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Abstract: Pile-up (PU) crashes, which involve multiple collisions between more than two vehicles within a
brief timeframe, carry substantial consequences, including fatalities and significant damages. This study
aims to investigate the real-time traffic, environmental, and crash characteristics and their interactions in
terms of their contributions to severe PU crashes, which have been understudied. This study investigates
and interprets the effects of Total Volume/Capacity (TV/C), “Heavy Vehicles Volume/Total Volume”
(HVV/TV), and average speed. For this purpose, the PU crash severity was modelled and interpreted
using the crash and real-time traffic data of Iran’s freeways over a 5-year period. Among six machine
learning methods, the CatBoost model demonstrated superior performance, interpreted via the SHAP
method. The results indicate that avg.speed > 90 km/h, TV/C < 0.6, HVV/TV ≥ 0.1, horizontal curves,
longitudinal grades, nighttime, and the involvement of heavy vehicles are associated with the risk of
severe PU crashes. Additionally, several interactions are associated with severe PU crashes, including the
co-occurrence of TV/C ≈ 0.1, HVV/TV ≥ 0.25, and nighttime; the interactions between TV/C ≈ 0.1 or
0.45, HVV/TV ≥ 0.25, and avg.speed > 90 km/h; horizontal curves and high average speeds; horizontal
curves; and nighttime. Overall, this research provides essential insights into traffic and environmental
factors driving severe PU crashes, supporting informed decision-making for policymakers.

Keywords: pile-up crash; crash severity; machine learning; SHAP method

1. Introduction

Despite the extensive efforts of transportation organizations worldwide to reduce
the frequency and severity of road crashes through road design improvements, vehicle
technology, transportation policies, and emergency services, road crashes still remain a
major cause of financial and life losses [1]. According to the World Health Organization [2],
road crashes result in 1.19 million deaths and between 20 and 50 million injuries annually,
with a notable rise in traffic-related fatalities reported in low-income countries, mostly due
to the rapid expansion of motor vehicle usage in developing nations. Iran, as a developing
country, has one of the highest rates of traffic-related fatalities, with a rate of 15.6 fatalities
per 100,000 people [3,4]. In Iranian suburban freeways, the recorded number of crashes
in the 5-year period from March 2014 to March 2019 was 51,032, of which 2165 were PU
crashes, involving three or more vehicles in a single collision and causing 105 fatalities
and 516 injuries. PU crashes have significant consequences such as a high risk of fatalities
and injuries, traffic congestion, liability lawsuits, and criminal charges against the at-fault
drivers, which are not easily discernible. A considerable amount of social and economic
capital is preserved by eliminating these types of collisions. Therefore, it is necessary to
outline the definition of a PU crash, the potential risk factors, and the analysis tools which
are discussed in the following sections.
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1.1. Definition and Background of PU Crash

The mechanism of crashes varies based on the number of vehicles involved [5], in-
cluding single-vehicle (SV) and multi-vehicle (MV) crashes, which are usually investigated
separately due to their different mechanisms and suitable countermeasures [6–9]. PU
crashes, also referred to as chain-reaction crashes, occur when three or more vehicles are
involved in a series of successive collisions with each other in a short period of time, mak-
ing them a distinct type of multi-vehicle (MV) crash. This type of crash is distinct from
secondary crashes and consecutive crashes, which involve a set of multiple influential
crashes occurring within a specific time interval [10]. According to previous studies, PU
crashes occur due to sudden maneuvers of the leading vehicle (e.g., abrupt speed reduction
or lane change) [11]. Additionally, simulation results of car-following models have shown
that traffic conditions (speed and relative speed) and driver reaction speed significantly
affect the occurrence of PU crashes [12].

To the best of our knowledge, no study has specifically examined PU crash severity.
However, due to the similarities in the mechanisms of occurrence between secondary
crashes, consecutive crashes, and PU crashes, the background literature of secondary
crashes and consecutive crashes has been investigated in this study. Most studies have
focused on the probability of secondary and consecutive crashes, as comprehensively
discussed in [10,13]. These studies mainly discuss the implications of delays and service
level reduction resulting from these crashes, with limited examination of the severity of
secondary and consecutive crashes. Meng et al. [5] examined the severity of consecutive
crashes from the perspective of exploring the relationship between a set of closely occurring
crashes. The findings indicated that the type of primary crash has an impact on the severity
of secondary crashes, and speed limits, traffic volume, and adverse weather conditions
increase the severity of consecutive crashes. According to Li et al. [14], although secondary
crashes constitute a relatively small portion of road crashes compared to regular crashes,
they have the potential of causing more injuries and fatalities. Also, they indicate that
occupancy, time gap between two crashes, number of lane changes, and the number of
lanes is associated with the severity of secondary crashes. Huang et al. [15] investigated
the crash severities by simultaneously modeling primary crashes and secondary crashes
and examining how traffic changes resulting from primary crashes affect the severity
of secondary crashes. According to their results, speed variations and traffic conditions
resulting from a primary crash have an impact on the severity of secondary crashes.

1.2. Importance of Real-Time Traffic Characteristics in Safety

Given the significant impact of traffic parameters on safety and the potential for man-
aging them to improve safety outcomes, researchers have consistently emphasized the
importance of incorporating traffic variables in safety studies. In most previous studies,
static and aggregated traffic measures, such as AADT or monthly traffic volume, and
speed limits have been used to model the occurrence of secondary crashes [10,16,17].
However, these measures do not precisely reflect the traffic conditions immediately be-
fore the occurrence of crashes and may lead to biased results [18]. Recent studies have
emphasized the investigation of the impact of traffic dynamics (traffic changes resulting
from primary crashes) on the severity of secondary crashes and the probability of their
occurrence [14,15,19,20]. Additionally, considering real-time traffic characteristics enables
the identification of more accurate traffic situations leading to secondary crashes [13,21].
Other studies examining crash severity (regardless of the specific type of collision), such
as [22], have also pointed out the influence of real-time traffic on crash severity, while [23]
examined the impact of AADT and average speed on crash severity as well.

For two routes with equal traffic flow, different capacity will lead to different traffic
conditions. Thus, it is appropriate to consider the Total Volume/Capacity (TV/C) ratio,
which indicates the degree of saturation or congestion on the route [18,24]. In most studies,
less-congested conditions have been introduced as a contributory factor to serious crashes
due to high speed. However, some inconsistent results related to the effects of congestion
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on road safety cause confusion for transport planners and safety policymakers. For instance,
Quddus et al. [25] point out that congestion is not related to crash severity, yet according
to Wang et al. [26], increases in congestion are associated with the risk of severe crashes.
Therefore, a solely qualitative description of traffic and congestion conditions will not be
informative and the critical values of congestion should be extracted and interpreted. In
addition, previous studies on crash severity have paid limited attention to the impact of
heavy vehicles, such as trucks and buses, in traffic composition. Due to the size, weight,
and potential unsafe interactions of trucks with other vehicles, neglecting their ratio in
traffic combination may lead to biased results.

1.3. Application of Machine Learning and Interpretation Methods

In recent decades, numerous studies and modeling efforts have been conducted in
the fields of safety and crash severity, focusing on crash data and predominantly using
Statistical Methods (SMs). Statistical modeling requires assumptions about the distribution
of data, which may be violated, leading to incorrect estimates and erroneous inferences.
Machine learning (ML) methods have shown increasing growth in safety analysis in re-
cent years [27,28]. These methods involve processes for identifying hidden structures,
associations, and patterns [29–36]. These techniques utilize complex structures and algo-
rithms to understand patterns and relationships between input and output data, typically
outperforming statistical models in comparative studies [37–40].

Considering the complexity of PU crashes and the interaction of factors, a method
capable of modeling complex patterns is needed. ML can handle large and complex
datasets, provide relatively short computational modeling time, and offer satisfactory
accuracy [41]. In recent years, ML techniques have been used for predicting and modeling
crash severity [42]. The most well-known models utilized in safety and crash modeling
studies are gradient-boosting decision tree models, such as XGBoost [43–45], CatBoost [46],
AdaBoost [43], and LightGBM [47].

Regardless of the accuracy of the ML models, the interpretability of the model results
plays a crucial role. Decision- and policy-making is possible only through fully under-
standing the model and properly interpreting its results, and interpretability in ML is of
particular importance for generating reliable models [48]. Due to the complex structures of
many ML models (often referred to as “black-box” models), interpreting the results of these
models poses challenges [38]. In previous safety studies, several post hoc analyses have
been used to interpret the results of models. The Local Sensitivity Analysis (LSA) method
has been employed in some studies to calculate sensitivity analysis and elasticity analysis
in crash severity modeling. In these analyses, all variables are held constant except for the
variable of interest, and the changes in the model’s results are recorded as a percentage of
variation [49–51]. Partial Dependence Plots (PDPs) are one of the most common methods
used to interpret the results of ML models in safety studies. PDPs show the effect of all val-
ues of a feature on predicting the dependent variable based on the marginal distributions of
other variables [52]. PDPs have been utilized to interpret the results of ML models in safety
studies [53]. However, PDPs have the limiting assumption of uncorrelated input variables,
which is considered a fundamental constraint and can lead to biased results [27,54,55].
To address this issue, the Shapley Additive exPlanations (SHAP) method, which has the
capability to estimate the effects of variables and their interactions on the output, was
introduced in [56]. SHAP analysis has been employed in recent safety studies, including
factors affecting the occurrence of crashes [57,58] and crash severity [43,44].

1.4. Aims

Considering the unique mechanisms, involvement of numerous vehicles, and severe
consequences leading to the high fatality and injury rates of PU crashes, obtaining a pre-
cise understanding of the influencing factors is significant. Thus, this research aims to
investigate the factors influencing PU crash severity, particularly focusing on the gaps
in environmental conditions and real-time traffic interactions. Recognizing the crucial
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role of the traffic conditions, this study utilizes real-time TV/C for a more accurate as-
sessment, instead of relying on aggregated data like the AADT. Given the inconsistent
results of previous studies regarding the effects of TV/C, there is a need to investigate
critical TV/C values and interpret their impact on PU crash severity. Additionally, while
previous research has examined heavy vehicle involvement in crashes, there has been
limited exploration of the proportion of heavy vehicle traffic and its relative effects on
crash severity. Moreover, by employing ML models and the SHAP method, this research
delves into the involvement and interactions of multiple factors in PU crashes, enhancing
understanding and interpretation of the results for a broad audience of transport planners
and safety policymakers. The use of SHAP provides probability plots, highlighting critical
values for better decision-making. Therefore, the primary goals of this study encompass
the following:

• Exploring the interacting effects of real-time traffic parameters and environmental
conditions on the severity of PU crashes to address these rare and complex aspects of
traffic incidents.

• Utilizing ML models and the SHAP method, proficient in identifying complex patterns
and interpreting influence and interactions, in order to present results that are easily
interpretable for policymakers.

The rest of the article is organized as follows. First, in Section 2, the source and
characteristics of data and their initial analysis are presented. In Section 3, the details of
the ML methods and SHAP analysis are reviewed. In Section 4, the outputs and results of
modeling are interpreted and discussed. Section 5 provides the summary and conclusion,
while limitations and future directions are discussed in Section 6.

2. Data

The data used in this study pertain to 2165 PU crashes that occurred on eleven major
suburban freeways in Iran with a total length of 2015 km, including 255 sections, as shown
in Figure 1. In all freeways considered in this study, the speed limit is set at 120 km/h
for passenger cars and 110 km/h for heavy vehicles, and there are two to three lanes for
each direction. The data used in this study consist of PU crash data that occurred over a
5-year period (March 2014 to March 2019), collected by the police at the crash scenes and
encompassing environmental and crash characteristics. Additionally, to examine the impact
of real-time traffic variables, including the traffic volume of different types of vehicles,
capacity of each segment, and average vehicle speed, data obtained from the Iran Road
Maintenance and Transportation Organization were utilized [59]. The traffic data in this
study are based on the recorded data from loop detectors along the routes. After assessing
different time intervals for aggregating traffic data, the 1 h period before a crash better
distinguished the overall traffic conditions between severe PU crashes and non-severe PU
crashes in terms of model performance and practicality. Hence, in this study, a mesoscopic
analysis approach was pursued, which has also been employed in [25,60]. Based on the
location of each crash and the time of crash occurrence, the 1 h pre-crash real-time traffic
information recorded by the upstream loop detector was aggregated and matched with the
respective crash. Further details regarding the traffic data, PU crash characteristics, and
environmental parameters will be explained in subsequent sections.

According to previous studies, the PU crashes in this study have two conditions:
1—more than two vehicles colliding directly with each other within a limited time period,
and 2—no other crash occurred within a 2 h time interval before and after the PU crashes,
indicating that a PU crash is neither a cause of crashes (primary), nor the result of a crash
(secondary). According to the PU crash data, 19.3% of crashes resulted in fatality and injury
(F&IN) at the crash scene and 80.7% of crashes resulted in property damage only (PDO).
Table 1 presents the descriptive statistics of the variables related to crashes. More details
about the data are given in the next sub-sections.
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Figure 1. Study routes: 1: Tehran–Qom (150 km), 2: Qom–Isfahan (360 km), 3: Tehran–Qazvin (120
km), 4: Tehran–Saveh (95 Km), 5: Qazvin–Tabriz (490 km), 6: Qazvin–Rasht (160 km), 7: Saveh–
Hamadan (175 km), 8: Saveh–Salafchegan (80 Km), 9: Qom–Garmsar (150 km), 10: Khoramabad–
Andimeshk (145 km), 11: Ahvaz–BandarImam (90 km).

Table 1. Descriptive statistics of variables.

Variable Description PDO F & IN Total Mean Std. Dev Min Max

Real-Time Traffic Variables
TV/C 0.469 0.297 0.005 0.98

Avg.speed 84.70 12.77 60 120
HVV/TV 0.143 0.102 0.014 0.634

Crash Characteristics
No. of vehicles involved 3.24 0.574 3 12

No. of heavy vehicles involved 0.57 0.791 0 3
No. of injuries 0.15 0.537 0 6
No. of fatalities 0.02 0.203 0 5

Environmental Characteristics
NO. Lanes 2 24 (23.07%) 80 (76.92%) 104 (4.80%)

3 393 (19.06%) 1668 (80.93%) 2061 (95.1%)
Light

Condition Day 191 (14.81%) 1098 (85.18%) 1289 (59.5%)

Night 213 (27.41%) 564 (72.58%) 777 (35.8%)
Sunrise 7 (23.33%) 23 (76.66%) 30 (1.38%)
Sunset 6 (8.695%) 63 (91.30%) 69 (3.18%)

Road Surface
Condition Dry 321 (18.03%) 1459 (81.96%) 1780 (82.2%)

Ice and snow 15 (24.19%) 47 (75.80%) 62 (2.86%)
Wet 81 (25.07%) 242 (74.92%) 323 (14.9%)

Land Use Agriculture 96 (39.18%) 149 (60.81%) 245 (11.3%)
Industrial 9 (21.42%) 33 (78.57%) 42 (1.93%)

Other 305 (16.38%) 1556 (83.61%) 1861 (85.9%)
Residential 7 (41.17%) 10 (58.82%) 17 (0.78%)

Weather
Condition

Cloudy and foggy
and dusty 15 (33.33%) 30 (66.66%) 45 (2.07%)

Rainy 73 (24.74%) 222 (75.25%) 295 (13.6%)
Smooth 309 (17.60%) 1446 (82.39%) 1755 (81.0%)
Snow 19 (27.53%) 50 (72.46%) 69 (3.18%)
Storm 1 (100%) 0 (0%) 1 (0.04%)

Road
Geometry

Curve and
longitudinal slope 101 (95.28%) 5 (4.716%) 106 (4.89%)

Curve and plain 21 (95.45%) 1 (4.545%) 22 (1.01%)
Straight and

longitudinal slope 19 (22.35%) 66 (77.64%) 85 (3.92%)

Straight and plain 276 (14.13%) 1676 (85.86%) 1952 (90.1%)

2.1. Real-Time Traffic Characteristics

Based on the capacity of each road segment and the traffic volume before the oc-
currence of PU crashes, for each crash, the ratio of Total Volume/Capacity (TV/C) was
evaluated. The capacity data for each freeway segment in our study were obtained from [59],
and capacity adjustments were implemented for sections where PU crashes occurred in
rain, snow, and fog, with reference to the Highway Capacity Manual. TV/C indicates the
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degree of saturation and its examination has been emphasized for crash severity mod-
elling [61]. The ratio of heavy vehicles in the traffic combination prior to a crash event is
another potential factor that could impact the severity of the collision. This ratio, labeled
as Heavy Vehicles Vol./Total Vol. (HVV/TV), was matched with each crash based on the
date and time of the crash. In most previous studies, only the speed limit of the segment
was considered as a parameter, and the speed limit on all freeways in Iran is 120 km/h for
passenger cars and 110 km/h for heavy vehicles, which does not provide useful information
about traffic conditions. According to [62], the relationship between speed and road safety
is consistent at both the individual driver level and the aggregate level (average traffic
speed). Therefore, in this study, the average speed of vehicles at the upstream location of
the PU crashes was extracted and matched with each information row of PU crashes.

To understand the underlying distribution of real-time traffic variables related to PU
crashes and comparing their distributions in two levels of severity (PDO and F&IN), kernel
density plots were drawn (Figure 2). A kernel density plot is an extended version of a
histogram that uses a kernel function to smooth out the frequency bins. It estimates a
probability density function that provides a more accurate representation of the distribution
and concentration of the target variable. Based on Figure 2a, F&IN crashes have the highest
concentration of about TV/C ≈ 0.1, while PDO crashes are concentrated in two ranges of
TV/C ≈ 0.2 and TV/C ≈ 0.8. According to Figure 2b, the peak of PDO crashes is located at
HVV/TV ≈ 0.1 and is more concentrated in lower HVV/TV values compared to the F&IN
distribution. On the other hand, the peak of F&IN crashes is HVV/TV ≈ 0.15 and has a
higher probability than PDO crashes for higher HVV/TV values. Figure 2c displays the
distribution of the average speeds of passing vehicles before PU crashes. The distribution of
average speeds for F&IN crashes is concentrated around 105 km/h, while for PDO crashes,
it is in the range of 85 km/h.
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Considering the likelihood of correlation between traffic variables and a better under-
standing of incorporating these parameters into the main model, a Matrix Scatter plot was
drawn for these variables (Figure 3). As expected, the average speed generally showed
a negative correlation with TV/C, and in TV/C > 0.6, the average speed noticeably de-
creased. In the range of TV/C < 0.6 (green rectangle), especially in the less-congested
traffic range where F&IN crashes are mostly located, no significant correlation is observed.
It seems that in non-congested traffic (0.0 < TV/C < 0.2), although driving at speeds
higher than 120 km/h is possible, drivers are still required to adhere to speed limits. How-
ever, in less-congested traffic (0.2 < TV/C < 0.4), where speed reduction is practically
necessary, most drivers prefer to drive at the maximum permissible speed. Additionally,
in non-congested traffic (0.0 < TV/C < 0.2) with a high percentage of heavy vehicles
(0.3 < HVV/TV < 0.6), the average speed of the segment is lower compared to cases
where passenger cars form most of the traffic composition. Therefore, it is valuable to
investigate the interaction between average speed and TV/C in light traffic conditions and
their impact on PU crash severity.
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Typically, the traffic volume of heavy vehicles such as trucks and buses remains
relatively stable on most routes. However, during certain occasions such as extended
holidays, there may be an increase in demand for passenger car travel, while restrictions
on some truck traffic may be in place. Therefore, the traffic rate of passenger cars mostly
determines the traffic composition. As expected, when there is an increase in demand for
passenger car travel and heavy traffic occurs (TV/C > 0.6), the HVV/TV ratio tends to
decrease (Figure 3). However, as noted within the shaded area in dark red, the opposite
scenario does not hold true. In other words, in conditions where TV/C < 0.6, which
include a high number of F&IN crashes, a high HVV/TV ratio is not necessarily present,
and a correlation between TV/C and HVV/TV is not apparent.

2.2. Crash Characteristics

The primary distinction between PU crashes and other types of collisions is the number
of vehicles involved in a single crash. The PU crashes examined in this research involved 3
to 12 vehicles. Crashes involving more than five vehicles were categorized in one group.
The frequency of PU crashes by the number of involved vehicles is shown in Figure 4a
(to enhance the graph’s visual display, the percentage of each subgroup is represented).
While most crashes (81.8%) involve three vehicles, the rate of F&IN crashes dramatically
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increases with the number of involved vehicles. This trend also holds for the number of
heavy vehicles involved in PU crashes, as shown in Figure 4b.
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The high rate of F&IN in PU crashes with many vehicles involved and the relatively
low number of these critical events compared to PU crashes with three vehicles involved
leads to biased modeling of crash severity and the underestimation of the importance of
these types of PU crashes. Therefore, to address the imbalance in PU crash data in terms
of the number of vehicles involved, data resampling was performed, and the method
and corresponding results are presented in the Methodology and Results and Discussion
Sections.

Due to the larger size of trucks, trailer trucks, and buses compared to passenger cars,
and their impact on driving conditions and the surrounding vehicles, they may create
hazardous conditions. Moreover, their higher weight may lead to severe collisions. By
aggregating these vehicles into the heavy vehicle variable in this study, their impact on
traffic composition and their involvement in PU crashes are investigated.

2.3. Environmental Factors

One of the environmental variables of this study is the road geometry, which is
divided into four categories: curve and longitudinal slope, curve and plain, straight and
longitudinal slope, and straight and plain. Also, the road lighting status is divided into
Day, Night, Sunrise, and Sunset categories based on the time. There is information about
weather conditions (cloudy and foggy and dusty, rainy, smooth, snow, storm) and road
surface conditions (dry, wet, ice, and snow) in the crash database, where only the road
surface condition variable was used in modeling due to high correlation. The variables of
the number of crossing lanes and land use were also used in this study.

3. Methodology

We used and compared six tree-based and ensemble ML models: Classification and Re-
gression Trees (CART), Random Forest (RF) [63], Extreme Gradient Boosting (XGBoost) [64],
Categorical Boosting (CatBoost) [65], Light Gradient Boosting Machine (LightGBM) [66],
and Adaptive Boosting (AdaBoost) [67]. The CART model, also known as a decision tree,
has a tree-like structure consisting of a root node (topmost node), internal nodes, and leaf
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nodes (end nodes). Decision tree algorithms usually proceed from top to bottom, selecting
a splitter at each stage that provides the best split, and continue growing until the dataset
is divided into groups that are as homogeneous and consistent as possible.

The RF model creates multiple decision trees and combines their results, known as an
ensemble ML technique. To construct this predictive tool, sampling with replacement is
first performed on the data with equal size. In the next step, a classification model (decision
tree) is built for each sample. Each tree votes for the most popular class/category. Finally,
the majority vote is considered the output.

Gradient Boosting is an ML technique used for regression and classification problems,
introduced as Gradient-Boosted Machines by Friedman in 2001. Typically, in this technique,
decision trees (usually CART) with a fixed size are used as base learners, and the boosted
trees are called gradient-boosting decision trees (GBDT). Unlike RF, which is composed of
independent trees, the GBDT model sequentially creates a set of shallow and weak trees.
Each new tree in GBDT improves the previous trained tree by applying higher weights to
misclassified observations and lower weights to correctly classified observations. When
weak trees are boosted, the probability of correct classification for observations with high
weight increases. Therefore, the GBDT model transforms a set of weak learners into a
strong model and predicts challenging classification cases. The other models mentioned in
this study are considered subsets of GBDT, which have been enhanced in various aspects.
Next, only the CatBoost model, which had the best performance in this study, is described.
The subsequent sections of this part explain the details of resampling, hyperparameter
tuning, model evaluation, and model interpretation in order.

3.1. Categorical Boosting Method (CatBoost)

The CatBoost is a novel version of the Gradient-Boosting Decision Tree algorithm. The
Gradient-Boosting Decision Tree (GBDT) algorithm combines numerous decision trees to
create a high-accuracy model, and the process can be expressed as Equation (1):

y(x) =
T

∑
t=1

ft(x, θt) (1)

where x denotes the variable vector, T denotes the number of trees, θt(t = 1, 2, . . . , T)
denotes a learned parameter, and ft(x, θt) denotes the learned decision trees that are
learned. Given a set of training samples D = {(xk, yk)}n

1 , where n denotes the total number
of samples in training data, xk(k = 1, 2, . . . , n) is the sample data points, and yk indicates
the true sample label. In order to learn the model in Equation (1), Equation (2)’s objective
function is required to be minimized:

O( ft) =
n

∑
i=1

L(yk, ȳk) +
T

∑
t=1

Ω( ft) (2)

where ȳk denotes the predicted sample label, L represents the loss function, which is
actually the difference between yk and ȳk, and Ω represents the regular function, which is
employed to penalize the complexity of ft. It is defined as Equation (3):

Ω = αq +
1
2

β ∥ ω ∥2 (3)

where α denotes a penalty parameter, which controls the number of leaf nodes q, β repre-
sents the regularization parameter, and ω represents the weight coefficient. Let ζ represent
the loss function negative gradient, then the objective function is minimized in the direction
of ζ given by Equation (4):

ζ = −
[

∂L(yk, yk)

∂yk

]
(4)
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The CatBoost algorithm differs from the other GBTs in terms of having two prominent
features, i.e., efficient handling of categorical features and ordered boosting [68]. The
learning classifiers handle numerical features quite efficiently during the model training
phase; however, interpreting categorical features is complicated for them. Therefore, in
conventional approaches, categorical features are transformed into useful information
using the one-hot encoding technique or gradient statistics. In the former technique,
each category of the original categorical features is replaced by the binary values, while
in the latter technique, an estimated value is generated by using gradient statistics to
replace the original categorical feature at each boosting step. Nevertheless, in the case of
the categorical features with high repeatability, both the mentioned techniques require
large memory and other computational resources. To avoid the mentioned problem, the
CatBoost algorithm utilizes efficient modified target-based statistics to appropriately handle
the categorical features during training time, thus saving considerable computational time
and resources. Another important aspect of the CatBoost algorithm is its ordered boosting
mechanism. In traditional GBTs, all the training samples are provided to construct a
prediction model after executing several boosting steps. This approach causes a prediction
shift in the constructed model, which consequently leads to a special kind of target leakage
problem. The CatBoost algorithm avoids the stated issue by utilizing the ordered boosting
framework. Furthermore, contrary to the conventional learning classifiers, the CatBoost
algorithm eloquently handles the overfitting issue by using several permutations of the
training dataset [69]. The strategy for optimizing greedy target-based statistics is expressed
in Equation (5):

xi
k =

∑n
j=1

{
xi

j = xi
k

}
· yi + aP

∑n
j=1

{
xi

j = xi
k

}
+ a

(5)

where xi
k denotes the k th sample’s i th category variable, xi

k denotes the corresponding
variable, P denotes the increased prior value, and a denotes the weight coefficient a > 0.
Prior values can be used to effectively reduce noise introduced by low-frequency variables
and avoid the overfitting phenomenon [43].

3.2. Resampling

The PU crash data are highly imbalanced based on the number of vehicles involved,
as shown in Figure 4. Consequently, crashes with a high number of vehicles involved
that have higher rates of F&IN might be less considered and lead to bias in modelling. To
address this issue, oversampling can be used, which not only addresses the imbalance in
the PU crash data, but also alleviates the imbalance in the severity levels. In this study,
the random oversampling method was used, which resulted in improved accuracy in
predicting the crash type [70]. This method randomly selects the samples from the minority
class, with replacement, and adds them to the training dataset.

3.3. Hyperparameter Tuning

Hyperparameter tuning is a critical aspect of machine learning, aimed at identifying
the optimal set of hyperparameters for a model. This approach is instrumental in prevent-
ing the development of an overfitted and excessively complex model [47,71]. In this study,
the GridSearch technique is employed to discover the best combination of hyperparam-
eters utilizing 10-fold cross validation and the ROC-AUC of the model is collected as a
performance metric.

3.4. Model Evaluation

The performance of ML models can be evaluated by a number of metrics, which can
be generally derived from the model’s confusion matrix shown in Table 2.
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Table 2. Confusion matrix.

Predicted

Observed Positive Negative

Positive TP FN
Negative FP TN

Total P N
Note: FN = false negative; FP = false positive; TN = true negative; TP = true positive.

To assess the model’s performance using the classification table, the following mea-
surements should be calculated first:

Accuracy = (TP + TN)/(P + N) (6)

Precision = TP/(TP + FP) (7)

Recall or TPR = TP/(TP + FN) (8)

FPR = FP/(FP + TN) (9)

F1score =
2 × Precision × Recall

Precision + Recall
(10)

Equation (6) can be used to obtain the model’s overall accuracy. The closer the model is
to 1 in accuracy, the stronger it is at classifying the samples. Equation (7) indicates the ratio
of correctly predicted positive observations to the total predicted positive observations,
which shows the accuracy of the model. Also, high precision relates to low FPs. Equation (8)
represents the ratio of correctly predicted positive observations to all observations in the
actual class, which shows the sensitivity of the model, and low Recall indicates the presence
of a large number of FNs. The TPR quantifies the proportion of positives correctly identified,
whereas the FPR quantifies the proportion of negatives incorrectly classified as positives.
This metric could lead to specious results with unbalanced data sets. To address this issue,
F1 Score (Equation (9)) might be a better measure to use if we need to seek a balance between
Precision and Recall. To gain a better understanding of how well a model performed, an
area under the receiver operating characteristic (AUC-ROC) curve was also used. The
ROC curve was obtained by plotting the FPR on the x-axis and TPR on the y-axis. The
two-dimensional area underneath the entire ROC curve is called the area under the ROC
curve and the AUC values range from 0 (completely incorrect) to 1 (perfectly correct).

3.5. Model Interpretation

SHAP is a novel model interpretation method for explaining the output of an ML
model by assigning importance values to each feature in a prediction [56]. The SHAP value
is based on the concept of Shapley values from cooperative game theory [72], which assigns
a value to each player in a game based on their marginal contribution to the game outcome
when playing in a coalition with other players. The SHAP value of a feature represents the
contribution of that feature to the predicted outcome compared to the average prediction
across all possible feature combinations. To compute the SHAP value of a feature, the
SHAP algorithm considers all possible feature combinations and calculates the difference
in prediction between the current feature set and the feature set with the feature removed.
This difference is then averaged over all possible feature combinations, giving the SHAP
value for that feature. The SHAP values can be used to explain individual predictions
by showing the contribution of each feature to the prediction, or to provide an overall
understanding of the model by analyzing the distribution of SHAP values for all features.

For a risk factor subset S ⊆ F (where F stands for the set of all risk factors), two models
are trained to extract the effects of factor i. The first model fS∪{i}

(
xS∪{i}

)
is trained with

factor i while the other one fS(xS) is trained without it, where xS∪{i} and xS are the values
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of input features/risk factors. The difference in model outputs fS∪{i}

(
xS∪{i}

)
− fS(xS)

is computed for each possible subset S ⊆ F ∖ {i}. The Shapley value of a risk factor i is
calculated using Equation (11):

∅i = ∑
S⊆F∖{i}

|S|!(|F| − |S| − 1)!
|F|!

(
f△∪{i}

(
xS∪{i}

)
− fS(xS)

)
(11)

Local SHAP values refer to the effects of risk factors calculated based on one observa-
tion, while global SHAP values represent the importance of risk factors and the interaction
effects of two factors based on all observations. For example, the SHAP interaction values
can be calculated as the difference between the Shapley values of factor i with and without
factor j in Equation (12) [47]:

∅i,j = ∑
S⊆F{{i,j}

|S|!(|F|−|S|−2)!
|F|!

(
fS∪{i,j}

(
xS∪{i,j}

)
− fS∪{i}

(
xS∪{i}

)
− fS∪{j}

(
xS∪{j}

)
+ fS(xS)) (12)

In this study, the Shapley values were computed using a recently introduced technique
called tree-SHAP developed by [73]. The tree-SHAP algorithm is specially designed for
tree-based models, and ensemble gradient-boosted machines. One of the important features
of this algorithm is that it computes the local feature interaction, which in turn facilitates
the interpretation of the global model structure for each prediction. The analysis was
performed under the Python 3.8 environment and ML and SHAP packages were used for
model training, evaluation, and interpretation.

4. Results and Discussion
4.1. Model Fitting and Evaluation Results

Considering the imbalance PU crash data and the likelihood of model bias towards
crashes with a high number of vehicles involved, resampling improves the accuracy of the
models. In the first step, the minority classes in the PU crash data were resampled using the
random oversampling method, and their distribution is shown in Figure 5. Additionally, to
prevent overfitting and model complexity and to increase prediction accuracy, the model
hyperparameters should be tuned. Based on the descriptions provided in the Methodology
Section and using the variables defined in the Data Section (70% for training data and 30%
for testing data), the CART, RF, CatBoost, XGBoost, LightGBM, and AdaBoost models were
executed. To compare and evaluate the accuracy and performance of the models, metrics
such as accuracy, Recall, Precision, F1 Score, and ROC-AUC were used on the test data.
According to the results presented in Table 3, the CatBoost model performed the best. Also,
the optimal CatBoost hyperparameter values selected based on the AUC metric were as
follows: number of iterations: 500, max depth: 6, ‘l2_leaf_reg’: 1 × 10−20, ‘leaf_estimation
iterations’: 10, ‘logging_level’: ‘Silent’, ‘loss_function’: ‘Logloss’.

In this study, the SHAP method was used to interpret the results obtained from
the CatBoost modeling, and the significant variables were analyzed. The results of this
analysis are presented in subsequent sections. Initially, an overview of the results and the
importance of variables are provided, followed by an examination of how variables affect
the predictions and significant interactions between them.

4.2. Importance and Global Interpretation of Risk Factors

Figure 6a represents the order of importance and the average impact of risk factors on
PU crash severity, based on Mean SHAP values. In Figure 6a, risk factors are ranked from
top to bottom according to their Mean SHAP values. Figure 6b shows the SHAP summary
plot, illustrating the overall impact of risk factors on crash severity (the likelihood of F&IN
PU crashes). Positive SHAP values indicate a higher risk of F&IN PU crashes, whereas
negative values represent lower risk. For continuous variables, the color bar on the right
side indicates the value of risk factors (red dots represent higher values, while blue dots
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represent lower values). The SHAP values of categorical variables are displayed in gray,
and their impact will be further examined in the next sections.
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Based on the results shown in Figure 6a,b, the most important variable in PU crash
severity is road geometry. The next most significant variable is the number of vehicles
involved in PU crashes. The SHAP summary plot in Figure 6b shows that an increase in the
number of vehicles involved associated with higher SHAP values and higher probability of
F&IN crashes. High average speed is associated with a higher probability of F&IN crashes.
Also, TV/C is associated with crash severity. Low values of TV/C lead to the risk of F&IN
crashes, and vice versa. The HVV/TV is also influential, and higher values of HVV/TV
are associated with an increased probability of F&IN PU crashes. Lighting conditions, road
surface conditions, and land use are placed in lower ranks. The next sections will explore
the impact and significant interactions of the most important variables on PU crash severity.

4.3. Main and Interacting Effects of Risk Factors

To interpret the impact of each risk variable on PU crash severity, SHAP dependence
plots are presented for each significant variable in this section. In each subplot, the hor-
izontal axis represents the values of the independent variable, and the left vertical axis
represents the SHAP value (positive SHAP values indicate the positive probability of F&IN
PU crashes). In the subplots where independent variable interactions are considered, the
right vertical axis represents the secondary independent variable, which is displayed as a
color bar.

4.3.1. Real-Time Traffic Factors

Figure 7 illustrates the main effects of average speed, TV/C, and HVV/TV. According
to the results in Figure 7a, average speeds above 90 km/h are associated with the risk of
F&IN crashes, and vice versa. Moreover, the probability of F&IN PU crashes shows an
increasing trend with increasing average speed. Studies that have examined speed limits
as a parameter have shown that increasing speed limits and the possibility of driving at
higher speeds are accompanied by an increase in severe crashes [74–76]. It is likely that
traffic oscillations at low speeds lead to non-severe crashes [60]. Additionally, significant
variations in vehicle speed prior to crashes increase the likelihood of severe crashes [22,23].
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According to Figure 7b, TV/C values below 0.6 are associated with a high risk of F&IN
PU crashes, while TV/C values above 0.6 are accompanied by a low risk of F&IN PU crashes.
The highest positive SHAP value is related to non-congested traffic (0.05 ≤ TV/C ≤ 0.15),
indicating a higher risk of F&IN severity, and this may be attributed to higher vehicle
speeds and driving at free flow speeds. For TV/C ≈ 0.1, the risk of F&IN PU crashes
reaches its highest level, which can be considered a critical TV/C condition. Most studies
have focused on the impact of traffic flow on the number and risk of crashes. However,
according to [77–79], the risk of severe crashes is higher in light traffic flow conditions
(non-congested traffic) due to relatively high vehicle speeds [62]. Furthermore, with an
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increase in TV/C, the risk of F&IN PU crashes remains positive but follows a decreasing
trend. When TV/C reaches approximately 0.2, the probability of F&IN severity reaches
the lowest positive SHAP value. With increased traffic and TV/C ≈ 0.45, the risk of F&IN
severity again approaches critical TV/C conditions. In these conditions, the vehicle speed
is lower than the free flow speed, but the exposure has increased. According to [26], an
increase in congestion is associated with severe crashes, and this may be attributed to
higher speed variances between vehicles and lanes, as well as erratic driving behavior that
can occur under congested conditions. Also, high traffic flow variations are associated with
an increased risk of severe crashes, especially just before congestion formation [22,23,60,61].
Therefore, TV/C ≈ 0.45 can be considered a high-risk congestion level, leading to a high
risk of severe PU crashes. Furthermore, with an increase in TV/C, the probability of
F&IN severity follows a decreasing trend, and at around TV/C ≈ 0.6, the SHAP value
reaches zero; thereafter, the risk of F&IN severity decreases, which is primarily due to
high congestion and vehicle speed decreasing. In these conditions, with an increase in
exposure, the probability of PDO PU crashes increases, resulting in a low risk of F&IN PU
crashes [80].

According to the results in Figure 7c, when HVV/TV reaches approximately 0.1, the
SHAP value becomes positive and HVV/TV > 0.1 is associated with the risk of severe PU
crashes. For HVV/TV > 0.1, the SHAP value has a positive and steady trend, indicating
that the probability of severe F&IN crashes remains positive. Higher values of HVV/TV
are mostly related to transit routes where the traffic volume of these vehicles increases, or
in other words, the traffic volume of passenger cars decreases. Previous studies mainly
focus on truck-involved crashes, and rarely examine the impact of trucks’ presence in traffic
on crash severity. However, according to [81], due to the considerable difference in speed
between trucks and passenger vehicles, the likelihood of traffic conflicts and collisions
increases. Furthermore, [82] found that the interaction between trucks and other vehicles is
positively correlated with the risk of other vehicle crashes.

To investigate PU crash severity in greater detail, SHAP dependence plots are pre-
sented in Figures 8 and 9, highlighting the main effects and interactions of traffic variables.
As TV/C is a crucial indicator of congestion status, Figure 8 illustrates its main effects and
significant interactions with other variables. Figure 8a indicates that critical conditions for
PU crash severity arise at TV/C values around 0.1 and 0.45. As demonstrated in Figure 8b,
higher average speeds within these two risky congestions are associated with higher SHAP
values and a higher risk of F&IN PU crashes. Additionally, as shown in Figure 8c, the inter-
action between TV/C ≈ 0.1 and HVV/TV ≥ 0.25 leads to high SHAP values. Figure 8d
also indicates the high risk of the interaction between TV/C ≈ 0.1 and the occurrence of
crashes in the darkness of night. It can be inferred that, although the probability of a crash
occurrence is lower in non-congested conditions, the risk of severe PU crashes increases
under certain conditions. The risk of severe PU crashes increases in specific conditions
where TV/C ≈ 0.1, avg.speed > 90 km/h, HVV/TV ≥ 0.25, and nighttime darkness
interact.

As shown in Figure 9a (or Figure 7c), for HVV/TV ≥ 0.1, it is associated with positive
SHAP values and a higher risk of severe F&IN PU crashes. Based on the initial analysis in
the Data Section, a high percentage of heavy vehicles are present in light traffic conditions
and transit routes, and Figure 8c also demonstrates the positive impact of their interaction
on increasing the risk of severe PU crashes. According to Figure 9b, the interaction of
HVV/TV ≥ 0.10 and avg.speed > 90 km/h is associated with higher SHAP values and an
increased risk of severe PU crashes.
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4.3.2. Crash Characteristics

As shown in Figure 10a, the involvement of four or more vehicles in a PU crash is
associated with positive SHAP values and higher risk of F&IN PU crashes. As the number
of involved vehicles increases, the risk of F&IN PU crashes also increases. As the number
of involved vehicles increases, so does the number of impacts and collisions that occur.
Initially, the involved vehicles may only suffer minor injuries and damages, but as the
collisions continue, the severity of injuries can escalate to more serious injuries or even
fatalities. As demonstrated by the SHAP dependence plot in Figure 10b, the collision
between a heavy vehicle and other vehicles in PU crashes is associated with positive
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SHAP values and a higher risk of F&IN PU crashes. An increase in the number of heavy
vehicles involved in PU crashes, on average, raises the probability of severe PU crashes.
Also, [9,83,84] have also noted that the involvement of large trucks in crashes can lead to
severe crash, and this may be attributed to the size and weight of these vehicles, which can
result in the release of more energy in collisions.
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4.3.3. Environmental Factors

This study identified the geometry of the crash location as the most influential variable
on PU crash severity. According to the SHAP dependence plots shown in Figure 11a, PU
crashes in horizontal curves are associated with positive SHAP values and a higher risk of
F&IN PU crashes. Horizontal curves are widely acknowledged as high-risk areas associated
with severe crashes [85]. Furthermore, the presence of a longitudinal slope in conjunction
with a horizontal curve is associated with elevated SHAP values and a higher risk of severe
PU crashes. This is consistent with studies [86–88], indicating a correlation between severe
crashes and horizontal curves along steep slopes. It appears that due to limited visibility in
the combined conditions of horizontal curves and longitudinal slopes, and the difficulty
of vehicle control in these geometric conditions, the risk of severe PU crashes increases.
Additionally, Figure 11b presents the interaction effect of road geometry and average speed,
indicating that the occurrence of crashes in horizontal curves with high average speeds
increases the likelihood of PU crashes with F&IN severity.

Based on Figure 11c, the probability of severe PU crashes occurring at night is associ-
ated with positive SHAP values and a higher risk of F&IN PU crashes, which could be due
to factors such as reduced visibility, inadequate lighting, fatigue, and driver drowsiness.
Other studies have also shown a correlation between crashes occurring at night and risk
of severe crash [9,89–91]. As shown in Figure 11d, the combination of crashes at night
and horizontal curves is associated with a higher risk of F&IN PU crashes. Moreover, the
combination of horizontal curves and longitudinal slopes during daytime increases the
risk of severe PU crashes, whereas straight road segments pose a lower risk (Figure 11d).
Therefore, the interaction of nighttime darkness, horizontal curves, and longitudinal slopes
is critical, and even during daylight hours, horizontal curves can pose a significant risk for
severe PU crashes.
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5. Conclusions

PU crashes involve collisions between more than two vehicles and are regarded as dan-
gerous and costly traffic incidents, given their high rates of fatalities and injuries, substantial
infrastructure damage, involvement of multiple vehicles, and intricate legal ramifications.
Given the superiority of real-time traffic over aggregated traffic variables at the time of
crash occurrence and the impact of driving on environmental and roadway conditions, the
analysis and modeling of PU crashes focuses on real-time traffic and environmental param-
eters. Numerous studies have investigated the impact of congestion on safety. However,
the results of many of these studies have been qualitative and inconsistent, which can lead
to confusion among transport planners and safety policymakers regarding the risky values
of congestion. Moreover, while the safety risks associated with heavy vehicles in traffic
combinations and their unsafe interactions with other vehicles are well recognized, the
impact of their presence on crash severity has received less attention. Therefore, this study
aimed to shed further light on the impact of these variables on PU crash severity, including
the use of TV/C as a congestion indicator, HVV/TV, and environmental variables and
their interactions. In this study, six ML models were implemented and their performance
was compared, with the CatBoost model being selected as the best model. The SHAP
method was employed to interpret the results obtained from the CatBoost model, and the
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modeling results of PU crash severity were analyzed to interpret critical risk factors and
their interactions. The plots provide information not only on the direction and magnitude
of each variable’s impact but also on their criticality with respect to severe crashes.

Through modeling and interpretation of the results, it was found that road geometry,
no. of vehicles involved, avg.speed, TV/C, HVV/TV, no. of heavy vehicles involved, light
conditions, road surface conditions, land use, and no. of lanes have an impact on the PU
crash severity in order of importance. In general, high average speed, less congestion,
and a higher proportion of heavy vehicles in traffic are associated with risk of severe
PU crashes. Enforcing stricter speed limit regulations and imposing severe penalties for
speeding, while also promoting a culture of safe driving and obeying speed limits, can
lead to substantial safety improvements [92]. A relatively new technological approach that
is very effective in improving speed compliance and reducing crashes is point-to-point
(P2P) speed enforcement, also referred to as average speed enforcement or section speed
enforcement, which involves the calculation of the average speed over a section [93–96].
TV/C < 0.6 is associated with severe PU crashes, and its critical values are about 0.1
(higher vehicle speeds) and 0.45 (higher exposure). For HVV/TV ≥ 0.1, there is a risk
of F&IN PU crashes, and the interaction between TV/C ≈ 0.1, HVV/TV ≥ 0.25, and
nighttime darkness conditions lead to a high likelihood of severe PU crashes. For all
critical congestions (TV/C ≈ 0.1&0.45), average speeds above 90 km/h are associated with
severe PU crashes. Additionally, in conditions with a high percentage of heavy vehicles,
an increase in average speed is accompanied by higher SHAP values and a higher risk of
severe PU crashes.

The history of TV/C values for various sections of freeways is accessible, which
enables the identification of hours and days when TV/C values approach critical levels. By
managing traffic during these critical periods and implementing appropriate regulations,
traffic authorities can help prevent hazardous traffic conditions. For example, reducing
speed in non-congested conditions (TV/C ≈ 0.1) or increasing capacity on routes with
prolonged periods of critical traffic (TV/C ≈ 0.45) can help reduce the likelihood of severe
PU crashes. Innovative traffic control systems can also identify critical congestions using
the real-time information of detectors [97] and encourage drivers to drive more cautiously
through variable message signs. In this study, the SHAP results provide the impact of
HVV/TV, which can be used to identify critical traffic conditions for HVV/TV on routes
in the real world with online traffic volume data. Furthermore, short-term prediction of
truck traffic based on logistics activities [98] and bus traffic by employing a passenger-
oriented traffic control strategy [99] is possible. Such predictions can help anticipate critical
conditions related to the prevalence of heavy vehicles in traffic and aid in their management.
Allocating alternative routes for large trucks and buses or managing the timing and stops
of these vehicles to avoid critical traffic conditions can decrease the probability of severe
PU crashes.

PU crashes in horizontal curves are associated with severe crashes, and when hori-
zontal curves are combined with longitudinal slopes, the likelihood of severe PU crashes
increases. Installing chevrons and edge line rumble strips reduces the occurrence of pri-
mary crashes that can lead to subsequent PU crashes [100]. Additionally, the interaction
between horizontal curves and high average speeds leads to a likelihood of severe PU
crashes. Improving friction [101] and implementing advisory speed limits at curve loca-
tions, particularly in sections with high longitudinal grades, can improve safety. Severe PU
crashes are more likely to occur at night, and this is often due to reduced visibility during
nighttime conditions. The critical condition of PU crash severity involves the interaction
between horizontal curves and nighttime darkness. Improving the lighting conditions
of the roadway and enhancing the quality and visibility of road markings and signs are
effective measures for increasing safety [90].

Examining crash characteristic variables can shed light on post-crash conditions, but
understanding how they impact crash severity can inform the development of appropriate
safety policies. According to the study results, an increase in the number of heavy vehicles
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involved increases the probability of severe PU crashes. In PU crashes, it is possible for
vehicles to experience multiple impacts and strikes, and secondary impacts may result
in severe collisions, especially from heavy vehicles. As a result, it is vital to ensure that
vehicles are protected against secondary impacts and that occupants are safeguarded
following multiple impacts and vehicle deformations. It is recommended that modern
material technologies are utilized in vehicle chassis structures to prevent accumulated
plastic deformation resulting from multiple impacts, which can cause harm to occupants in
PU crashes [102].

6. Limitations and Future Direction

While this research utilizes crash and traffic data from Iran as a specific case study, the
results are shaped by the distinct characteristics of Iran’s freeway infrastructure, environ-
mental conditions, traffic regulations, and driving behaviors. It is important to exercise
caution when extrapolating these findings to diverse settings. Nevertheless, the methodol-
ogy employed in this study can be modified for tackling various challenges. Furthermore,
the study relied on traffic variables obtained from loop detectors on Iran’s suburban free-
ways, recognizing the potential for inaccuracies due to the distances between loop detectors
and crash locations. Moreover, while we attempted to address the capacity of each segment,
which might be affected by weather, according to the specific weather conditions, it is
assumed that the capacity does not change significantly due to other temporal elements,
which may result in limited inaccuracies.

Finally, we acknowledge the importance of exploring more comprehensive databases,
particularly utilizing high-resolution real-time traffic data in forthcoming studies. This
approach could enable the exploration of critical conditions through crash modeling and the
derivation of other real-time traffic measures using fundamental diagrams. Furthermore, it
would be valuable to examine the effects of time-related variables, including fluctuations in
climate, alterations in road infrastructure, and advancements in vehicle safety technology
throughout the research duration. Additionally, integrating qualitative inquiries, such as
surveys or interviews with drivers to identify potential hazards leading to severe crashes,
could provide deep insights into human and behavioral factors.
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