
Journal of

Imaging

Article

Time- and Resource-Efficient Time-to-Collision Forecasting for
Indoor Pedestrian Obstacles Avoidance

David Urban 1,2 and Alice Caplier 1,*

����������
�������

Citation: Urban, D.; Caplier, A. Time-

and Resource-Efficient

Time-to-Collision Forecasting for

Indoor Pedestrian Obstacles

Avoidance. J. Imaging 2021, 7, 61.

https://doi.org/10.3390/

jimaging7040061

Academic Editor: Gonzalo Pajares

Martinsanz

Received: 15 February 2021

Accepted: 20 March 2021

Published: 25 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CNRS, GIPSA-Lab, Institute of Engineering, University of Grenoble Alpes, 38000 Grenoble, France;
david.urban@gipsa-lab.grenoble-inp.fr or durban@ikosconsulting.com

2 IKOS RA, 69001 Lyon, France
* Correspondence: alice.caplier@gipsa-lab.grenoble-inp.fr

Abstract: As difficult vision-based tasks like object detection and monocular depth estimation are
making their way in real-time applications and as more light weighted solutions for autonomous
vehicles navigation systems are emerging, obstacle detection and collision prediction are two very
challenging tasks for small embedded devices like drones. We propose a novel light weighted and
time-efficient vision-based solution to predict Time-to-Collision from a monocular video camera
embedded in a smartglasses device as a module of a navigation system for visually impaired
pedestrians. It consists of two modules: a static data extractor made of a convolutional neural
network to predict the obstacle position and distance and a dynamic data extractor that stacks the
obstacle data from multiple frames and predicts the Time-to-Collision with a simple fully connected
neural network. This paper focuses on the Time-to-Collision network’s ability to adapt to new
sceneries with different types of obstacles with supervised learning.

Keywords: deep learning; collision detection; Time-to-Collision prediction; real-time; object detection;
monocular depth estimation

1. Introduction
1.1. Technical Context

Real-time computer vision-based scene understanding tasks can be very complex
problems especially for navigational systems like autonomous driving and drone flying
as the onboard camera is moving asynchronously to its environment and the system
needs to adapt to new paths, sceneries, and obstacles. Less popular than these types of
systems discussed in recent the literature, the pedestrian egocentric navigation system
has very similar problems [1]. As a matter of fact, many vision-based embedded system
prototypes using multiple sensors and cameras exist for the visually impaired and blind
involving heavy portable GPU equipment and sensors [2,3]. The considered industrial
application is an interactive pedestrian guiding system mounted on smartglasses for the
visually impaired. The proposed navigation system is built around the hypothesis that it
can function on a smartphone or smartglasses device (like Google Glass or Epson Moverio
BT300) using only their built-in sensors (video camera, internal IMU: Inertial Measurement
Unit, and GPS: Global Positioning System). In order to provide guiding indications to the
user, the system must process the embedded camera video flow data as fast as possible
considering the size of the device. In this paper, we focus on the task of Time-to-Collison
prediction while limiting the input sensor to a smartglasses’ camera point of view only.
As the user of the system may encounter various types of incoming obstacles on his/her
path, the objective of this study is to understand how challenging collision detection
can be without specifying the type of encountered obstacles (pedestrians, vehicles, poles,
trash cans, etc.). The solution needs to be efficient enough to work on real-world scenes
and simple enough to run on a smart device in a real-time application. The proposed
method has to detect the obstacles, on the user’s path and to predict the time until the

J. Imaging 2021, 7, 61. https://doi.org/10.3390/jimaging7040061 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-5937-4627
https://doi.org/10.3390/jimaging7040061
https://doi.org/10.3390/jimaging7040061
https://doi.org/10.3390/jimaging7040061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7040061
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7040061?type=check_update&version=3


J. Imaging 2021, 7, 61 2 of 15

obstacle reaches the user or until the distance between the user and the obstacle is less than
one meter.

In this work, we propose a model that extracts spatial features from the egocentric
pedestrian video stream in a static data extractor module such as the scene’s depth maps
and the obstacles’ location from state-of-the-art light weighted algorithms. These features
stacked on multiple frames are fed in a dynamic data extractor that introduces our novel
obstacle Time-to-Collision prediction neural network. We present the different datasets
used for training and testing the new network. We present experiments on the network
hyperparameters choices in order to balance execution robustness and complexity. Results
on both mobile and static obstacles on an untrained dataset are presented to demonstrate
the solution’s ability to generalize on a new environment. We compare our results with the
state-of-the-art solution on the available dataset for this task.

1.2. Related Work

Collision detection algorithms are trending in the field of autonomous driving for
cars or drones [4,5]. Usual vision-based navigation system solutions are based on multiple
cameras and sensors from the vehicle with both the video color camera and a type of depth
camera (stereo, or LIDAR [4]) as the depth scene analysis is the best way to localize and
predict the obstacle relative movements to the vehicle. However, with the case of small
drones [5] or a navigation system for smartglasses, the device’s need to be light weighted
forces the input data to be restricted to only a monocular video camera. Evidently, it is a
difficult task to evaluate a collision risk without the scene’s depth data.

One way to avoid using the depth data as input is to use structure from motion
methods like optical and scene flow reconstruction [6,7]. The problem with these methods
is that they are computationally heavy dealing with multiple frames at the same time. In
addition, optical flow algorithms are less effective for obstacles moving toward the camera
because of the aperture problem. The monocular depth estimation task is an equally
difficult problem. However, the depth map can be generated from still image information
instead of motion cues which reduces the complexity consequently. The state-of-the-art
solutions use deep learning convolutional neural networks [8,9].

An intuitive solution [5,10] to obstacle avoidance or collision detection is to separate
the task in two subtasks: an obstacle detection algorithm followed by a risk estimator or
a direction selector. Real-time effective state-of-the-art object detection based on neural
networks [11,12] can easily find specific obstacles when properly trained [10,13]. A few
datasets for autonomous car driving tasks contain context appropriate annotations for
outdoor pedestrian obstacle detection [14,15]. The risk estimator is usually tackled with
the “relative distance” from the camera focal and knowledge of obstacle width, or the
“relative velocity” [5,6,10]. These methods use temporal cues and rely on a few frames
in order to predict a possible risk. The authors of [5] presented a method that detects the
SIFT (Scale-Invariant Feature Transform) feature points of the obstacles and decides if the
detected obstacle may cause a collision by comparing the area ratio of the obstacle and
the position of the drone. The authors of [10] presented a method that detects the vehicles
with Faster-RCNN [11] and uses the bounding box coordinates with the camera intrinsic
parameters to compute the relative distance and velocity. The authors of [13] have a similar
concept but use a small fully connected neural network to evaluate the distance from the
bounding boxes. The authors of [6] and [10] both use Time-to-Collision as a risk factor
computed with the relative velocity between the camera and the obstacle to confront.

The Time-to-Collision (or Time-to-Contact [16]) prediction is the most suitable risk
estimator for our smartglasses navigation system instead of obstacle or relative speed
estimation [17]. However, this computation is often derived from the scene’s motion
flow [18–21]. Segmentation or feature-based approaches [22–24] are also used to compute
Time-to-Collision as an optical flow problem. It can be done by computing the scaled
expansion of the segmented regions or the matching features of the obstacles on multiple
frames. An interesting end-to-end Deep Learning method, called Near-Collision in [25],



J. Imaging 2021, 7, 61 3 of 15

skips the obstacle detection task and the relative motion computation to estimate directly
the Time-to-Collision with incoming pedestrians. Despite the network being fast and
robust, estimating only the time to collision without the obstacle characteristics is not
enough for a guiding system with too many types of possible obstacles. We propose a
novel method to address the Time-to-Collision problem on a monocular navigation system
by using only light weighted neural networks.

2. Proposed Model
2.1. Obstacle Detection Algorithm for the SmartGlasses Navigation System Application

The model comprises two modules (Figure 1):

• A static data extractor that computes the scene depth map and identifies and localizes
the presence of an obstacle;

• A dynamic data extractor that uses temporal cues from the data computed in the
first module stacked along multiple frames and predicts the Time-to-Collision to the
closest obstacle detected.

1 

 

 

Figure 1. Smartglasses navigation system obstacle detection pipeline.

This article focuses mainly on the proposed method and evaluation results of the
second module.

2.1.1. Static Data Extractor

This module (Figure 2) exploits spatial features from each color video frame in order
to help identify and localize the user’s environment. It computes from the monocular color
video the obstacles position (bounding box coordinates and dimensions) and the depth
map. The localization and object recognition tasks are performed by a retrained version of
the YOLOv3 [12] real-time object detection neural network. The network, initially designed
and trained in order to recognize 20 classes, was retrained from the Darknet-53 backbone
on the COCO [26] and SUN-RGB [27] datasets to detect only 3 classes to limit the task to
more context appropriate outputs:

• “Person”: this class represents the mobile obstacles the smartglasses user would
encounter (pedestrians, vehicles).

• “Chair”, “desk”: these classes illustrate some examples of “static” obstacles the smart-
glasses user would have to avoid on his/her path.
Those classes were selected according to the data available in existing accessible datasets
and the testing environment we have chosen to test our solution (indoor office).
The depth map estimation is performed by the lightweight robust real-time FastDepth
neural network proposed in [8].
From the data computed by the static data extractor, we select five compact pieces of
information (cf. Figure 3) which are the coordinates x and y of the center of each object
bounding box, w and h its dimensions and D the minimum depth value estimated
within each bounding box. For the purpose of Time-to-Collision estimation, some
data are normalized as follows:

X = x/WIY = y/HIW = w/WI H = h/HI (1)



J. Imaging 2021, 7, 61 4 of 15

1 

 

 

Figure 2. Smartglasses navigation system static data extractor module. The depth map is a grayscale
image where the brightest pixels represent the furthest distance and the darkest pixels the closest one.
After estimating the bounding box and the depth map, each obstacle distance to the user is computed
as the minimum depth value estimated within each bounding box applied on the depth map.

1 

 

 

 

 

 

 

 

 

 
Figure 3. Description of a detected bounding box (BBox) on a frame. x and y are the BBox center coordi-
nates. h and w denote, respectively, the BBox’s height and width. (WI , HI) are the image dimensions.

2.1.2. Dynamic Data Extractor

The dynamic data extractor (Figure 4) exploits temporal features contained in the
data extracted from multiple frames passed through the first module. This module is
used as a predictive evaluation of the user’s environment to allow the navigation system
to anticipate the user’s possible interactions with the obstacles in his/her path. Instead
of using the complete RGB frames from the video and using an elaborate convolutional
neural network for temporal processing as in [28], we propose a very simple method by
first limiting the input of our model to five values per frame (bounding box’s center point
normalized coordinates (X, Y), dimensions (W, H), and D the minimal distance value of the
detected obstacle) and secondly by processing those data with a simple neural network.
The system outputs the Time-to-Collision which is the time it will take for the user to reach
or pass by the incoming obstacle.

The proposed Time-to-Collision forecasting system is a fully connected deep neural
network called SimpleTTC (Figure 5). The network architecture is made of M hidden layers
with K neurons per hidden layer. The input layer takes the obstacle’s parsed data X, Y W,
H and D stacked on N frames of the video. The prediction is established for the current
frame of the sequence to predict the Time-To-Collision.

The network is trained with a 0.001 learning rate and a stochastic gradient descent
optimizer for up to 100 epochs. The successive input frames are sampled at 10 fps which
gives the input temporal window a history of (N − 1)/10 s.



J. Imaging 2021, 7, 61 5 of 15

1 

 

 

Figure 4. Smartglasses navigation system dynamic data extractor module.

 

2 

 

 

 

 

 

Figure 5. Simple TTC network architecture. In order to find the best setup, we experiment with the
number of input frames N, the number of hidden layers M and the number of neurons per hidden
layers K.

The mean squared error is used as the loss function:

`(y, y∗) = L = mean({l1, . . . , lS}), ls = (ys − y∗s )
2 (2)

where S is the number of sequence samples. y and y∗ are, respectively, the predicted
Time-to-Collision and the ground-truth.

2.2. Datasets

To train and evaluate the proposed network four pieces of information are needed:

• The RGB video sequence with the incoming obstacles in the view;
• The corresponding depth map extracted from either a stereo camera disparity map,

the LIDAR point cloud coordinates, or the output of a monocular depth map estimator
algorithm;

• The bounding box of the obstacles annotated either manually or with the help of a
state-of-the-art detection algorithm;

• The Time-to-Collision value corresponding to each frame where the prediction should
be (as we consider the Time-to-Collision task to be a regression problem).

The dataset used for training and evaluation is the Near-Collision set [25] consist-
ing of indoor hallways egocentric videos with time to collision annotations of incoming
pedestrians (Figure 6). The videos were taken from an embedded camera mounted on
a suitcase shaped prototype. The context of this setup is very similar to the one of the



J. Imaging 2021, 7, 61 6 of 15

smartglasses navigation system. The dataset contains also the raw data used to annotate
the Time-to-Collision which are the stereo images and the 3D point cloud data from a
LIDAR. The bounding box data are generated from the Faster-RCNN person detection [11]
and completed manually for missing data and false-positive. The Time-to-Collision is
annotated from zero to six seconds. For each frame with an incoming pedestrian, a value
is calculated as the time it takes for the pedestrian to be less than one meter away from
the camera. The distance to the pedestrian is the minimal value of the depth map in
the detected bounding box area. Because their official test split contains only the input
sequence and the annotated Time-to-Collision but not the corresponding depth data, a new
test split was regenerated from the raw data available. In fact, the whole dataset has been
reformatted so that the bounding box and depth data could be used as input when labeling
the Time-to-Collision. Ninety sequences of pedestrian near-collision cases are used in total
for training and testing.

A new dataset more suitable in the smartglasses navigation system context has been
acquired (Figure 7). As a matter of fact, the Near-Collision dataset contains only mobile
pedestrians as possible obstacles. No static obstacles are available. Note that this new
dataset is used for testing purposes only. It contains similar images of indoor hallways
videos. However, the path contains incoming pedestrians but also static obstacles like
chairs and desks. These additional obstacle types simulate the variety of size, shape, and
relative movement of the applicative real obstacle the system must detect and process. The
images have been collected from an embedded stereo camera coupled with a NVIDIA
Jetson TX1 development board. The videos were filmed while holding the camera at head
level height to simulate the egocentric video from a camera embedded in smartglasses.
This dataset contains the left-right stereo images with the associated depth maps computed
directly by the ZED stereo camera API. More than 20 trips have been acquired with 17
instances of collision. Time-to-Collision labels were generated in the same way as in the
case of the Near-Collision dataset that is to say “collision” is labeled when the obstacle
is estimated to be less than one meter away from the user from the depth map (minimal
value in the bounding box area). The detection algorithm used to recognize the obstacles
and localize their bounding box is the retrained YOLOv3 network from the Static Data
Extractor module that is able to use the “person”, “chair”, and “desk” classes as obstacles.
This dataset is only used as a test set because of the limited number of acquired samples
and also to be able to see if the SimpleTTC network can generalize the task from one dataset
to another (dataset cross-validation) and from one type of obstacle to another (from mobile
objects to static ones).

Figure 6. Three different test videos from the Near-Collision dataset with their labeled Time-to-
Collision ground truth and their predicted time [25].



J. Imaging 2021, 7, 61 7 of 15

 

3 

 
                                                                                      (a) 

 

                                                                                      (b) 

 Figure 7. Our dataset used for testing purpose. Color RGB frames with labeled Time-to-Collision and corresponding depth
maps. (a) Videos with only dynamic obstacles (pedestrians and scooter); (b) videos with only static obstacles on the path
(chairs and desks).

3. Experimental Results
3.1. Network Configuration

The architecture chosen for this task is a simple fully connected network (Figure 5).
The network parameters to be considered in this experiment are the number of hidden
layers M and the number of neurons K per hidden layer. The number of input frames is



J. Imaging 2021, 7, 61 8 of 15

fixed in this particular experiment at six (the same as for the Near-Collision network [25]).
The network is trained for 100 epochs with each configuration and the results in Table 1 are
always the best out of 100 epochs. We compute the mean absolute error and the standard
deviation for the test set of the Near Collision dataset to quantify the performance. As can
be seen in Table 1, the best configuration with 6 input frames is 8 layers and 60 neurons per
layer. The number of hidden layers matters. However, the number of neurons per hidden
layer does not have a huge influence on the performance. For the remaining part for the
paper, the chosen architecture is M = 8 and K = 60.

Table 1. Distribution of absolute error (mean ± std) on the Near-Collision test set using different
values for the number M of hidden layers and the number K of neurons per hidden layer with N = 6
input frames.

K
Neurons\M

Layers
2 4 6 8 10

10 0.383 ± 0.440 0.387 ± 0.414 0.334 ± 0.381 1.140 ± 0.796 1.135 ± 0.816
20 0.361 ± 0.395 0.368 ± 0.419 0.394 ± 0.425 0.332 ± 0.384 1.140 ± 0.797
30 0.358 ± 0.410 0.366 ± 0.417 0.335 ± 0.395 0.338 ± 0.390 1.138 ± 0.803
40 0.361 ± 0.413 0.368 ± 0.416 0.334 ± 0.385 0.334 ± 0.396 1.140 ± 0.797
50 0.339 ± 0.383 0.365 ± 0.405 0.324 ± 0.383 0.340 ± 0.400 0.352 ± 0.414
60 0.353 ± 0.405 0.359 ± 0.405 0.339 ± 0.394 0.320 ± 0.375 0.328 ± 0.395
70 0.333 ± 0.374 0.354 ± 0.422 0.339 ± 0.396 0.323 ± 0.389 0.333 ± 0.399
80 0.341 ± 0.388 0.356 ± 0.418 0.350 ± 0.408 0.324 ± 0.391 0.321 ± 0.386
90 0.334 ± 0.373 0.340 ± 0.408 0.334 ± 0.395 0.340 ± 0.407 0.335 ± 0.406

100 0.367 ± 0.404 0.362 ± 0.407 0.344 ± 0.408 0.326 ± 0.387 0.324 ± 0.387
Results in bold are the best per number of hidden layers M.

3.2. Number of Input Frames

In this experiment we compare the results for different numbers of frames (Table 2).
As the lightest amount of processed data is prioritized for the model, it is important to find
out how small the input of the network can be. The time history is (N - 1)/10 s where N
is the number of input frames. The results in Table 2 show that the model does not lose a
significant amount of performance if we reduce the number of frames from six to three,
therefore reducing the time window from 0.5 to 0.2 s and reducing by half the size of the
input layer and the number of frames needed to predict the Time-to-Collision. For the
remaining part of the paper the chosen value for the number of frames is N = 3.

Table 2. Distribution of absolute error using different numbers of frames with M = 8, K = 60.

Number of Frames Mean (s) Std (s)

2 0.350 0.435
3 0.327 0.389
4 0.321 0.376
5 0.332 0.398
6 0.320 0.375

The number of input frames used to predict the Time-to-Collision determines the time
history of the filmed sequence. In the case of the Near-Collision dataset, the speed between
the camera and the incoming pedestrians is relatively constant. This helped our network
generalize the predictions for these particular situations in a small-time history (0.3 s).
Nevertheless, if the speed changes a lot as in the case of a smartglasses user with possible
pauses in his/her trip, the influence of the time history size should be more substantial.
The results in Table 1 show that the depth of the network is more relevant than its thickness.
The number of non-linear computations from the data acquired on multiple frames to make
a linear regression prediction has yet a direct effect on the performance.



J. Imaging 2021, 7, 61 9 of 15

3.3. Time to Collision Estimation Results on the Near-Collision Test Set

Figure 8 depicts predictions of 12 different pedestrian “collision” encounters. Each
spike of the ground truth’s curve represents the first frame of the sequence the prediction
is made on. Predictions from our SimpleTTC model with 3 input frames, 8 hidden layers,
and 60 neurons per layer show that the network is able to predict the Time-to-Collision
consistently. However, the network struggles to predict correctly when the pedestrian is
far from the camera (Time-to-Collision above 3 s). 

4 

 

 

 

 

 

Figure 8. Prediction results over multiple frames in the Near-Collision test set. Each continuous descending line in the
ground truth represents the same encounter with the obstacle until it leaves the view. Therefore, each figure’s slide represents
one video sequence of “near-collision” with a different pedestrian.

3.4. Results on the Acquired Test Set
3.4.1. Results on Moving Obstacles

Some prediction results of our generated dataset can be seen in Figure 9. The four
first sequences are encountered with walking pedestrians. The next one is from a static
position (the camera is not moving) with a scooter coming forward. The last two sequences
are again from a walking point of view with the scooter coming forward. The goal of
this experiment is to see if the solution can be cross-validated based on a very different
dataset distribution with the same type of “near collision” events and also how it reacts to
faster obstacles (a person on a scooter for instance). The relative speed is bigger in the last
two sequences.

The SimpleTTC network predicts well on pedestrians, as the ground truth Time-to-
Collision shape is reproduced by the prediction with small undesired fluctuations. For
the predictions on the scooter with movement (last two slopes in Figure 9), the prediction
slope starting point is twice higher than it should be. This is because the network assumes
that the person on the scooter would take twice the time to reach the “collision” threshold
and so on for all the following frames. If the network could differentiate between the
different kinds of dynamic obstacles (walking pedestrian, running pedestrian, person on
scooter, etc.), the Time-to-Collision output could be scaled to each average speed.

The SimpleTTC prediction makes accurate predictions for pedestrians within normal
walking speed (cf. Figure 9). However, it is clearly unable to scale the prediction to match
the speed change (encounters with the scooter) as it was not trained with this kind of data.



J. Imaging 2021, 7, 61 10 of 15

 

4 

 

 

 

 

 
Figure 9. Prediction results over 3 multiple frames for our test dataset with moving obstacles. The SimpleTTC network
while not trained on this dataset is able to perform accurate predictions of Time-to-Collision for incoming pedestrians. The
last 3 sequences are collision encounters with the scooter.

3.4.2. Results on Static Obstacles

The second purpose of the proposed test set is to study the generalization of the
trained model for different kinds of obstacles, more precisely for a static “chair” and “desk”.
The obtained predictions for those static obstacles can be observed in Figure 10. For some
collisions sequences the prediction seems to have a normal behavior with a slight detection
gap (about 0.3 s) but the detection seems to fail most of the time. 

5 

 

 

 

 

 

 

Figure 10. Prediction results over multiple frames for our dataset with static obstacles.

The network is hardly able to correctly predict the Time-to-Collision of static objects.
In the Near-Collision dataset, the pedestrians leave the frame from the left or right as the
camera is placed at about one meter high. In our dataset the static obstacles leave the
frame more in the bottom corner of the frame as the camera is leveled at eye height. This
difference between the datasets and the fact that the bounding box size of static obstacles is
smaller than that of pedestrians may confuse the network. It deduces that obstacles with



J. Imaging 2021, 7, 61 11 of 15

smaller bounding boxes are further. The small gap between prediction and ground truth
could also be explained by the smaller bounding box size and the different relative speed.

3.5. Computational Efficiency

The whole model (static + dynamic data extractor) runs smoothly at 25 fps on a
Nvidia 1080Ti graphic card (NVIDIA, Santa Clara, CA, USA) and use 3297MiB of graphical
memory (about 4 Gb). The solution is acceptable for the prototypal phase, as it needs to
run on at least 10 fps for the model to function correctly.

The long-term goal is to have a lightweight robust model that could run on a smart
device (smartphone, smartglasses). The GPU/CPU memory storage used by the system
must be small enough to be able to process the real-time video flow and deliver with an
under one second response time for this type of applications. Our model architecture is
mostly optimized for this task in terms of input data and network size as we addressed the
problem at hand as a simple regression problem.

3.6. Comparison with the Near-Collision Network

We compare our results with the Near-Collision method [25] as we tackle the Time-to-
Collision problem in the same way. From the plot shown in Figure 12, predictions from
our SimpleTTC network obtained with 3 input frames, 8 hidden layers, and 60 neurons
per layer are compared to the Near-Collision network results (Figure 11) obtained with
6 input frames. For both counts the input data were sampled from the video frames at the
same 10 fps frequency. Our method struggles more with predictions for further pedestrians
(Time-to-Collision > 3 s), however, produces slightly smoother and more accurate results
for closer pedestrians in the Near-Collision test set (Figure 12).

Figure 11. Near-Collision network architecture from [25]. It is a multi-stream that takes 6 consecutive
RGB frames as input through the same convolutional network. At the end part of the network, the
features from each stream are flattened and stacked together to process the data from all the frames in
a last fully connected layer. The network outputs the Time-to-Collision. Reprinted with permission
from ref. [25]. Copyright 2019 IEEE.

However, their method does not generalize at all when dealing with our dataset
(Figure 13) as the results of their prediction seem random and nonlinear.

The Near-Collision network [25] can accurately predict the Time-to-Collision on
the Near-Collision dataset, but it does not generalize to our dataset (Figure 13). When
restricting the data to the bounding box of the obstacles and their relative distance to the
camera, our model generalizes the task well on a different dataset that does not even have
the same camera height (about 0.8 m difference).



J. Imaging 2021, 7, 61 12 of 15

 

5 

 

 

 

 

 

 

Figure 12. Prediction results over multiple frames in the Near-Collision dataset.

Figure 13. Predictions results based on our dataset for: (a) dynamic obstacles; (b) static obstacles.

3.7. Comparison with an Improved Version of the NearCollision Network

Initially the Near-Collision network is trained on the whole image. However, in the
case where there are multiple objects in the same image, as it is the case when dealing
with our dataset, it can introduce some noise in estimating the Time-to-Collision for a
given object. That is why we conducted a new experiment to check how much better the
Near-Collision architecture could improve while restricting the input layer to the bounding
box around each obstacle (Figure 14). As the input data is gradually reduced, the efficiency
of the features selected as input can be confirmed as improvement or not.

In this experiment we retrained the Near-Collision network by changing the input
frames with different forms of the data outputs from the static data extractor module
(Figure 14). The detected bounding box data was put at the input of a convolutional neural
network (CNN) by applying a mask on the frame, removing the background of the obstacle.



J. Imaging 2021, 7, 61 13 of 15

The architecture of the network remains unchanged. Each instance was retrained from
VGG-16 [29] pre-trained weights. As can be seen in Table 3, restricting the input frame to
the bounding box of the obstacle reduces the error by about 20%. However, our model is
still about twice more accurate than the improved Near-Collision network.

 

6 

 

 

 

 

 

Figure 14. Example of input format for the Near-Collision network in our experiment. The “mask” is applied by setting the
value of all pixels that are not within the obstacle bounding box to zero.

Table 3. Distribution of absolute error (mean ± std) for Near-Collision network with different input
types on the Near-Collision dataset.

Input Data Mean (in s) Std (in s)

RGB 0.846 0.666
Masked RGB 0.672 0.567

SimpleTTC (Ours) 0.320 0.375

This experiment shows that the position and shape of the obstacle’s bounding box
and the depth information are the right features to exploit for Time-to-Collision forecasting.
Finally, using only minimal depth and the bounding box shape of the obstacle in the
SimpleTTC network removes the information about the obstacle 3D pose and orientation.
However, the reduced input removes all the background image noise that would impede
the training.

4. Conclusions

The SimpleTTC network is a 10-layer deep fully connected neural network that is
fed with the obstacle’s location and depth data as input on three frames. It performs well
on the Near Collision test set [25] as it was trained from the same dataset but is also able
to generalize well on pedestrian collisions on a dataset with similar context but different
locations. It is, however, unable to predict well for different kinds of obstacles as the shape
and relative speed may differ too much from the data originally trained on (incoming
walking pedestrians). Restricting the input data to the obstacle spatial coordinates instead
of the input video frames enables better training for the Time-to-Collision task.

The proposed method shows that obstacle Time-to-Collision forecasting on monocular
smartglasses can be addressed while restricting the context scenario to specific situations.
As we could generalize the task for a pedestrian over a different dataset, the results on
static obstacles suggest that a different training of the same network specifically on static
obstacles could also generalize to different context datasets. The model cannot predict
an accurate estimation of a person moving away from the user as in [25] because it is not
trained with this event in mind. The Time-to-Collision forecasting horizon would have to
be over the six seconds limit we have set.



J. Imaging 2021, 7, 61 14 of 15

Future work may add a tracker and propose multiple obstacles Time-to-Collision
forecasting. This task reduced as a regression problem can easily be generalized to differ-
ent environments.

Author Contributions: Conceptualization, D.U. and A.C.; methodology, D.U.; software, D.U.;
validation, D.U.; formal analysis, D.U.; investigation, D.U.; resources, D.U.; data curation, D.U.;
writing—original draft preparation, D.U.; writing—review and editing, D.U. and A.C.; visualization,
D.U. and A.C.; supervision, A.C.; project administration, D.U. and A.C.; funding acquisition, D.U.
and A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by IKOS RA with the support of the French Government through
a Cifre grant (Cifre = Conventions Industrielles de Formation par la Recherche—industrial research
training agreements).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our generated dataset for testing is not publicly available. The
NearCollision [25] dataset and code is available at https://aashi7.github.io/NearCollision.html
(accessed on 15 February 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fernandes, H.; Costa, P.; Filipe, V.; Paredes, H.; Barroso, J. A review of assistive spatial orientation and navigation technologies

for the visually impaired. Univ. Access Inf. Soc. 2019, 18. [CrossRef]
2. Wong, F.; Nagarajan, R.; Yaacob, S. Application of stereovision in a navigation aid for blind people. In Proceedings of the Fourth

International Conference on Information, Communications and Signal Processing, Singapore, 15–18 December 2003; Volume 2,
pp. 734–737. [CrossRef]

3. Dakopoulos, D.; Bourbakis, N.G. Wearable Obstacle Avoidance Electronic Travel Aids for Blind: A Survey. IEEE Trans. Syst.
ManCybern. Part C 2010, 40, 25–35. [CrossRef]

4. Garnett, N.; Silberstein, S.; Oron, S.; Fetaya, E.; Verner, U.; Ayash, A.; Goldner, V.; Cohen, R.; Horn, K.; Levi, D. Real-Time
Category-Based and General Obstacle Detection for Autonomous Driving. In Proceedings of the 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 198–205. [CrossRef]

5. Al-Kaff, A.; García, F.; Martín, D.; De La Escalera, A.; Armingol, J.M. Obstacle Detection and Avoidance System Based on
Monocular Camera and Size Expansion Algorithm for UAVs. Sensors 2017, 17, 1061. [CrossRef] [PubMed]

6. Pan, J.-S.; Ma, S.; Chen, S.-H.; Yang, C.-S. Vision-based vehicle forward collision warning system using optical flow algorithm. J.
Inf. Hiding Multimed. Signal Process. 2015, 6, 1029–1042.

7. Ess, A.; Leibe, B.; Schindler, K.; Van Gool, L. Robust Multiperson Tracking from a Mobile Platform. IEEE Trans. Pattern Anal.
Mach. Intell. 2009, 31, 1831–1846. [CrossRef] [PubMed]

8. Wofk, D.; Ma, F.; Yang, T.-J.; Karaman, S.; Sze, V. FastDepth: Fast Monocular Depth Estimation on Embedded Systems. In
Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019.

9. Gan, Y.; Xu, X.; Sun, W.; Lin, L. Monocular Depth Estimation with Affinity, Vertical Pooling, and Label Enhancement. In
Proceedings of the 15th European Conference, Part III, Munich, Germany, 8–14 September 2018. [CrossRef]

10. Phillips, D.; Aragon, J.; Roychowdhury, A.; Madigan, R.; Chintakindi, S.; Kochenderfer, M. Real-Time Prediction of Automotive
Collision Risk from Monocular Video; arXiv preprint: Ithaca, NY, USA, 2019.

11. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

12. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR 2017, 6517–6525.
[CrossRef]

13. Haseeb, M.A.; Guan, J.; Ristić-Durrant, D.; Gräser, A. DisNet: A Novel Method for Distance Estimation from Monocular
Camera. In proceeding of 10th Planning, Perception and Navigation for Intelligent Vehicles (PPNIV’18), IROS, Madrid, Spain
1–5 October 2018.

14. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

15. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset
for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [CrossRef]

16. Alenyà, G.; Nègre, A.; Crowley, J. Time to Contact for Obstacle Avoidance. In Proceeding of the 4th European Conference on
Mobile Robots, ECMR’09, Mlini/Dubrovnik, Croatia, 23–25 September 2009; pp. 19–24.

https://aashi7.github.io/NearCollision.html
http://doi.org/10.1007/s10209-017-0570-8
http://doi.org/10.1109/ICICS.2003.1292553
http://doi.org/10.1109/TSMCC.2009.2021255
http://doi.org/10.1109/ICCVW.2017.32
http://doi.org/10.3390/s17051061
http://www.ncbi.nlm.nih.gov/pubmed/28481277
http://doi.org/10.1109/TPAMI.2009.109
http://www.ncbi.nlm.nih.gov/pubmed/19696453
http://doi.org/10.1007/978-3-030-01219-9_14
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1109/CVPR.2017.690
http://doi.org/10.1177/0278364913491297
http://doi.org/10.1109/CVPR.2016.350


J. Imaging 2021, 7, 61 15 of 15

17. Lenard, J.; Welsh, R.; Danton, R. Time-to-collision analysis of pedestrian and pedal-cycle accidents for the development of
autonomous emergency braking systems. Accid. Anal. Prev. 2018, 115, 128–136. [CrossRef] [PubMed]

18. Camus, T.; Coombs, D.; Herman, M.; Hong, T.-H. Real-time single-workstation obstacle avoidance using only wide-field flow
divergence. In Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996;
Volume 3, pp. 323–330. [CrossRef]

19. Coombs, D.; Herman, M.; Hong, T.; Nashman, M. Real-time obstacle avoidance using central flow divergence and peripheral
flow. In Proceedings of the IEEE Transactions on Robotics and Automation, Massachusetts Institute of Technology, Cambridge,
MA, USA, 20–23 June 1995; pp. 276–283. [CrossRef]

20. Nelson, R.; Aloimonos, J. Obstacle avoidance using flow field divergence. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11,
1102–1106. [CrossRef]

21. Pundlik, S.; Tomasi, M.; Luo, G. Collision Detection for Visually Impaired from a Body-Mounted Camera. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 June
2013; pp. 41–47. [CrossRef]

22. Byrne, J.; Taylor, C.J. Expansion Segmentation for Visual Collision Detection and Estimation. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 875–882. [CrossRef]

23. Pundlik, S.; Peli, E.; Luo, G. Time to Collision and Collision Risk Estimation from Local Scale and Motion. In Proceedings of
the Advances in Visual Computing-7th International Symposium, ISVC 2011, Las Vegas, NV, USA, 26–28 September 2011; pp.
728–737. [CrossRef]

24. Mori, T.; Scherer, S. First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial
vehicles. In Proceedings of the IEEE 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10
May 2013; pp. 1750–1757. [CrossRef]

25. Manglik, A.; Weng, X.; Ohn-Bar, E.; Kitanil, K.M. Forecasting Time-to-Collision from Monocular Video: Feasibility, Dataset, and
Challenges. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
4–8 November 2019. [CrossRef]

26. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects
in Context. In Proceedings of the 13th European Conference on Computer Vision, (ECCV 2014), Zurich, Switzerland, 6–12
September 2014; Volume 8693. [CrossRef]

27. Song, S.; Lichtenberg, S.P.; Xiao, J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 567–576. [CrossRef]

28. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In Proceeding of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4724–4733. [CrossRef]

29. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.

http://doi.org/10.1016/j.aap.2018.02.028
http://www.ncbi.nlm.nih.gov/pubmed/29567589
http://doi.org/10.1109/ICPR.1996.546964
http://doi.org/10.1109/ICCV.1995.466774
http://doi.org/10.1109/34.42840
http://doi.org/10.1109/CVPRW.2013.11
http://doi.org/10.1109/ROBOT.2009.5152487
http://doi.org/10.1007/978-3-642-24028-7_67
http://doi.org/10.1109/ICRA.2013.6630807
http://doi.org/10.1109/IROS40897.2019.8967730
http://doi.org/10.1007/978-3-319-10602-1_48
http://doi.org/10.1109/CVPR.2015.7298655
http://doi.org/10.1109/CVPR.2017.502

	Introduction 
	Technical Context 
	Related Work 

	Proposed Model 
	Obstacle Detection Algorithm for the SmartGlasses Navigation System Application 
	Static Data Extractor 
	Dynamic Data Extractor 

	Datasets 

	Experimental Results 
	Network Configuration 
	Number of Input Frames 
	Time to Collision Estimation Results on the Near-Collision Test Set 
	Results on the Acquired Test Set 
	Results on Moving Obstacles 
	Results on Static Obstacles 

	Computational Efficiency 
	Comparison with the Near-Collision Network 
	Comparison with an Improved Version of the NearCollision Network 

	Conclusions 
	References

