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Abstract: Generative adversarial networks (GANs) have become increasingly powerful, generating
mind-blowing photorealistic images that mimic the content of datasets they have been trained to
replicate. One recurrent theme in medical imaging, is whether GANs can also be as effective at
generating workable medical data, as they are for generating realistic RGB images. In this paper,
we perform a multi-GAN and multi-application study, to gauge the benefits of GANs in medical
imaging. We tested various GAN architectures, from basic DCGAN to more sophisticated style-based
GANs, on three medical imaging modalities and organs, namely: cardiac cine-MRI, liver CT, and RGB
retina images. GANs were trained on well-known and widely utilized datasets, from which their FID
scores were computed, to measure the visual acuity of their generated images. We further tested their
usefulness by measuring the segmentation accuracy of a U-Net trained on these generated images
and the original data. The results reveal that GANs are far from being equal, as some are ill-suited for
medical imaging applications, while others performed much better. The top-performing GANs are
capable of generating realistic-looking medical images by FID standards, that can fool trained experts
in a visual Turing test and comply to some metrics. However, segmentation results suggest that no
GAN is capable of reproducing the full richness of medical datasets.

Keywords: GAN; MRI; CT; heart; retina; liver; adversarial

1. Introduction

During the last decade, machine learning has been widely adopted, mainly due to the
advent of deep neural networks and their state-of-the-art results on a variety of medical
imaging tasks. Meanwhile, the introduction of generative adversarial networks (GANs)
by [1], drove generative modeling and data synthesis to levels of quality never before
achieved. The research on GANs grew at an ever increasing pace, with each iteration
pushing back the limits of image quality. Perhaps, one notable breakthrough in image
quality came from [2] and their Big GAN. Not so long after, another drastic jump in the
quality and diversity of generated images came with Style GAN [3], which exhibited highly
realistic high-resolution human faces. Motivated by the impressive results achieved by
GANs on natural images, the goal of this work is to evaluate how well these machines
perform on medical data, an area well-known for its smaller datasets and strict anatomical
requirements. Recent reviews have been published, analyzing the use of GANs in medical
image analysis [4–6]. The distinctiveness of our work is the empirical evaluation of the
benefits of GAN-generated data in this context, in addition to the large hyperparameters
analysis of the different approaches.

1.1. Medical Image Analysis

Medical image analysis aims to un-invasively extract information about a patient’s
medical condition. Medical images are images acquired from one of multiple modalities,
be it magnetic resonance imaging (MRI), computed tomography (CT), positron emission
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tomography (PET), or ultrasound (US), to name a few. The acquired images are generally
processed using image analysis and/or computer vision techniques, to extract certain useful
information about the data at hand, for example, to classify whether the case is normal
or pathological. One of the most routine tasks in clinical practice is image contouring,
or segmentation. Image segmentation is the operation of outlining parts of the images
that belong to certain classes of interest. For example, in the case of cardiac MRI, one may
delineate the left ventricular cavity and myocardium, with the objective of measuring blood
volumes and contraction rates.

In recent years, machine learning and deep learning garnered a large interest from the
medical imaging community, due to their unprecedented achievements in a large swath
of computer vision tasks. However, machine learning software have not yet been widely
adopted in clinical practice, largely due to the fact that neural networks are still error
prone under certain conditions (domain adaptation, different acquisition protocols, missing
data, etc). One reason for this, derives from the fact that fully-annotated medical imaging
datasets are much smaller than those in other areas. For example, the gold standard
computer vision ImageNet [7] dataset, contains more than 14 million annotated images,
while a typical medical image dataset is three to four orders of magnitude smaller. This is
because the creation of medical imaging datasets is costly and difficult, due to the sensitive
nature of the data and the highly specific domain knowledge required to reliably annotate
it. The paucity of training data in medical imaging, has made the search for other means of
acquiring training sets an active area of research [8].

1.2. Synthetic Data and Medical Imaging

Recently, GANs have received growing attention from the medical research commu-
nity, with the hope of using them to synthesize realistic-looking medical images. For ex-
ample, [9] trained a GAN to synthesis new T1-weighted brain MRIs, with comparable
quality to real images, and [10] succeeded in generating high resolution skin lesion images
which experts could not reliably tell apart from real images. In [11], they took advantage of
GANs to generate brain MRIs that achieved high scores both in qualitative and quantitative
evaluation. In [12], the authors showed that GAN-generated images of lung cancer nodules
are nearly indistinguishable from real images, even by trained radiologists.

GANs were also used as a means for generating more training data. In [13], the authors
trained a GAN to generate synthetic brain tumor MRIs, and evaluated the performance
of subsequent segmentation networks trained with the generated data. Looking at the
reported results, the segmentation networks trained solely with synthetic data do not come
close to those trained with real data, performance wise. Likewise, Ref. [14] proposed a
combination of a variational autoencoder and a GAN, as a data augmentation framework
for an image segmentation problem. Here again, the use of GANs to train downstream
neural networks produced mixed (and yet more or less convincing) results.

As reported in the survey paper by [15], the application of GANs in medical imaging
extends beyond image synthesis to other tasks, such as domain adaptation, classification,
and reconstruction, to name a few. For these applications, the capability of GANs to
generate realistic looking images, has led to a partial disregard of the usefulness of the
generated medical images, or whether they hold any value compared to real data in routine
clinical tasks.

In light of these publications, one might wonder how useful GANs truly are in medical
imaging. In this paper, we set out to evaluate the richness and the benefit of using GAN-
generated data in the context of medical imaging. We assess their performances on three
datasets of different organs and different modalities.

2. Generative Adversarial Networks

Adversarial networks in general, and GANs (Figure 1) more specifically, are trained
to play a minimax game between a generator network, which tries to maximize a certain
objective function, in tandem with a discriminator network, which tries to minimize
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that same objective function, hence the adversarial denomination. In their most basic
formulation, GANs are trained to optimize the following loss function [1]:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)]

+Ez∼pz(z)[log(1− D(G(z)))].
(1)

here, G(z) is thegenerator network, with parameters θG. It is fed with a random vari-
able z ∼ pz, sampled from a given prior distribution, that G tries to map to x ∼ pdata.
To achieve this, another network D (aka the discriminator), with parameters θD, is trained
to differentiate between real samples x ∼ pdata from a given dataset and fake samples
x̂ ∼ pθG (x|z) produced by the generator. In doing so, the generator is pushed to gradu-
ally produce more and more realistic samples, with the goal of making the discriminator
misclassify them as real.

Figure 1. Flowchart of a traditional GAN architecture.

2.1. GAN Selection

The number of papers published on GANs has been growing steadily in recent years.
This has been underlined by a recent survey paper [16], which reported no less than
460 references. Given this large palette of models, we based our choice on those that are the
most widely adopted and/or ushered an improvement to the quality of generated images.
We also selected GANs based on their ability to fit on a single 12 GB GPU, to be able to
evaluate the architectures accessible to researchers with constrained computing resources.

Training GANs can be tricky. Since learning involves two opposing networks, GANs
are known for suffering from several training problems, the following three being among
the most widely documented.

Convergence. GANs (and adversarial training in general) often suffer from a lack of
a defined convergence state. This is because the training process involves two networks
pushing in opposite directions, without one out matching the other. This has been fre-
quently proven to be a difficult task. For example, the generator could become too powerful
and learn to fool the discriminator with faulty output. It could also happen that the dis-
criminator reaches a 50% accuracy effectively outputting random guesses, which does not
help the generator learn any meaningful information about the true data distribution.

Vanishing Gradients. As GANs train a generator with the output of a discriminator,
whenever the discriminator significantly outperforms the generator, its loss goes to zero,
pushing the retropropagated gradient to a smaller and smaller value, hence the vanishing
gradient name. Because of that, the generator does not get enough gradient updates and
sees its learning stall, to some sub-optimal solutions [17].

Mode Collapse. Of all the challenges that obstruct the training of powerful GANs,
mode collapse might be the most difficult one to deal with. Mode collapse occurs when the
generator gets stuck outputting only one (or a few) modes of the input data distribution.
An example could be a generator producing images of healthy subjects, while ignoring the
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diseased ones. This pitfall leads to a loss of diversity in the generated datasets, that can
greatly hurt the performance of subsequent networks trained with these generated data.

In regards of the aforementioned criteria and the different challenges, we selected the
following GANs for our study.

2.1.1. DCGAN

Deep convolutional GANs [18] were the first GANs to use convolutional layers, com-
pared to the inital GAN which used only fully connected layers. With its simplicity,
DCGAN is often the de facto baseline GAN one implements. DCGANs showed a consider-
able jump in image quality and training stability, while providing some useful insights on
the network design (use of strided convolutions instead of pooling layers, extensive use
of BatchNorm, etc.). To our knowledge, DCGAN is among the most widely implemented
GANs, as of today.

2.1.2. LSGAN

Least Squares GANs [19] use a different loss for the discriminator than the original
GANs, which helps to alleviate certain challenges and improves the generated sample
quality. LSGANs replace the cross entropy loss of the original GAN, with the mean
squared error, which mitigates the vanishing gradient problem, leading to a more stable
learning process.

2.1.3. WGAN and WGAN-GP

Wasserstein GANs [20] were considered to be a major breakthrough, to overcome GAN
training challenges. In particular, they are known to reduce the effect of mode collapse
and stabilize the learning procedure. The idea is to use a Wasserstein earth-mover distance
as the GAN loss function, together with some other optimization tricks, such as weight
clipping and gradient penalty (WGAN-GP).

2.1.4. HingeGAN (Geometric GAN)

Introduced by [21], HingeGANs substitute the original GAN loss for a margin maxi-
mization loss, which theoretically converges to a Nash equilibrium between the generator
and discriminator. As for WGAN and LSGAN, HingeGAN has the sole benefit of easing
the optimization process.

2.1.5. SPADE GAN

Spatially adaptative denormalization (SPADE) GANs [22], are a member of the so-
called image-to-image translation GAN family. SPADE GANs produce state-of-the-art
results on a wide range of datasets, producing high quality images, perfectly aligned
to a semantic input mask. SPADE GANs come as an improvement of the previously
published pix2pix [23] model. SPADE GANs are considered to be the state-of-the-art
conditional GANs.

2.1.6. Style Based GANs

StyleGAN [24], often considered as the state-of-the-art generative neural network,
introduces multiple tricks to GANs borrowed from previous works, such as progressive
GANs [25], that gradually train the GAN with different resolutions, which leads to better
quality and a more stable training process. StyleGAN also comes with a greatly modified
generator, which includes adaptive instance normalization blocks (AdaIN), the injection of
noise at every level of the network, and use an 8-layer MLP mapping function on the input
latent vector~z.

2.2. Evaluation Metrics

Broadly speaking, the metrics used to quantify the effectiveness of GANs are the same
as those used to evaluate traditional image synthesis tasks. This boils down to computing a
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similarity distance between a set of images. In their early stages, GANs were evaluated
using the traditional metrics such as Peak Signal to Noise Ratio (PSNR) [26] or Structural
Similarity Index Measure (SSIM) [27]. As the field advanced, more image quality metrics
emerged, and became the de facto evaluation criteria, such as Learned Perceptual Image Patch
Similarity (LPIPS) [28], Inception Score (IS) [29], and the Frechet Inception Distance (FID) [30].

The Frechet Inception Distance (FID), first introduced by [30], makes use of a pretrained
inception network on the ImageNet [7] dataset, to assess the quality of GAN generated
images. The FID is a distance between the distribution of the GAN sampled images and
the real dataset used to train the GAN. Generated samples and real images are fed to the
pretrained inception network and the mean and covariance of the activations in the final
block, assumed to be of a Gaussian distribution, are collected for both sets, then the Frechet
distance is computed between both. The FID is computed on a learned feature space and
was shown to correlate well to human visual perception [28]. However, it still suffers from
a number of drawbacks [31], most prominently, it suffers from a high bias [32]. In addition,
FID can not detect a GAN that memorizes the training set [33].

The FID is defined as the Frechet distance between two Gaussians, as shown in Equation (2),
where N (µ1, σ1) is the Gaussian distribution of the inception features of the real images, and
N (µ2, σ2) the Gaussian distribution of the inception features of the generated images. In this
work, we use the FID metric, as it evolves in tandem with human perception. In addition, it
makes use of the original dataset to compute a distance in a learned feature space. In addition to
the FID metric, we also consider the Dice score evaluation metric, obtained on a segmentation
task with a U-Net network trained on the generated dataset.

FID((µ1, σ1), (µ2, σ2)) = ‖µ1 − µ2‖2
2 + Tr

(
σ1 + σ2 − 2

(
σ1σ2

)1/2) (2)

3. Material and Methods

To make informed decisions about the usefulness of GANs in medical imaging as a
source of synthetic data, we had to take into account different GANs and cover a diverse
set of image modalities. In parallel, a wide range of hyperparameters had to be covered, to
assess their effect on the GANs at hand.

3.1. Hyperparameters Search

GANs are known for their sensitivity to tweaking of the hyperparameters [33]. In order
to achieve a fair comparison between the selected GANs, we covered a wide spectrum of
hyperparameters (some affecting the GAN architecture), through a vast hyperparameter
search, totaling roughly 500 GPU-days. We retained the best performing runs with regards
to the reference metric FID, for its correlation with subjective evaluation.

Moreover, since the number of runs needed to sweep a large hyperparameter space
grows exponentially with the number of hyperparameters we set to optimize over, we chose
a number of sensible initial configurations for each dataset/GAN pair, mostly based on their
default configuration. Table 1 lists the hyperparameters we searched over. Iterating over
these hyperparameters enabled us to find the set that worked best for each GAN/dataset
pair. In addition, this hyperparameter search also gave us a look at how the training
stability was affected by the selected hyperparameters. Note that, some combinations were
only tested for specific GANs, such as “weight clipping” for WGAN or “gradient penalty”
for WGAN-GP.
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Table 1. List of the different hyperparameters optimized over.

Hyperparameters Values

Differentiable augmentation [34] TRUE/FALSE
Activation fn of discriminator ReLU/LeakyRelu/Elu/Selu
Activation fn of generator ReLU/LeakyRelu/Elu/Selu
Normalization layer of discriminator BatchNorm [35]/InstanceNorm [36]
Normalization layer of generator BatchNorm [35]/InstanceNorm [36]
Number of filters of discriminator 16/32/64/128
Number of filters of generator 16/32/64/128
Use spectral norm for discriminator TRUE/FALSE
Use spectral norm for generator TRUE/FALSE
Weight initialization function Normal/Xavier/Xavier Uniform/Kaiming He
Weight initialization gain 0.01/0.02/0.1/1.0
Gradient penalty loss weight (WGAN-GP only) 0/0.1/1.0/10.0
Weight clipping value (WGAN only) 0/0.01/0.1
Feature matching loss weight 0/1.0/10.0
VGG loss weight 0/1.0 /10.0
Learning rate 0.00004/0.00005/0.0001/0.0002/0.001
Use of label smoothing [29] TRUE/FALSE
Use of data augmentation TRUE/FALSE

3.2. GANs Setup

The training of the DCGAN, LSGAN, WGAN, and HingeGAN followed the same
protocol. A traditional fully convolutional network architecture, with a standard generator
and discriminator composed of upconvolutions and strided convolutions, respectively,
was implemented, as a basis of our DCGAN. Then the loss function was swapped, to
convert it to either an LSGAN, a WGAN, or a hingeGAN. For StyleGAN and SPADE
GAN, we relied on the publicly available implementations, without any change to the
networks’ architecture. Figure 2 schematically summarizes the architecture of each GAN.

Figure 2. Architectures of the various GANs used.

3.3. GAN Training Tricks

In order to make the GAN training process more stable, we relied on a few tricks, that
have been shown to be useful in this regard.

Label smoothing. First applied to GANs by [29], label smoothing consists of replacing
the true classification labels given to the discriminator, to a smooth value α.
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Feature matching. Also introduced by [29], feature matching adds another objective to
the generator of the GAN, which consists in minimizing a distance between the activations
of the discriminator for real and generated data.

Differentiable augmentation. Presented by [34], differentiable augmentation imposes
various types of augmentation on the fake and real samples fed into the discriminator,
yielding a more stable training and better convergence.

3.4. GAN Evaluation in Medical Imaging

While image fidelity is fundamentally important for practitioners to deliver a good
diagnostic, the visual acuity of generated images cannot be the sole marker to assess the true
performance of GANs. In this paper, we want to assess how rich and diverse a synthetically
generated dataset really is, in the context of medical imaging.

Thus, to verify the medical viability of GAN-generated images, we independently
trained a second network, as a downstream task, on the GANs-generated datasets, and
compared its results to those obtained on the original (real) datasets. In this work, we
choose semantic segmentation as a downstream task to evaluate our GAN generated
datasets, as it is a common task in a clinical workflow.

This assessment sets a common evaluation protocol for every GAN. This evaluation is
also insightful, considering that the objective for using GANs is often to artificially increase
the size of a dataset and thus provide more training data to a subsequent task [13,14]. This
approach has been explored before, with GANs trained on natural images, and evaluated
through a classification task [37,38].

3.5. Datasets

To cover a good spectrum of image and medical applications, we picked three different
datasets based on their imaging modalities, their organ of interest, and their size, namely,
cardiac cine-MR images, liver CT, and retina imaging. These datasets offer a varied selection
of data. Different dataset sizes are present, from large (SLiver07), to moderate (ACDC),
to small (IDRiD). Coupled with that, different image modalities and organ shapes are
considered. Figure 3 shows an example of images from each of the datasets.

ACDC SLiver07 IDRID

Figure 3. Examples of images and the segmented structures for ACDC, SLiver07, and IDRiD datasets.

3.5.1. ACDC

The Automated Cardiac Diagnosis Challenge (ACDC) dataset [39], consists of 150 exams
(100 training and 50 testing) of short-axis cardiac cine-MRI, acquired at the University
Hospital of Dijon (all from different patients). The exams are divided into five evenly
distributed subgroups (four pathological, plus one healthy subject groups) and further
split into 100 exams (1902 2D slices) for training, with 50 exams (1078 2D slices) held
out, for testing. The pixel spacing varies from 0.7 mm to 1.9 mm, with a slice spacing
between 5 mm to 10 mm. The exams come with multi-structure segmentation masks for
the right ventricular cavity, the left ventricular cavity, and the left ventricular myocardium,
at end-diastole and end-systole times.
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3.5.2. SLiver07

The Segmentation of the Liver Competition 2007 (SLIVER07) [40] dataset, contains 40 CT
volumes of the liver, enhanced with contrast agent. Most livers are pathological and include
at least one tumor. The pixel spacing ranges from 0.55 mm to 0.8 mm and the inter-slice gap
between 1 mm to 3 mm. The 40 CT datasets are randomly split in three groups: a group of
20 volumes for training, another group of 10 volumes for validation, and the remaining
10 volumes for testing. For our study, we only use the 20 training volumes provided with
manual segmentations for the liver, which totals 4159 2D slices.

3.5.3. IDRiD

The Indian Diabetic Retinopathy Image Dataset (IDRiD) [41], contains a total of 516 retinal
fundus images of normal and pathological cases. Images are provided with disease grading
ground truth for the full dataset, and segmentation masks for 81 images. We used part
of the 81 images for our study, specifically, the 54 training images with the optical disc
segmentation masks.

3.6. Dataset Generation

For our study, our selected GANs were trained on the aforementioned datasets, with
the goal of synthesizing new medical data. The overarching objective of this study was
to assess whether or not GANs offer a reliable framework for synthesizing realistic and
diverse medical images. To examine how well GANs manage to learn the original data
distribution, a large number of images was sampled from each of our trained GANs, which
we later used to train a segmentation network.

To be able to train a downstream segmentation network, the different GANs were
trained on the joint distribution of the image and the mask, by concatenating the channel
axis. We did so for every GAN except for SPADE, which is by nature conditioned on a
segmentation mask. Once properly trained with the right set of hyperparameters, each
GAN was used to generate a dataset of 10,000 images, by randomly sampling the input
latent space. No further processing was performed on the generated datasets, as the
objective was to gauge the quality of the raw images output by the GANs. Figure 4 shows
some examples of images generated by each GAN on the three datasets.

Original Data DCGAN LSGAN WGAN HingeGAN StyleGAN SPADE GAN

Figure 4. Examples of generated images for each GAN on the ACDC, SLiver07, and IDRiD datasets.
The first column is an example image from the real dataset. High resolution versions of these images
are available in the Supplementary Materials.



J. Imaging 2023, 9, 69 9 of 16

4. Experiments and Results

This section goes through the experiments and results obtained by each GAN on
each dataset.

4.1. Hyperparameter Search and Overall Results

The hyperparameter search performed on DCGAN, LSGAN, WGAN, and HingeGAN
revealed interesting insights. The first one, is that some GANs are very sensitive to their
hyperparameters. To underline this, the FID score obtained for every set of hyperparame-
ters, for each GAN and each dataset, are shown in Figure 5. As can be seen, the HingeGAN
has the lowest variance and, overall, the best FID score. On the other hand, DCGAN
and LSGAN are overall much more sensitive to hyperparameter tweaking. This is inline
with our qualitative experience, as the training of DCGAN and LSGAN often ended up
producing degenerated images. SPADE and Style GAN were not included in the graph,
due to the shear amount of training time they required (it took respectively 10 and 30 days
to train them), but also due to their remarkable stability. Empirical evidence obtained
with different hyperparameters on a few epochs, suggests that their FID variance is much
lower than that of HingeGAN, hence why they ended up with top results with almost no
hyperparameter tweaking.

DCGAN LSGAN WGAN HingeGAN
GAN Type

50

100

150

200

250

300

350

400

FI
D 

sc
or

e

ACDC
IDRID
SLiver07

Figure 5. FID score for different GAN types on the IDRiD, ACDC, and SLiver07 datasets, across
different hyperparameter settings.

Another insight comes from the impact a dataset has on the performances of GANs.
As can be seen from Figure 5, the larger the reference dataset is, the better the resulting FID
will be. It goes from IDRiD, the smallest datset, with FID values well above 150, to ACDC,
with FIDs values roughly between 100 and 150, and finally SLiver07, the largest dataset,
with most FID values being below 100. A similar trend can be seen in Figure 6, where the
overall FID values for every GAN are shown against the number of convolutional filters in
the discriminator network. This shows how volatile GANs can be when trained on smaller
datasets, such as IDRiD. Similar plots with other hyperparameters can be found in the
Supplementary Materials.

The best FID score obtained for each GAN and each dataset is shown in the third
column of Table 2. Examples of generated images can also be seen in Figure 4 (and in high
resolution in the Supplementary Materials). The two best models, by far, are StyleGAN and
SPADE GAN. The most extreme case is for IDRiD, where a SPADE GAN got a surprising
FID of 1.09 and remarkably vivid images, in Figure 4.
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Figure 6. FID score for different number of filters for the discriminator of the DCGAN, LSGAN,
WGAN, and HingeGAN.

4.2. Segmentation Evaluation

The true value of the generated images was validated with a downstream segmen-
tation network, trained on the synthetic data instead of the original (real) data. To do
so, 10, 000 new images were generated for each dataset and a U-Net [42] was trained
to predict the segmentation mask. The architecture of the used U-Net can be found
in the Supplementary Materials.

Then the U-Net was trained on the generated dataset. We predict the masks with this
trained segmentation network on the test set of each of our original datasets (i.e., ACDC,
SLiver07, and IDRiD). The Dice score of the prediction with the ground truth masks of the
test set was computed, which will constitute our Dice score evaluation. The Dice score
evaluation metric can be defined as:

Dice(Y, Ŷ) =
2|Y ∩ Ŷ|
|Y|+ |Ŷ|

(3)

where Y is the ground truth segmentation mask and Ŷ is the predicted segmentation mask.
The last column of Table 2 contains the Dice score obtained on the real test set of

each dataset. Unsurprisingly, as suggested by the FID scores, StyleGAN and SPADE GAN
achieve the highest Dice scores on all the datasets, with StyleGAN reaching 87% Dice on
the ACDC dataset, 2% less than when training with the original data.

These results reveal three important things about GANs in medical imaging. First,
simpler models such as DCGAN, LSGAN, WGAN, and HingeGAN perform systematically
poorly on every dataset, despite an intensive hyperparameter search. This suggest that
these models might be ill-suited for medical imaging applications.
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Table 2. FID and U-Net Dice score for different GANs on the ACDC, IDRiD, and SLiver07 datasets.
Best score per metric for each dataset are highlighted in bold.

Dataset GAN FID Score U-Net Dice Score

Original Data – 0.89
Augmented Original Data – 0.90

DCGAN 60.12 0.30
LSGAN 59.65 0.39

ACDC WGAN 74.30 0.70
Hinge GAN 61.00 0.63
SPADE GAN 41.54 0.86

StyleGAN 24.74 0.87
Orig. Data + SPADE GAN – 0.90

Orig. Data + StyleGAN – 0.90

Original Data – 0.83
Augmented Original Data – 0.84

DCGAN 91.34 0.29
LSGAN 78.61 0.20

IDRiD WGAN 62.12 0.72
Hinge GAN 78.61 0.69
SPADE GAN 1.09 0.82

StyleGAN 23.72 0.80
Orig. Data + SPADE GAN – 0.84

Orig. Data + StyleGAN – 0.84

Original Data – 0.72
Augmented Original Data – 0.70

DCGAN 56.41 0.14
LSGAN 56.82 0.15

SLiver07 WGAN 73.11 0.16
Hinge GAN 67.69 0.15
SPADE GAN 47.62 0.61

StyleGAN 29.06 0.36
Orig. Data + SPADE GAN – 0.71

Orig. Data + StyleGAN – 0.71

Second, despite their visual similarity, GAN-generated datasets do not have the same
richness as real datasets. This is illustrated by the fact that, despite being trained on far
more images, none of the GAN Dice scores equal or outperform the ones obtained on the
original datasets. Moreover, the generated datasets, when used as augmentation data,
achieve similar performance to traditional augmentation techniques (rotations, shifts, flips),
illustrated by the Dice score of training with a mix of the original data and generated data,
and the augmented original data only.

Third, while the FID score is a good proxy to distinguish the best methods from
the least effective ones, it does not correlate well with an application score, such as the
Dice score. For example, the FID score of 29.06 of StyleGAN on SLiver07 suggests that
the produced images are much more accurate than those of SPADE GAN (FID = 47.62).
However, the resulting Dice scores show that SPADE GAN is significantly better than any
other model. A similar comment can be made for IDRiD and ACDC, as StyleGAN and
SPADE GAN got similar Dice scores but very different FIDs. As for the FID score of 1.09
obtained by SPADE GAN, the associated 82% Dice score suggests that the network has
most likely memorized the training set. This might be attributed to the small size of the
IDRiD dataset, as well as to the simple shape of the input segmentation mask.
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To further analyze whether the FID score is a reliable medical imaging metric, we
plotted the InceptionNet latent space of the generated images obtained with the most and
the least effective GANs, i.e., DCGAN and StyleGAN (c.f. top row of Figure 7, plots were
obtained with UMap [43]). In parallel, we plotted the U-Net latent space for the same
images and the same GANs (cf. bottom row of Figure 7). While the red and the blue
InceptionNet scatter plot distributions are very similar for DCGAN and StyleGAN, the
U-Net ones reveal much more distinctive patterns. Indeed, the U-Net distributions of
StyleGAN follow very similar distributions (hence suggesting that the synthetic images
of StyleGAN are visually very close to those of the original dataset), while the ones from
DCGAN show a clear case of mode collapse. This underlines a fundamental limit of the
FID metric: since the InceptionNet was trained on ImageNet (a non-medical dataset), its
use in medical imaging must be made with great care.

Figure 7. Comparison of UMap projection of activations of images generated by a DCGAN, and
others generated by a StyleGAN, with an InceptionNet trained on ImageNet (top row), and a U-Net
trained on the original dataset (bottom row). Red points: real images; blue points: generated images.

4.3. Visual Turing Test

Considering how realistic looking some of the GAN-generated images are, we asked
four medical experts, each with more than 15 years of experience in cardiology, to classify
fake and real cine MRI images generated by StyleGAN and from the ACDC dataset. Each
expert was shown 100 images, consisting of a 50/50 mixture of real and synthetic images,
and was asked to classify it based only on their visual appreciation. The accuracy of the
classification performed by the experts was equal to 60% (+/−10%). This result shows how
visually accurate the generated images are.

5. Discussion

In this section, we go through the aspects that play a major role in the process of
training GANs with medical data.
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5.1. Training Volatility

Throughout this work, the training instability of GANs was a recurrent theme, under-
lying how slight hyperparameter adjustments can considerably affect the training process.
In contrast, GANs were not equally sensitive to the selected hyperparameters. While it is
true that DCGAN and LSGAN showed the highest variability, it came to be easier to train
WGAN and HingeGAN, which were less sensitive to hyperparameter selection.

Moreover, even though the state-of-the-art GANs, such as SPADE and StyleGAN,
seem to be the only viable pick to produce images of high quality, they still suffer from long
training times and can sometimes lead to overfitting and “Memory GAN”, i.e., a GAN that
outputs the training set.

Likewise, in the case of the smaller GANs, finding the right set of hyperparameters
was not always simple. To illustrate this point, we went through a total of 1500 training runs
with different hyperparameter combinations. Most of the runs led to models that could
not generate meaningful images, while the remaining runs did not always fair well when
evaluated with the FID, or through the image segmentation task. Concurrently, although a
considerable amount of hyperparameters were explored, we did not have enough GPUs to
go through a GAN architecture search, which could have provided better performance.

5.2. FID and Image Quality

We relied on the FID score to monitor the training of the GANs. We also compared
FID to a domain specific evaluation (segmentation Dice score). This process, enabled us to
better understand to what extent an FID metric, optimized for natural images, can be used
in medical imaging. Our results reveal that the FID score continuously improves as the
training of any GAN moves forward. In contrast, the FID score could not be consistently
relied on as a measure of the image quality when used as training input for subsequent tasks.
Table 2 clearly shows that a lower FID score, does not always yield better performance
on a subsequent task of image segmentation. These results make it interesting to ask
whether metrics grounded in domain specific knowledge, could help make GANs easier to
evaluate and compare.

5.3. Data Scale

When comparing the results on the three datasets, an important trend related to the
performance of the GANs and the data is visible. When the size of the input dataset is
exceedingly small, as is the case for the IDRiD dataset in our study, the expected benefit
of training a GAN to increase the dataset size, quickly dissipates, as they often overfit,
which can have an adverse effect on the subsequent task. In parallel, when the input
dataset is highly unbalanced, portrayed by the SLiver07 dataset in our study, with only
5% foreground pixels, the trained GANs can further exacerbate this imbalance, as they
will ultimately learn the underlying biases of the training data. The variety in the input
dataset matters as much as the number of data points. Depending on the variety of the data,
the GAN can overfit to a single mode in the input distribution or truly learn the overall
distribution. Moreover, most of the prevalent GAN architectures deal with 2D images,
which is not necessarily the best format to train with when dealing with medical imaging
data, as it might have been acquired in 3D. This might further explain the poor performance
shown on the liver CT dataset.

5.4. Compute Scale

It should be kept in mind that training a GAN is often computationally intensive
(typically because it involves two or more networks), and requires a large amount of
memory. In addition, training GANs requires a lot of hyperparameter tuning, which may
or may not lead to better results when considering the downstream tasks the generated
data is intended for. This also affects more sophisticated GANs which, despite their good
performances, which can fool medical experts, require large computing resources to train.
For example, the StyleGAN took roughly 30 days to train on the ACDC dataset, with
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an NVidia Titan V GPU, with 12 GB of memory. Yet, StyleGAN did not always offer a
guarantee to the usefulness of the generated samples (Dice score of 0.36 for StyleGAN on
the SLiver07 dataset).

5.5. Medical Worth

As there is no automated objective way to assess whether a medical image conveys the
information for the diagnosis it is intended for, we based our analysis on a proxy task, that
aims to mimic the process for which a dataset is created, and compared its performance
to that of the original data. Here the proxy task is the evaluation of the segmentation
performed by a U-Net, and the results are evaluated by the Dice score. The results show
that, although most of the images generated by the tested GANs fail in reaching the baseline
performance, some of the more advanced ones manage to close the gap. However, when
subjectively assessing the images generated by the larger GANs, we can still see that they
exhibit a remarkable degree of complexity and quality. This might be related to the smaller
scale of the datasets in medical imaging, and the difference in their nature with the original
datasets for which most of the GANs were tailored. Likewise, a considerable amount of
the medical data is acquired in a 3D fashion and voxel wise, e.g., CT. Typical GANs might
not capture the full extent of the medical information, when trained solely on 2D views.
Indeed, this makes exploring GANs specially made for medical data an interesting research
avenue, and could lead to an improvement in quality and ultimately clinical usability.

6. Conclusions

Currently the use of deep learning approaches in medical image analysis remains
hindered by the limited access to large annotated datasets. To address this limitation, we
have probed both the limitations and promising aspects of generative adversarial networks
as medical image synthesis tools, through an experimental approach on three different
datasets. As a result, GANs’ effectiveness as a source of medical imaging data was found
to not always be reliable, even if the produced images are nearly indistinguishable from
real data. Tangentially, the results point to the fact that traditional metrics used to evaluate
GANs are less robust than task based evaluations.

All in all, this study should drive more research on GANs that take into account the
different subtleties of medical data and hopefully lead to better generative models.
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