [58]; although high evaluation metrics were achieved in this research, the
proposed scores were affected by a high level of variability.

However, the present investigation evaluated a public dataset for improving the
consistency of our technique, whereas most of the published studies are based on data
from a single institution [13].

In addition, combining ML algorithms and radiomics has several advantages and
potentialities. Since conventional image interpretation is based on radiologists’ experience,
this technique could decrease inter-individual variability, as well as reporting time, leading
to a potential benefit for less-experienced radiologists [59].

Moreover, the present paper demonstrated the usefulness of a ML and radiomics
approach to images, which presents advantages, e.g., the non-necessity of a contrast
medium. Therefore, the MRI acquisition protocol could be faster (by selecting only the
most useful sequences) and cheaper, limiting the risk of possible side effects [60]. Indeed,
the absence of a gadolinium-based contrast medium does not expose patients to different
types of toxicities, such as nephrogenic systemic fibrosis, gadolinium brain accumulation
and the invasiveness of intravenous access [61,62]. Moreover, an easier and faster protocol
could also be more reproducible, allowing a better quality of images to be acquired in
both local databases and public archives, in turn facilitating and implementing radiomic
feature extraction and ML application. The present study has some limitations. Firstly,
we did not demonstrate a potential association between the Gleason grading with clinical
outcomes. Secondly, the performance of the used technique needs to be confirmed with
further investigations. Thirdly, we cannot consider the histopathological variants.

In conclusion, the ML and radiomics approach, based on a public dataset, demon-
strated a successfully discriminating, clinically significant prostate cancer. In the future,
this radiomic signature could be interpreted as a “virtual biopsy”, which could potentially
help to reduce the number of invasive procedures that are currently performed, and also
guide the management of patients.
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Appendix A

Features selected by Random Forests through backward feature elimination:

1. t2_log-sigma-3-0-mm-3D_glcm_Contrast
2. t2_log-sigma-3-0-mm-3D_ngtdm_Busyness
3. t2_log-sigma-4-0-mm-3D_firstorder_10Percentile
4. t2_log-sigma-4-0-mm-3D_firstorder_90Percentile
5. t2_log-sigma-4-0-mm-3D_firstorder_InterquartileRange
6. t2_log-sigma-4-0-mm-3D_glcm_Idm
7. t2_log-sigma-4-0-mm-3D_glcm_InverseVariance
8. t2_log-sigma-5-0-mm-3D_firstorder_Minimum
9. t2_log-sigma-5-0-mm-3D_glcm_Contrast

https://github.com/rcuocolo/PROSTATEx_masks
https://github.com/rcuocolo/PROSTATEx_masks
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges
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10. t2_log-sigma-5-0-mm-3D_glszm_LargeAreaEmphasis
11. t2_log-sigma-5-0-mm-3D_gldm_LargeDependenceHighGrayLevelEmphasis
12. t2_wavelet-LLH_glcm_JointEnergy
13. t2_wavelet-LHL_firstorder_90Percentile
14. t2_wavelet-LHH_glcm_JointEnergy
15. t2_wavelet-HLL_glrlm_LongRunEmphasis
16. t2_wavelet-HHL_firstorder_Variance
17. t2_wavelet-HHL_glszm_LargeAreaLowGrayLevelEmphasis
18. t2_wavelet-HHL_ngtdm_Busyness
19. t2_wavelet-LLL_firstorder_Energy
20. adc_original_firstorder_10Percentile
21. adc_original_glrlm_LongRunEmphasis
22. adc_original_glszm_LargeAreaEmphasis
23. adc_log-sigma-1-0-mm-3D_glcm_Contrast
24. adc_log-sigma-1-0-mm-3D_glcm_Idm
25. adc_log-sigma-3-0-mm-3D_firstorder_90Percentile
26. adc_log-sigma-3-0-mm-3D_glrlm_LongRunEmphasis
27. adc_log-sigma-3-0-mm-3D_glszm_GrayLevelNonUniformity
28. adc_log-sigma-4-0-mm-3D_glcm_InverseVariance
29. adc_log-sigma-4-0-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis
30. adc_log-sigma-5-0-mm-3D_glrlm_RunPercentage
31. adc_log-sigma-5-0-mm-3D_glszm_ZoneVariance
32. adc_wavelet-LHL_firstorder_Kurtosis
33. adc_wavelet-HLL_firstorder_90Percentile
34. adc_wavelet-HLL_glcm_Imc2
35. adc_wavelet-HLL_glcm_Idm
36. adc_wavelet-HLL_glrlm_RunVariance
37. adc_wavelet-HHL_glcm_Contrast
38. adc_wavelet-HHL_glszm_LargeAreaEmphasis
39. adc_wavelet-LLL_glcm_Imc2
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