
safety

Article

Improving Airline Pilots’ Visual Scanning and Manual Flight
Performance through Training on Skilled Eye Gaze Strategies

Olivier Lefrançois 1,*, Nadine Matton 2 and Mickaël Causse 1,*

����������
�������

Citation: Lefrançois, O.; Matton, N.;

Causse, M. Improving Airline Pilots’

Visual Scanning and Manual Flight

Performance through Training on

Skilled Eye Gaze Strategies. Safety

2021, 7, 70. https://doi.org/

10.3390/safety7040070

Academic Editor: Tom Brijs

Received: 28 April 2021

Accepted: 8 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ISAE-SUPAERO, Université de Toulouse, 31400 Toulouse, France
2 CLLE, Université de Toulouse, CNRS, UT2J & ENAC, 31400 Toulouse, France; nadine.matton@enac.fr
* Correspondence: olivier.lefrancois.60@gmail.com (O.L.); mickael.causse@isae-supaero.fr (M.C.)

Abstract: Poor cockpit monitoring has been identified as an important contributor to aviation
accidents. Improving pilots’ monitoring strategies could therefore help to enhance flight safety.
During two different sessions, we analyzed the flight performance and eye movements of professional
airline pilots in a full-flight simulator. In a pre-training session, 20 pilots performed a manual
approach scenario as pilot flying (PFs) and were classified into three groups according to their flight
performance: unstabilized, standard, and most accurate. The unstabilized pilots either under- or
over-focused various instruments. Their number of visual scanning patterns was lower than those of
pilots who managed to stabilize their approach. The most accurate pilots showed a higher perceptual
efficiency with shorter fixation times and more fixations on important primary flight instruments.
Approximately 10 months later, fourteen pilots returned for a post-training session. They received a
short training program and performed a similar manual approach as during the pre-training session.
Seven of them, the experimental group, received individual feedback on their own performance and
visual behavior (i.e., during the pre-training session) and a variety of data obtained from the most
accurate pilots, including an eye-tracking video showing efficient visual scanning strategies from one
of the most accurate pilots. The other seven, the control group, received general guidelines on cockpit
monitoring. During the post-training session, the experimental group had better flight performance
(compared to the control group), and its visual scanning strategies became more similar to those of
the most accurate pilots. In summary, our results suggest that cockpit monitoring underlies manual
flight performance and that it can be improved using a training program based mainly on exposure
to eye movement examples from highly accurate pilots.

Keywords: manual flight performance; eye tracking; visual scanning patterns; pilot training; cockpit
monitoring; eye movement modeling examples (EMME)

1. Introduction

In the cockpit, visual scanning is a necessary choreography that aims at monitoring
the state of the different systems and maneuvering the aircraft toward the desired attitudes.
The instruments (e.g., attitude indicator, speed, altimeter, and engine parameters) and the
external environment (by clear weather) must be frequently monitored in order to build
and maintain up-to-date situational awareness. Performing efficient visual scanning is
complex, and the issue of improper monitoring in the cockpit is not new: it was identified
by the National Transportation Safety Board (NTSB) as being involved in 84% of major
accidents in the United States from 1978 to 1990 [1]. It has been shown that pilots are
sometimes surprisingly unaware of basic flight indicators [2]. A study from the “Loss
of Control Action Group” showed that poor monitoring was a contributing factor in at
least 10 crashes, resulting in a total of 651 casualties [3]. In fact, since the NTSB study
period (1978–1990), 17 new accidents involving monitoring problems were identified in
2015 [4]. These findings suggest that improving onboard surveillance will require further
effort in the future, in particular through the development of both initial and recurrent
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training programs. The importance of appropriate monitoring led to “the conversion of
the term pilot not flying (PNF) to pilot monitoring (PM)”; see [5]. Major aviation safety
institutions, such as the IATA in 2016, have issued recommendations to enhance pilots’
cockpit monitoring and awareness [6,7]. Despite this subdivision of roles in the cockpit,
both pilot flying (PF) and PM perform the monitoring task, and the literature shows that
PF and PM demonstrate distinct visual scanning during a flight [8,9].

In 2013, the Federal Aviation Administration (FAA) required airlines to incorporate
an explicit training program to improve monitoring skills [6], and the Bureau Enquêtes-
Accidents (BEA, the French accident investigation agency) has recommended studying
pilots’ monitoring with eye tracking. In particular in the PARG study [10], the BEA
encourages the use of eye-tracker systems to finely analyze crews’ visual scanning strategies.
Interestingly, during the PARG study [10], an extensive survey conducted on 931 pilots
showed that the majority are in need of a better description of what “standard” visual
scanning in the cockpit should be. In this sense, another recent survey [11] revealed
that 75% of pilots reported that the publication of information on the required visual
scanning patterns for the different flight phases could be helpful toward enhancing their
monitoring skills. In line with the FAA recommendations issued in 2013, advocating
the implementation of cockpit monitoring training programs and taking note of the BEA
recommendations on the use of eye tracking to better understand pilots’ visual scanning,
we assume that a major axis of improvement of monitoring skills relies on the introduction
of eye tracking in the pilots’ training program.

1.1. Manual Flight Control and Visual Scanning Strategies

Manual control of aircraft has been described as a psycho-motor and highly skilled
task requiring continuous adjustments, mainly through adequate fine-motor inputs, by
the human pilot to a control yoke or a sidestick [12]. The pilot must continuously control
and monitor cross-coupled flight parameters (e.g., speed, altitude, deviations from the
desired flight path, etc.). The sensing of flight data, its interpretation and processing, and
the subsequent physical adjustments of the flight control to achieve the desired flight path
have been described as a “closed-loop” control task. The pilot receives feedback from
various sources (e.g., motion of the aircraft and cockpit instruments) via biological sensory
systems and complex brain mechanisms that are engaged to integrate and interpret these
different cues. If needed, motor actions are performed to reach the desired orientation
of the aircraft [13]. Pilots who are manually flying are continuously performing this
closed-loop processing [14]. According to [15], pilots develop a mental model that acts
as a mechanism of mental projection, enabling the anticipatory control of the system.
These mental models are simplifications of the actual system (heuristic) that allows a
pilot to quickly and accurately anticipate how the aircraft will behave. Manual control is
subject to erosion due to a lack of practice, related to less manual flying and more use of
automation, in particular in long-haul pilots that have fewer chances to actually manipulate
the controls [16].

Effective cockpit monitoring is a key element of manual flight control. It helps to
keep pilots in the loop by continuously updating their situational awareness about the
current state of the aircraft [17]. Cockpit monitoring can be described as the methodical and
meaningful visual scanning of instruments, necessary to control the aircraft trajectory or to
make appropriate changes in aircraft attitude. Effective cockpit monitoring enables pilots
to quickly correct potential flight path deviations. During their ab initio training, pilots
learn to fly in Instrument Meteorological Conditions (IMC), i.e., poor visibility conditions
that require flying the aircraft by relying on cockpit instruments only. When flying in IMC,
the manual control of the aircraft largely relies on visual monitoring performed by the PF
in the cockpit. Bellenkes, Wickens and Kramer [18], and Katoh [19] showed that the visual
scanning patterns are clearly specific to each flight phase.
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1.2. Visual Scanning Strategies and Flight Experience

Visual scanning strategies (frequency and duration of fixations, visual scanning pat-
terns, etc.) are greatly influenced by pilots’ expertise, e.g., [17–20]. Gegenfurtner, Lehtinen,
and Säljö [21] conducted a review of eye-tracking research in various fields such as ra-
diology, driving, sport, and chess. They highlighted that, compared to less experienced
individuals, experts generally demonstrate shorter fixation times during their task. In the
context of surgery [22], the expert surgeons showed an efficient “target-oriented” visual
behavior. More specifically, they often maintained their gaze on the target (abdominal
area) while manipulating the tool, whereas novices were more varied in their behaviors
and tended to track the movement of the tool until it reached the target. Several studies
in the aeronautical domain showed that pilots’ visual scanning strategies also change
with the level of experience [23–25]. Interestingly, according to Bellenkes et al. [18], the
gaze duration of experts is shorter, and the fixations on instruments are more frequent.
Kasarskis, Stehwien, and Hickox [26] also noticed that expert pilots perform more fixations
with shorter dwell times than novices and have more structured visual scanning patterns
than novices. Their more advanced visual scanning strategies were associated with a higher
landing performance.

During a navigation scenario in a helicopter simulator, Sullivan, Yang, Day, and
Kennedy [27] highlighted that the overall median pilot fixation times were reduced by
28 ms every 1000 h of flight. They also found that the number of transitions between
the Areas Of Interest (AOI) (outside world and navigation chart) increased significantly
with experience. In their review on eye movements in medicine and chess, Reingold
and Sheridan [28] labeled this greater perceptual effectiveness of experts as the “superior
perceptual encoding of domain related patterns”. This capacity of the experienced eye to
process information ‘at a glance’ is fascinating, but one might assume that discriminating
different fixation times among highly experienced airline pilots is certainly difficult. Thus,
the determination of what areas are relevant for experienced pilots probably provides more
useful information. Gegenfurtner et al. [21] have shown that experts are more focused on
relevant regions while spending less time on them. This visual “information reduction”
strategy [29] helps to optimize the processing of visual information by separating relevant
and irrelevant information, which has also been found in other aviation-related studies [18].
Schriver, Morrow, Wickens, and Talleur’s [30] study also supports the idea that pilots’ ocular
behavior is strongly impacted by experience and practice. They compared the attention
distribution among expert and novice pilots during a problem-solving task performed in a
flight simulator. Faster decisions in experts were associated with more relevant fixations,
for example in the direction of failures when they occurred. Van Meeuwen et al. [31]
compared the visual scanning strategies of air traffic controllers with different levels of
expertise and showed that experts had more efficient scanning strategies. Novices focused
more on the airspace in which planes were required to fly whereas experts considered
this area irrelevant because they rapidly identified the exact point of conflict between the
two planes.

Given the natural improvement of the visual scanning strategies with increased
experience, it could be interesting to develop a training program based on the visualization
of eye fixations from highly accurate pilots. In this sense, the works from Jarodzka, Scheiter,
Gerjets, and Van Gog [32] and Wolff, Jarodzka, Van den Bogert, and Boshuizen [33] suggest
that the modeling of perceptual processes from experts is interesting from a training point
of view. Eye-tracking recordings could be used as examples of good/bad visual scanning
strategies for monitoring the cockpit. Given the fact that experts prefer to gaze at relevant
information [31,34], show more efficient scan paths [31], or seem to fixate for less time on
information [27], such training could integrate examples that include these types of metrics.
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1.3. Showing Visual Scanning Strategies Examples from Highly Accurate Pilots to Improve
Monitoring Skills

Tracking the direction of the other’s gaze is a natural and innate ability to learn [35].
Studies have shown that we are highly sensitive to other people’s gaze [36]. Following
another’s gaze can guide attention toward a particular object in the environment. In this
sense, the expert’s eye can guide the learners’ attention toward relevant information or
the current goal. Van Meeuwen et al. [31] hypothesized that Eye Movement Modeling
Examples (EMME) could be used for the teaching of visual problem solving strategies in
complex visual domains. The visual attention of the learner is guided by the example, as in a
state of joint attention [37]. Joint attention is the phenomenon characterized as automatically
looking at an object someone else is looking at [38]. Based on that principle, but in a different
manner, eye-tracking video recordings of flight scenario’s with the superimposition of eye
fixations on the visual scene could be used as a material for individual feedback (viewing
their own visual scanning) and for example-based learning programs (viewing visual
scanning from highly accurate pilots). Combined with a summary of visual scanning
data (e.g., charts with the percentage of dwell times on the various instruments and
those from accurate pilots), less accurate pilots could compare their visual scanning to
those of more experienced/accurate ones and identify their visual scanning weakness.
The principle of training visual scanning was studied many years ago by Shapiro and
Raymond [39] in a video game context. Two groups of players learned visual scanning,
either efficiently (designed to reduce eye movements and optimize visual scanning) or
inefficiently (designed on the contrary to increase the number of eye movements). The
group that was subjected to efficient learning demonstrated better performance than the
group who received the inefficient training, minimized their eye movements, and optimized
their scanpaths. The group who received an inefficient training had the same performance
as an untrained control group. More recently, EMME for the training of novices has
been successfully applied to collaborative problem solving [40], reading [41], computer
programming [42], observation in medicine [43,44], inspection of visual scenes [45], surgical
procedures [46], or aircraft inspection tasks [47]. However, examples where EMME was
not superior to traditional training methods can also be seen. For example, in the study
by Van Gog et al. [48] using procedural puzzle problem solving, verbal explanations of
traditional instructions made EMME redundant in attention guiding. EMME seems to be
less efficient for procedural problem-solving skills but would probably be more useful
when information is transient, subtle, or highly dynamic and only available for a short
period of time, as EMME provides quick attention guidance [49]. In the US Air Force, F16
instructors used eye-tracking technology in real time to improve the awareness of the pilots
of their own visual scanning patterns [50]. Interestingly, 82% of the instructors reported
that this technology improved the efficiency of training in the flight simulator. In addition,
100% of the instructors believed that eye tracking could be used during initial training
to correct precociously inadequate visual scanning strategies. More recently, expert air
traffic controllers’ scanpaths have been used as a teaching method to enhance novices’
performance in a conflict detection task [51]. More precisely, novices in the treatment
group were exposed to experts’ scanpaths, overlaid on the radar screen during a conflict
detection task. Novices in this treatment group outperformed novices from two other
groups (“control” and “instruction only”). In addition, the scanpaths of the treatment
group tended to become more similar to those of the experts.

1.4. Objectives and Hypotheses

Manual flight performance is largely dependent on efficient cockpit monitoring. Thus,
developing a training program for pilots based on the visualization of both one’s own
eye movements and eye movements from highly accurate pilots could be an efficient
means to improve cockpit monitoring skills. We conducted two separate experimental
sessions in an Airbus A320 full-flight simulator, during which pilots performed different
approach scenarios with varying levels of automation. In the present study, we focused on
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a scenario where pilots performed an approach without automation, i.e., manually. The
experimental timeline of the two experimental sessions is presented in Figure 1 (only the
manual approach scenario considered in this paper is displayed).

Figure 1. Experimental timeline of the two experimental sessions.

During the first session (“pre-training session”), we examined the flight performance
and the visual scanning strategies of 20 airline pilots (10 Captains and 10 First Officers
forming ten professional flying crews) during the approach phase. There were two main
objectives in this first session. The first objective was to contrast PFs according to their
flight performance. On the basis of the performance (in particular vertical and lateral
deviations regarding the flight path), PFs were separated in three different performance
profiles: unstabilized pilots (who decided to go around because they did not manage to
stabilize their approach), standard pilots, and the most accurate pilots. Secondly, the ocular
behavior of these three performance profiles was examined, allowing the identification of
visual scanning strategies associated with a good flight performance. We assumed that PFs
with a lesser flight performance would demonstrate sub-optimal visual scanning strategies,
with possible under- or over- focalization on critical flight instruments.

During the second (“post-training”) session, 14 of the 20 initial pilots returned and
were divided in two distinct groups: the experimental group and the control group,
according to the type of training they received. The experimental group was submitted
to the training program that included a summary of the visual scanning data of the
most accurate pilots, as well as the eye-tracking video recordings showing the visual
scanning dynamics of one of the most accurate pilots of the first session. We assumed
that the visualization of this video after the presentation of the summary data would help
participants be more aware of the differences between their own visual behaviors (such
as over- or under-focus on some instruments) and those of an expert. They also received
personalized feedback on their own performance and visual scanning strategies (also in
the form of eye-tracking recordings). The control group received a generic training that
included guidelines on cockpit monitoring. Shortly after the training, both the experimental
group and the control group performed a similar flight scenario to the one in the pre-
training session. The main objective of this second session was to evaluate the impact of
each type of training on flight performance and visual scanning strategies.
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We had two hypotheses: we assumed that the experimental group would demonstrate
better performance and visual scanning strategies (similar or close to the most accurate
pilots) than the control group; and we also assumed that only the pilots from the exper-
imental group would demonstrate a progression (i.e., in comparison to the pre-training
session) in their performance and visual scanning strategies.

2. Method
2.1. Ethics Statement

This study was conducted according to the principles expressed in the Declaration of
Helsinki. All pilots were volunteers, not rewarded, and provided informed written consent
before participation. The experiment took place in the flight simulator dedicated to the pilots’
regular training and was approved by the Air France local committee as well as by the CERNI
(Ethics Committee of the University of Toulouse, France, IRB00011835-2020-03-03-210).

2.2. Participants of the Pre-Training Session

Ten crews, consisting of twenty professional airline pilots (10 Captains and 10 First
Officers) were recruited to perform the pre-training session. They all held an Airbus A320
type rating. Due to the possible impact of the fleet type on manual flight skills [16], only
pilots performing medium-haul flights at the time of the experiment were selected. All
participants were male, with a mean age of 42.3 years (SD = 3.8 years) for Captains and of
29.2 years (SD = 2.7 years) for First Officers, and all had a minimum of 1000 flight h (FH).
Respectively, they had an average of 11,500 FH (SD = 1300 FH) and 3500 FH (SD = 340 FH)
total. Both Captains and First Officers had a relatively important flying experience, allowing
us to average their results without introducing too much intersubject variability in the
sample (i.e., with very inexperienced First Officers). Participants were randomly assigned
to compose each of the ten crews. They were briefed on the flight scenario (airport, aircraft
weight and configuration, flight plan, etc.), but they were not introduced to the exact
purpose of the research.

2.3. Participants of the Post-Training Session

Approximately ten months after the pre-training session, 7 of the 10 original crews
returned (7 Captains and 7 First Officers) to perform the post-training session. They were
all still qualified for Airbus A320. This sample had a mean age of 44.7 years (SD = 4.1 years)
for Captains and of 31.3 years (SD = 2.7 years) for First Officers. They had an average
of 12,273 FH (SD = 1189 FH) and 4189 FH (SD = 378 FH), respectively. They were not
rewarded for their participation. Pilots were pseudo-randomly assigned to two distinct
groups: the experimental group and the control group, according to the type of training
they received at the beginning of the post-training session. Moreover, participants were
pseudo-randomly assigned to each of the 7 crews (different crews than in the first study).
In order to balance these two groups, they each included the 2 most accurate pilots (indeed,
pilots were categorized as a function of their flight performance during the pre-training
session). In addition, no crew was composed of the two most accurate pilots or two
unstabilized pilots. Moreover, the performance of the participants constituting these two
groups were not initially different during the pre-training session: non-parametric Mann–
Whitney tests revealed no significant difference neither for the vertical deviation (W = 14.5,
p = 1.0) nor for the lateral deviation (W = 11.5, p = 0.58). They were briefed on the flight
scenario (airport, aircraft weight and configuration, flight plan, etc.), but they were not
introduced to the exact purpose of the research.

2.4. Scenarios and Flight Performance Measures
2.4.1. Scenario and Flight Performance Measures of the Pre-Training Session

All pilots performed the same flight scenario twice, once as PF and once as PM, in
a random order. In this manner, all pilots performed the flight as PF (flight performance
analysis concerned the PFs). The flight scenario started with a take-off from Toulouse
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runway (32R) and finished with a landing on the same runway. After take-off, flight
crews were instructed to climb to 5000 ft, turn left, and intercept the ILS. Then, they were
cleared for the approach, performed with standard visibility conditions (runway visual
range of 550 m) and with a significant crosswind (15 knots). Upon reaching the altitude of
5000 ft, automation was disconnected and reverted to full manual (without flight directors,
without autopilot, and without autothrust). This low automation level strongly increased
task complexity and instrument visual scanning effort [52]. Flight crews were required
to fly in compliance with the flight crew operating manual and operator requirements
regarding stabilization criteria. If stabilization was not met during the approach (more than
one dot of deviation on the lateral and vertical deviations scales), pilots would perform a
go-around. Feedback on the position of the aircraft during the landing was also provided
by a Precision Approach Path Indicator (PAPI) on the left side of the runway. In this paper,
analyses were focused on the approach phase, from 2500 to 250 ft. Pilots also performed
four other flight scenarios with varying automation levels. These data will be presented in
a subsequent paper.

Experiments were conducted in a full-flight Airbus 320 simulator (Thomson) provided
by Air France group. This simulator is used for the regular training of professional flight
crews. Four flight parameters were recorded in order to characterize flight performance
during the approach phase. These flight parameters were provided by the flight simulator
at the end of the flight scenario and were not available if the crew interrupted the approach.
Absolute lateral and vertical aircraft deviations were used to determine the PF’s perfor-
mance profiles. This information is provided by the instrument landing system (ILS), a
ground instrument that indicates the aircrafts’ spatial position to the pilots. In the cockpit,
the spatial position of the aircraft is displayed via two scales, each graduated with two
dots on each side of the center of the scale (the “localizer” for the lateral deviation and
the “glide slope” for the vertical deviation). On each scale, a diamond moves to indicate
the deviation. When the diamond is exactly at the center of the scale, the deviation is
null. Speed (target value = 138 knots, stabilization range between −5 and +10 knots),
height above the runway threshold at landing (target value = 50 ft, stabilization range
between 30 and 70 ft), and the touchdown distance (stabilization range = between 300 and
600 m after the runaway threshold) were also recorded to confirm the performance profile
classification. It must be noted that PF performance might also depend on PM behavior;
for example, the ability of the latter to detect and rapidly announce (callout) any path
deviations can have an impact on the PF actions. We did not control for this effect, but
we assume that it had a relatively low impact on the results as the PF should detect any
deviations before any announcement from the PM. In fact, during our experiment, such
announcements from the PM only occurred just previous to the initiation of go-around
maneuvers (flight performance for this situation was not analyzed).

2.4.2. Scenario and Flight Performance Measures of the Post-Training Session

Experiments were conducted in the same full-flight Airbus 320 simulator (Thomson).
Identical flight parameters as the pre-training session were recorded. A different airport
(but with similar installation and weather conditions, except an opposite wind direction
to avoid familiarization) was chosen to avoid any training effect related to the first pre-
training session. All pilots performed the same flight twice, once as PF and once as PM, in
a random order (as a reminder, flight performance analysis concerned the PFs). The flight
scenario started with a take-off from Bordeaux runway 23 and finished by a landing on
the same runway. Stabilization criteria were very close to the pre-training session: speed
target value = 143 knots (stabilization range between −5 and +10 knots), height above the
runway threshold at landing target value = 50 ft (stabilization range between 30 and 70 ft),
and touchdown distance stabilization range = between 300 and 600 m after the runaway
threshold. Again, analyses were focused on the approach phase, from 2500 to 250 ft. Pilots
also performed four other flight scenarios with varying automation levels. These data will
be presented in a subsequent paper.
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2.5. Eye-Tracking Measurements
2.5.1. Pre-Training Session

Two 50 Hz Pertech head-mounted eye trackers (0.25◦ of accuracy) were used to record
the eye movements of the two pilots for the duration of the entire flight scenario, from
thrust application during the take-off up until the roll-out after landing (when aircraft
speed diminishes to below 50 knots). The two eye trackers’ clocks were synchronized.
An eight-point calibration was performed before the first flight scenario. The quality of
the calibration was checked at the very start of the experiment and between each flight
scenario by asking the participants to look at a series of instruments while the experimenter
visually checked that this corresponded well with the focus of attention displayed by
the system. Eye-tracking data were collected via the EyeTechpilot software from Pertech.
Eye-tracking videos (the visual scene with the point of fixation in superimposition) were
also recorded since it was to be an essential part of the training material for the subsequent
post-training session. The post-processing head-motion correction was conducted via the
EyeTechMotion software, and eye movement analysis was conducted with EyeTechLab
software, both provided by Pertech. Head-motion correction eliminates head-motion
from the eye movement data, allowing automatic world-referenced analysis. Estimated
horizontal and vertical head movements are subtracted from corresponding pupil positions.
This step is performed by EyeTechMotion via an image processing of the eye-tracking
video, facilitated by small infrared LEDs attached to the cockpit. Each participant’s head
motion correction was successful for at least 98% of the data points. We visually checked
the results of the head motion correction rigorously to ensure that no abnormal shift of the
fixation point had been introduced during this step. Fixations were identified using the
EyeTechLab built-in algorithm. The detection threshold that defined a fixation was set to
100 ms. Nine AOI were used (see Figure 2), and they corresponded to (1) Speed Indicator, (2)
Attitude Indicator (AI), (3) Heading/Lateral Deviation scales (HLD), (4) Altitude/Vertical
Speed/Vertical Deviation scales (AVSVD), (5) the Flight Mode Annunciator (FMA), (6) the
Navigation Display (ND), (7) the Electronic Centralized Aircraft Monitor system (ECAM,
including engine thrust display N1), (8) the System Display system (SD), and (9) the outside
world (windows). For information, the primary flight display that integrates AOIs #1 to #6,
is an 18 × 18 cm square, representing a visual angle of 10.34◦ at a typical viewing distance
of 95 cm. Due to limitations in the eye-tracker accuracy, AOIs #3 and #4 were composed
of two and three different instruments, respectively (the instruments are too close to each
other to be distinguished by the eye tracker with a sufficient level of confidence).

We studied PFs’ visual behavior from 2500 to 250 ft (250 ft was the average altitude of
go-around for the unstabilized pilots, thus data after this threshold would not have been
comparable for these pilots since they aborted the approach). The average duration of the
considered period was 107.72 s. This period of the approach is particularly interesting
because the lower the altitude, the more accurately an aircraft must be flown. This period
of the flight requires rigorous manual control and instrument monitoring. We analyzed PFs’
visual scanning patterns using a homemade algorithm coded with the MATLAB software
(MathWorks); the script is available in Supplementary Material. Below this altitude, the
approach phase is completed, and visual flare is initiated. A visual scanning pattern was
defined as a set of at least one transition from an AOI to another AOI. We considered
the visual scanning pattern “over” when the same AOI was fixated more than two times
consecutively. At first, the algorithm computes the smallest scanning patterns (number of
transitions = 1, e.g., A–B). After each iteration, the algorithm searches for a higher number
of transitions (n + 1) (e.g., A–B–A). We did not distinguish different visual scanning patterns
when the same set of AOIs was gazed at in an opposite order. Indeed, the variation of the
primary flight parameters (at the core of the manual piloting) are highly cross-coupled
(i.e., variation of the attitude impacts the speed and reciprocally). Thus, a glance sequence
“A–B” was considered as equivalent to “B–A”.
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Figure 2. Illustration of the nine different Areas Of Interests (AOIs), from the First Officer’s point of view. First officer’s
(right seat) AOIs are represented in green and the Captain’s (left seat) AOIs are represented in red. Shared AOIs (by both
the First Officer and the Captain) are represented in blue.

For example, the following sequence “A–B–A–B–B–A–C” contains 4 different visual
scanning patterns for a total of 8 AOI transitions:

• “A–B”: 4 occurrences (including “B–A” transitions);
• “A–C”: 1 occurrence;
• “A–B–A”: 2 occurrences (including “B–A–B”);
• “B–A–C”: 1 occurrence

In the previous example, a transition from B to B appears. This can happen when a
pilot turns his gaze to an AOI (B), then gazes at an undefined location, and then comes
back to the same AOI (B) again: in this case, the algorithm “concatenated” the two defined
AOIs (i.e., the algorithm does not take the undefined location into account).

The use of both dwell times and visual scanning patterns gave a more comprehen-
sive understanding of the visual scanning strategies. Our analyses were focused on the
PF: a comparison between PF and PM visual scanning strategies will be presented in a
subsequent paper.

2.5.2. Post-Training Session

Two 50 Hz Tobii Pro Glasses 2 head-mounted eye trackers (0.50◦ of accuracy) were
used to record eye movements of the two pilots. The two eye trackers’ clocks were
synchronized. This different eye-tracking system was used during the second session
because Pro Glasses 2 allows for a one-point calibration, which was considered to be more
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convenient for the pilots. The difference in accuracy between the two systems might have
an impact when AOIs are very close together, but we did not consider these particular
instruments separately (e.g., heading and lateral deviation scales were merged). The one-
point calibration was performed before the first flight scenario. The same precautions were
taken as during the pre-training session to ensure the highest quality of data collection
as possible. Data collection and post-processing were conducted via the Tobii Pro Lab
software. Head-motion correction was performed using this software and did not require
any infrared markers with this eye tracker. Each participant’s head-motion correction
was successful for at least 98% of the data points. We visually checked the results of the
head-motion correction rigorously to ensure that no abnormal shift of the fixation point
was introduced during this step. Fixations were identified using the Tobii Pro Lab built-in
algorithm. The detection threshold that defined a fixation was set to 100 ms. The same
metrics were analyzed as during the pre-training session (dwell times and visual scanning
patterns) from 2500 to 250 ft (average duration = 106.02 s), and the same cockpit AOIs were
defined. Again, our analyses were focused on the PF. A comparison between PF and PM
visual scanning strategies will be presented in a subsequent paper.

2.6. Training Program

The training was conducted just before the post-training simulator session (see Figure 1
for the experimental timeline). It was focused on the visual monitoring in the cockpit (the
content depended on the pilots’ group as detailed below) and lasted approximately 10 min.
It was not part of the recurrent training given by any airline company.

2.6.1. The Experimental Group

Each pilot from the experimental group first received individual feedback using a
slideshow on their pre-training session (when they previously acted as PF during the
approach), including:

• A bar plot with their flight performance during the approach (lateral and vertical
deviations, speed, height above the runway threshold, and touchdown distance), see
Figure S1;

• A first-person point of view, eye-tracking video (the raw video generated by the
eye-tracking system, with a moving circle showing the current fixation point) showing
their own visual scanning performing the approach (duration 2.5 min—between
2500 ft and touchdown), see Figure S2;

• A bar plot showing the percentages of their own dwell times on each of the 9 cockpit
AOIs during the approach, see Figure S3.

Each pilot also viewed a variety of data obtained from the most accurate pilots (from
the pre-training session), including:

• On the previously mentioned bar plot, the percentage of dwell times on each of the
9 cockpit AOIs of the most accurate pilots and the efficient gaze allocation interval,
see Figure S3;

• A schematic representation of the four efficient visual scanning patterns (see Figure 3
and Figure S4) performed by the most accurate pilots during the approach (under the
form of arrows between two instruments).

• A first-person point-of-view eye-tracking video, showing eye fixations during the
approach from one of the most accurate pilots (one who did not belong to the ex-
perimental group to avoid showing one of the participants their own visual circuit)
performing the approach, see Figure 4 (top) and Figure S5.

All information that was presented on the slideshow presentation was self-explanatory.
No further verbal content was delivered. To increase the involvement of the pilots in the
training program, they were instructed that they would be tested on the characteristics of
the efficient gaze allocation and visual scanning patterns presented in the program. We
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did not analyze the results of this test. This training program lasted approximately 10 min,
including the test.

Figure 3. Representation of the four efficient visual scanning patterns, as displayed to the experimental group. These visual
scanning patterns were related to (as presented Table 1) the speed (visual scanning pattern (A)), the vertical deviation (visual
scanning pattern (B)), the lateral deviation (visual scanning pattern (C)), and the general attitude of the aircraft including
engine (visual scanning pattern (D)). Patterns represented in solid lines (A–C) are more frequently performed than the pattern
represented with dashed lines (D).

2.6.2. The Control Group

Each pilot from the non-experimental group received a general briefing, including:

• A generic video about aircraft attitude changes maneuvers and associated visual scanning
strategies used during pilots’ initial training (duration 3.5 min), see Figure S6;

• A first-person point-of-view video of an airline pilot who did not participate in the
experiment, performing a standard approach without any indication of the gaze
fixation point (same point of view as the eye-tracking video, made using a head-
mounted GoPro camera, duration 2.5 min), see Figure 4 (bottom) and Figure S7.

The training provided to the control group aimed at providing knowledge about
cockpit monitoring, just as in the experimental group but without using any individual
feedback and eye-tracking material. At the beginning of the session, pilots in the control
group were also instructed that they would be tested. We did not analyze the results of this
test. This training program also lasted approximately 10 min, including the test.
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Figure 4. Top picture: Illustration of a first-person point-of-view eye-tracking video recording, showing eye fixations during
the approach (the red circle indicated by an arrow in the center of the attitude indicator) from one of the most accurate pilots
(administered to the experimental group). Bottom picture: Illustration of the first-person point-of-view video during approach
(recorded with a head-mounted GoPro camera) without any indication of eye fixation (administered to the control group).

3. Results
3.1. Results of the Pre-Training Session

Since the pre-training session included two sub-samples with too few pilots to perform
inferential statistics (i.e., the four most accurate pilots and five unstabilized pilots), we
report the descriptive analyses only. Individual eye-tracking data of the pre-training session
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are presented in Supplementary Material in Table S1 (percentage of dwell times on each
AOI for all PFs), Table S2 (total dwell times in seconds on each AOI for all PFs), and Table S3
(percentage of the four efficient visual scanning patterns for all PFs).

3.1.1. Flight Performance and Categorization of the Performance Profiles

Fifteen out of the twenty PFs (75%) successfully performed a stabilized approach.
The five others (25%) decided to go around. Based on the lateral and vertical trajectory
deviations (as measured with the localizer and the glide slope information), we separated
the pilots into three performance profiles. Classically, a stabilized approach (in IMC
condition) requires maintaining a lateral and a vertical deviation below one dot. Fifteen
pilots (PFs) flew the approach with an average of less than one dot of deviation; see Figure 5.
Among them, considering both lateral and vertical deviations (both parameters’ deviation
averaged), four pilots maintained average lateral and vertical deviations close (≤) to 0.1 dot
(SD = 0.1). These four pilots were labeled the most accurate pilots; the 11 other pilots who
also performed a stabilized approach had an average lateral and vertical deviations of
approximately 0.6 dot (SD = 0.3). These pilots were labeled standard pilots. Finally, the
five pilots who did not manage to stabilize their approach and decided to go around (at
approximately 250 ft) were labeled unstabilized pilots (no landing performance was available
for these unstabilized pilots since they aborted the landing and initiated a go-around).

Figure 5. Flight performance during the approach (pre-training session). Absolute lateral and vertical deviations (in
dots, the arbitrary unit of the flight simulator; lower is better) for the 15 pilots (most accurate and standard pilots) who
successfully performed a stabilized approach (dots represent individual data). The most accurate pilots had particularly low
trajectory deviations (average lateral and vertical deviations ≤ to 0.1 dot). Some of them had a vertical of lateral deviation
of 0 since they were below the error detection threshold of the flight simulator. The 5 unstabilized pilots are not represented
since they aborted the landing. Each average flight path deviation displayed is in the range of accepted limitations, as it was
equal or less than 1 dot.
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We further analyzed flight performance with the three other flight parameters (i.e.,
speed, height above the runway threshold, and touchdown point). As expected, the other
performance metrics were also better for the most accurate pilots vs. standard pilots (see
Figure 6). The most accurate pilots had a mean speed above the threshold of 137 knots
(SD = 2.21), a mean height of 51.2 ft (SD = 2.1), and a mean landing distance of 418 m
(SD = 136) (the closer the landing distance is to 300 m, the better the performance); the
standard pilots had a mean speed above the threshold of 141 knots (SD = 4.19), a mean
height of 52.8 ft (SD = 10), and a mean landing distance of 437 m (SD = 387).

Figure 6. Additional flight performance during the approach (pre-training session). Mean speed, height, and landing
distance for the 15 pilots (accurate and standard pilots) who successfully performed a stabilized approach (dots represent
individual data). Solid lines indicate parameter tolerances for meeting stabilization and represent accepted limitations. The
dashed lines indicate target speed and height. The 5 unstabilized pilots are not represented since they aborted the landing.

3.1.2. Defining an Efficient Visual Scanning Strategy

Assuming that efficient visual scanning strategies are associated with adequate flight
performances during the approach/landing, we defined an efficient gaze allocation on
each instrument based on both dwell times and most frequent visual scanning patterns
by the most accurate pilots. More specifically, an efficient gaze allocation during the
approach/landing consisted of:

• Being within an interval spanning over the mean percentage of accurate pilot dwell
times on each instrument (AOI) plus/minus two standard deviations (outliers’ method),
labeled efficient dwell times interval. Percentages of dwell times outside this interval
were considered as sub-optimal visual scanning strategies;

• Performing comparable visual scanning patterns to the most accurate pilots, in par-
ticular, their four most frequent visual scanning patterns labeled as ‘efficient visual
scanning patterns’.
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3.1.3. Overall Average Dwell Time on AOIs and Pilots’ Performance Profile

Irrespective of the pilots’ performance profile, the overall average dwell time on the
AOIs (i.e., irrespective of the AOI, considering all cockpit instruments and windows) was
204 ms (SD = 5.97). Average dwell time was 167 ms (SD = 4.04) for the most accurate pilots,
186 ms (SD = 5.08) for the standard pilots, and 274 ms (SD = 2.92) for the unstabilized pilots
(see Figure 7).

Figure 7. Average dwell time in the AOI (s) for each pilots’ performance profile (pre-training session, dots represent
individual data).

3.1.4. Percentage of Dwell Times on the Instruments and Pilots’ Performance Profile

Apart from the windows, all pilots spent most of their time gazing at the attitude,
the HLD, and the AVSVD (see Figure 8). These instruments are the three main sources of
information needed to maintain a correct flight path. All five unstabilized pilots differed
from the efficient gaze allocation as they either under- or over-focused on various critical
AOIs (see Figure 8). The mean percentage of their dwell times on at least one of these
AOIs differed by more than two standard deviations compared to the most accurate pilots.
At the individual level, three pilots (pilots 7, 11, and 17) under-focused on the attitude
indicator (a striking example is pilot 7 who spent only 2.9% of the time on the attitude
indicator, see Table S2), one pilot over-focused on the HLD (pilot 11); one pilot (pilot 4)
over-focused on both the attitude indicator and the AVSVD; three pilots (pilots 4, 7, and 19)
under-focused on the HLD, and one pilot (pilot 19) over-focused on the attitude indicator.
The variability of their percentage of dwell times was two times larger in comparison to
the 15 others pilots that successfully stabilized their approach (i.e., SD = 26.3% vs. 3.77%
for the attitude indicator; SD = 7.8% vs. 2.5% for the HLD; and SD = 10.5% vs. 3.5% for the
AVSVD). Please see Table S1 for individual percentage of dwell times per AOI and Table S2
for individual total dwell times per AOI (in seconds).
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Figure 8. Percentage of dwell times on each cockpit AOI during the approach (pre-training session) for the most accurate
and the unstabilized pilots (dots represent individual data). Undefined = undefined locations plus loss of gaze: the value is
low, showing the high quality of the eye-tracking data and the fact that few fixations occurred outside the defined AOI.
AI = Attitude Indicator; HLD = Heading/Lateral Deviation scales; AVSVD = Altitude/Vertical Speed/Vertical Deviation
scales; FMA = Flight Mode Annunciator; ND = Navigation Display; ECAM = Electronic Centralized Aircraft Monitor system;
and SD = System Display system. The dashed error bars indicate the interval spanning over the mean percentage of dwell
times on each AOI of the most accurate pilots, plus/minus two standard deviations (labeled efficient dwell times interval).

3.1.5. Visual Scanning Patterns and Pilots’ Performance Profile

We examined the number of visual scanning patterns (i.e., the total produced, not the
number of different visual scanning patterns produced) as a function of the performance
profiles (Figure 9). The most accurate pilots produced a larger number of visual scanning
patterns. Conversely, the unstabilized pilots had the lower number of visual scanning
patterns. This result likely reflects the capacity of the most accurate pilots to monitor the
cockpit more efficiently (i.e., higher visual scanning frequency of the instruments), which
is consistent with their shorter average dwell times mentioned previously.

The four most frequent visual scanning patterns of the most accurate pilots, otherwise
called efficient visual scanning patterns, were structured around the attitude indicator (AI),
i.e., with at least one fixation via this critical instrument. These patterns were:

• Speed indicator—attitude indicator—speed indicator (visual scanning pattern A,
otherwise labeled speed, includes three AOIs);

• AVSVD—attitude indicator—AVSVD (visual scanning pattern B, otherwise labeled
vertical deviation, includes three AOIs);

• HLD—attitude indicator—HLD (visual scanning pattern C, otherwise labeled lateral
deviation, includes three AOIs);

• Speed indicator—attitude indicator—ECAM (displaying the engine thrust)—attitude
indicator—HLD—attitude indicator—AVSVD—attitude indicator (visual scanning
pattern D, otherwise labeled general attitude, includes eight AOIs).
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Figure 9. Number of visual scanning patterns according to the three pilot’s performance profiles
(dots represent individual data) during the approach (pre-training session). The most accurate pilots
produced a higher number of visual scanning patterns, followed by the standard pilots, and the
unstabilized pilots.

Compared to the most accurate pilots, the unstabilized pilots demonstrated a lower
proportion of each of the efficient visual scanning patterns and a higher proportion of the
other visual scanning patterns (see Table 1).

Table 1. Mean (SD) proportion of the four efficient visual scanning patterns according to the three pilot’s performance
profiles. See Table S3 in Supplementary Material for individual percentages.

Visual Scanning Patterns
Pilots’ Performance Profiles

Unstabilized Pilots Standard Pilots Most Accurate Pilots

Speed pattern (A) 4.9% (3.0%) 8.2% (2.6%) 13.2% (3.1%)

Vertical deviation pattern (B) 7.3% (5.3%) 8.6% (2.9%) 12.8% (2.3%)

Lateral deviation pattern (C) 4.7% (3.6%) 10.5% (3.0%) 13.4% (3.5%)

General attitude pattern (D) 3.0% (2.0%) 7.1% (2.5%) 13.7% (2.5%)

Other patterns 80.1% (5.9%) 66.2% (6.8%) 45.3% (6.3%)

3.2. Results of the Post-Training Session

Given the small sample size of each group and the non-normality of the majority of
the studied variables (Shapiro–Wilk normality test), we used a non-parametric inferential
statistical test. As we performed statistical tests using R software (R Core Team, 2014),
we reported the “W” statistic provided by this software for the Mann–Whitney U test.
Paired comparisons were analyzed using the Wilcoxon signed-rank test, and the Bonferroni
multiple comparison correction was applied. Individual eye-tracking data of the post-
training session are presented in Supplementary Material in Table S4 (percentage of dwell
times on each AOI for all PFs of the control group), Table S5 (total dwell times in seconds
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on each AOI for all PFs of the control group), Table S6 (percentage of dwell times on each
AOI for all PFs of the experimental group), Table S7 (total dwell times on each AOI for all
PFs of the experimental group), Table S8 (percentage of the four efficient visual scanning
patterns for all PFs of the control group), and Table S9 (percentage of the four efficient
visual scanning patterns for all PFs of the experimental group).

3.2.1. Flight Performance

Vertical deviations were significantly lower for the experimental group (M = 0.36 dot, SD
= 0.15) than for the control group (M = 0.60 dot, SD = 0.20), W = 36, p = 0.04; see Figure 10).
The difference was non-significant for the lateral deviation, W = 23.5, p = 0.77. For informa-
tion, 13 out of the 14 PFs (92.8%) successfully performed a stabilized approach. All seven
PFs from the experimental group successfully performed a stabilized approach. One PF out
of seven from the control group (14.2%) failed to stabilize the approach and decided to go
around. At an individual level, the two pilots in the experimental group who performed an
unstabilized approach during the pre-training session this time met the lateral and vertical
stabilization criteria (less than one dot of deviation).

Figure 10. Absolute lateral and vertical deviations in dots (lower is better) during the approach
(post-training session) for the experimental group and the control group (dots represent individual
data). The pilot who did not manage to stabilize the approach has not been included since he aborted
the landing.

Considering the three other flight performance parameters, the differences were non-
significant between the two groups (W = 28.0, p = 0.35; W = 28.5, p = 0.32; W = 30.0,
p = 0.23, for the speed at threshold, height at threshold, and landing distance, respectively).
However, a visual inspection of the dispersion of the individual data highlighted that pilots
of the experimental group had a speed at threshold closer to the target than the control
group (see Figure 11).
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Figure 11. Flight performance during the approach (post-training session). Mean speed, height, and landing distance
during landing for the control and experimental groups (dots represent individual data). Solid lines indicate parameter
tolerances to meet stabilization criteria. The dashed lines indicate target speed and height. The pilot who did not manage to
stabilize the approach has not been included since he aborted the landing.

3.2.2. Overall Average Dwell Times on AOIs and Training Group

Irrespective of group, the overall average dwell time on the AOIs (i.e., irrespective
of the AOI, considering all cockpit instruments and windows) was 197 ms (SD = 11.52)
during the post-training session. The average dwell times were 187 ms (SD = 5.61) for the
experimental group and 199 ms (SD = 14.8) for the control group. The difference was not
significant (p > 0.05).

3.2.3. Percentage of Dwell Times on the Instruments and Training Group

Apart from the windows, inside the cockpit, pilots spent (irrespective of group) most of
their time gazing at the following three AOIs: the attitude indicator, the vertical parameters
(AVSVD), and the lateral parameters (HLD). All paired comparisons with other AOIs
were significant, Wilcoxon p < 0.05, (Bonferroni corrections for multiple comparisons); see
Figure 12. At the group level, there was no significant difference between the experimental
group and the control group, W = 2366.5, p = 0.73.

At the individual level, in the experimental group, no pilot differed markedly from
the efficient gaze allocation interval (as a reminder: defined using an interval spanning
over the mean percentage of dwell times on each AOI of the most accurate pilots of the pre-
training session plus/minus two standard deviations). Interestingly in this group, the two
unstabilized pilots (i.e., unstabilized during the post-training session) demonstrated dwell
times within the efficient gaze allocation range. For example, pilot 11 who under-focused
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on the attitude indicator and the AVSVD during the pre-training session (10.6% and 1.9%,
respectively) considerably increased the dwell times on these AOIs after the training (34.9%
and 11.9%, respectively).

In the control group, the pilot (pilot 19) who performed a go-around due to excessive
vertical deviation markedly over-focused the attitude indicator and the AVSVD; see Table S4.
This pilot was considered an unstabilized pilot during the pre-training session.

Figure 12. Percentage of dwell times on each cockpit AOI for the control and experimental groups (dots represent individual
data). Undefined = undefined locations plus loss of gaze: the value is low, showing the high quality of the eye-tracking data
and the fact that few fixations occurred outside the defined AOI. The dashed error bars indicate the interval spanning over
the mean percentage of dwell times on each AOI for the accurate pilots plus/minus two standard deviations (as measured
during the pre-training session).

3.2.4. Visual Scanning Patterns and Training Group

The experimental group did not significantly increase their number of visual scanning
patterns more than the control group between the pre-training session and the post-training
session, W = 14.0, p = 0.21 (see Figure 13). However, at the individual level, it should be
noticed that the two pilots (pilots 7 and 11) in the experimental group who performed an
unstabilized approach during the pre-training session (i.e., they were unstabilized pilots)
increased their number of visual scanning patterns by 384% and 300%, respectively.

Concerning the specific efficient visual scanning patterns identified in the pre-training
session, the change rate of the frequency of the visual scanning pattern D (related to the
general attitude) between pre- and post-training sessions was significantly larger for the
experimental group than the control group, W = 8.0, p = 0.04 (see Figure 14). The change
rate for the other patterns did not differ significantly among groups (p > 0.05). At the
individual level, the two unstabilized pilots (pilots 7 and 11) who performed a go-around
during the pre-training session (and that managed to stabilize the approach during this
post-training session) showed a large increase in frequency for at least three efficient visual
scanning patterns. More precisely, pilot 7 increased the frequency of all efficient patterns
(160%, 484%, 169%, and 710% for patterns A, B, C, and D, respectively), and pilot 11
increased the frequency of three patterns (234%, 472%, and 249% for patterns A, C, and D,
respectively). Moreover, the frequency of the other visual scanning patterns decreased (i.e.,
possibly less relevant patterns) for these two pilots (62% and 81%).
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Figure 13. Evolution of the number of visual scanning patterns between the pre- and the post-training
session for the control and experimental groups (dots represent individual data).

Figure 14. Evolution of the four efficient visual scanning patterns (A–D) and the other visual scanning
patterns for the control and the experimental groups between pre- and post-training sessions.
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4. Discussion

Poor visual scanning is a major contributor to accidents [1]. One typical example
is the Turkish Airlines flight 1951 crash. During the approach, the aircraft was about
610 m (2000 ft) above ground level, when the left-hand (captain’s) radio altimeter suddenly
changed from 590 m (1950 ft) to −2.4 m (−8 ft). The autopilot “interpreted” this as the
aircraft being near to the ground and as a result, the autothrottle reduced thrust to idle
and increased the pitch of the aircraft to generate sufficient lift. The aircraft literally began
the landing flare at 150 m (500 ft). The Dutch Safety Board’s final report [53] mentioned
that both the reduction in speed and the excessively high pitch attitude of the aircraft were
not recognized until the approach to stall warning (stick shaker). The crew’s excessive
workload at this time, due to a late checklist procedure, was a worsening factor. The aircraft
eventually crashed in a field at a distance of approximately 1.5 km (0.8 nm) from the runway
threshold. Using the Causal model for Air Transport Safety (CATS), Ale et al. [54] modeled
the genesis of this accident. Their results indicated that the probability of a collision with
the ground in the case of insufficient monitoring when combined with instrument failure
increases by a factor of almost 600.

The main objective of the study was to investigate the links between manual flight
performance and visual scanning strategies and to evaluate the efficiency of a new training
program based on personalized feedback and eye-tracking material, designed to improve
professional pilots’ visual scanning strategies. Assuming that better flight performance
is associated with efficient visual scanning strategies, we used the dwell times and visual
scanning patterns of the most accurate pilots in a pre-training session as training material
for an experimental group during a subsequent post-training session. The experimental
group received both individual feedback on their pre-training session and feedback on how
the accurate pilots performed in the pre-training session (among other things, a first-person
point-of-view eye-tracking recording showing the ocular behavior of one of the accurate
pilots during the approach). To summarize the results, during the pre-training session,
the pilots with poor flight performance (unstabilized pilots) had average longer dwell
times, either under- or over-focused various cockpit instruments and displayed a markedly
lower number of visual scanning patterns than the most accurate pilots. During the post-
training session, the experimental group pilots had better flight performance (specifically
considering vertical deviation from recommended flight path) compared to the pilots from
a control group that had received generic training about cockpit monitoring. Moreover,
the visual scanning strategies of the pilots from the experimental group tend to resemble
those of the most accurate pilots; in particular, they performed one of the efficient visual
scanning patterns more frequently than the control group.

4.1. Flight Performances

All 20 pilots (from 10 crews) performed the manual approach scenario as PF. The
approach was performed in poor weather conditions and without any automation. Among
the 20 PFs, 15 successfully performed a stabilized approach and landed in accordance with
standard stabilization requirements. Within them, we identified the four most accurate
pilots via the analysis of the lateral and vertical path deviations during the final phase of
the approach (short final). The 11 others were labeled standard pilots. Five pilots failed
to stabilize the approach and performed a go-around, and they were labeled unstabilized
pilots. In fact, the decision to go around was a good one as minimum stabilization require-
ments were not achieved. Consequently, we did not observe procedure violation during
the experiment. It must be noted that dangerous continuation of an unstabilized approach
can sometimes be observed in an operational setting [55] and is a causal factor of 40% of
landing accidents [56].

After the training, landing performance (in particular vertical deviations) by the ex-
perimental group was significantly better compared to the control group. The performance
of the experimental group became more similar to the performance of the most accurate
pilots in the first session. Most likely, the training program of the training group had a
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beneficial impact on flight performance. Among the 14 pilots in the post-training session,
only one from the control group did not stabilize the approach and performed a go-around.
This pilot also performed a go-around during the pre-training session. Similar effects on
learning outcomes have also been observed when providing EMMEs for the processing of
illustrated texts [57].

4.2. Visual Scanning of the Instruments

In our current study, the overall average dwell time spent on the AOIs (all cockpit
instruments and windows) was 204 ms during the pre-training session and 197 ms during
the post-training session. This is compatible with the results from [27] found in helicopter
pilots. Indeed, in their study, the pilots performing helicopter overland navigation tasks
demonstrated median dwell durations of 231 ms. Interestingly, in the study of [27], median
dwell time decreases with expertise, while our results showed that the most accurate
pilots spend markedly less time on AOIs (167 ms) than standard (186 ms) and unstabilized
(274 ms) pilots. This faster information intake likely contributes to the capacity of the most
accurate pilots to produce more numerous visual scanning patterns, as they can extract
information more rapidly (“at a glance”) during fixations. This latter result supports the
idea that the most accurate pilots, such as experts, own greater perceptual effectiveness [28].

An overall analysis of the percentage of dwell times showed that the proportion of
time spent on each instrument was consistent with the literature [58–60]. In particular,
the percentage of time spent gazing at the attitude indicator was the most important. At
the individual level, it ranged between 19.7% and 32.2% (considering standard and most
accurate pilots) during the approach. This is in line with a recent review of eye-tracking
studies in aviation which stated that usually the most viewed instrument is the attitude
indicator [23]. Importantly, the ocular behavior of the five unstabilized pilots was more
variable than in the two other subgroups. Their percentage of dwell times differed by more
than two standard deviations from the mean of the most accurate pilots, at least for one
critical cockpit instrument. In particular, this was the case for the attitude indicator, the
lateral parameters (HLD), and the vertical parameters (AVSVD). As a consequence, the
unstabilized pilots under- or over-focused on these primary instruments to the detriment
of others. A noticeable example is pilot 7 who spent only 2.9% of the approach gazing on
the attitude indicator, see Table S2.

In addition, their number of visual scanning patterns was markedly lower than those
of the most accurate pilots. The unstabilized pilots demonstrated an average number
of 90 visual scanning patterns compared to 407 visual scanning patterns for the most
accurate pilots. This latter result suggests that the most accurate pilots were able to scan
their instruments more rapidly and frequently, shifting their gaze from one to another
with a higher frequency. This more efficient scanning is supported by their previously
mentioned shorter average fixation times on AOI. This better distribution of the attention
toward the different instruments helped them building and maintaining better situational
awareness. This higher frequency of scanning of the cockpit instruments probably explains,
at least in part, their better landing performance (lower flight path deviations). In addition,
the most accurate pilots tended to direct their gaze more at relevant AOIs, as their four
most recurrent visual scanning patterns all included important primary flight instruments:
the speed indicator, the attitude indicator, and the lateral and vertical parameters. The
unstabilized pilots tended to perform less visual scanning patterns toward these important
instruments. Overall, these results support the assumption that lower flight performance
is largely underpinned by sub-optimal gaze allocation in the cockpit. It is worth noting
that the fact that the four most recurrent visual scanning patterns were focused around
the attitude indicator is compatible with the idea that monitoring expertise should not
be resumed to a singular scanning pattern over the whole cockpit. Indeed, according
to Mumaw [61], “while the research literature on eye-tracking shows that there are a
few recognizable scanning patterns within the “basic T” indications when performing a
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manual approach, no one has identified a meaningful scanning pattern across the full-flight
deck interface”.

During the post-training session, we did not find any significant overall differences
in terms of dwell times on cockpit instruments between the experimental group and
the control group. In the experimental group, at an individual level, no pilot differed
markedly from the efficient gaze interval, including the unstabilized pilots that over- or
under- focused on at least two instruments during the pre-training session. Interestingly
in this group, the two unstabilized pilots (i.e., unstabilized during the post-training ses-
sion) demonstrated dwell times within the efficient gaze allocation range. In the control
group, the only pilot who performed a go-around due to excessive vertical deviation again
markedly over-focused the attitude indicator and the AVSVD.

Concerning the visual scanning patterns, group level analyses showed that pilots
from the experimental group significantly increased their proportion of one of the efficient
visual scanning patterns, namely the visual scanning pattern related to the general attitude
instruments (D). This increase in proportion of “good” visual scanning patterns was partic-
ularly notable for the two unstabilized pilots in this group: they considerably increased
their proportion of at least three of the four efficient visual scanning patterns and decreased
their proportion of “other” patterns.

On a more general note, the interaction between the pilots and automation can be
viewed as a joint cognitive system [62], which is a human-technology co-agency and
interaction. In a socio-technical environment such as the cockpit, humans, device interfaces,
and artifacts all affect transformations of information flow [63]. In this view, a failure
from the pilots to properly monitor the instruments creates a loss of distributed situation
awareness at the system scale (e.g., Stanton, Salmon, and Walker, 2015). The cockpit
design also has implications in the way the pilots interpret information and produce
meaning from the artifacts (e.g., cockpit instruments). For example, reading the speed
indicator requires higher levels of cognitive activity, interpretation, and can be viewed as
an interpretation-based interaction [64].

4.3. Limitations and Remarks

Several limits of this study should be mentioned. There was a long delay between
the two sessions. Studies generally indicate that training is more efficient when the feed-
back is delivered immediately after the performance, e.g., [65], particularly concerning
psychomotor tasks [66]. In a study involving pilots, Denny, Allard, Hall, and Rokeach [67]
showed that performances were inverse to the debriefing delay. Clariana, Wagner, and
Murphy [68] also drew the same conclusions: immediate feedback about task performances
implies a better understanding of the task characteristics. In the driving context, Chapman,
Underwood, and Roberts [69] developed a training intervention that raised awareness of
novice drivers about their visual scanning patterns and stressed the need to scan multiple
locations in the visual scene for detecting potential sources of danger. Two groups of
drivers were evaluated three times during the year after gaining their driving license.
Before the second testing, one of the groups received the training intervention, whereas the
other group only received a questionnaire about their own driving history and experiences.
The intervention produced significant changes in the drivers’ search patterns, yet not all
changes were still detectable at the third and final phase of testing three to six months
after the intervention. Thus, this type of method would benefit from being maintained
over time.

Another limit concerned the accuracy of the eye-tracking systems. It was not possible
to differentiate between the heading and the lateral deviation scale (i.e., the localizer);
similarly, the altitude could not be differentiated from the vertical deviation scale (glide
slope) and vertical speed. In addition, the algorithm created to compute the visual scanning
patterns reported sequences several times. For example, any of the sub-sequences in an
8-transition sequence would by necessity occur at least as often as the 8-long sequence.
However, we chose to obtain a picture of all types of scanning patterns for each sequence
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size. Future study might explore the different ways to quantify the visual scanning patterns
while avoiding potential overlapping.

In addition, the low number of participants due to the difficulty of recruiting pro-
fessional pilots, in particular considering the performance profiles subgroups (e.g., only
five unstabilized pilots), limited the possibility to perform inferential statistics and thus to
better generalize some of our results. A future replication study should attempt to recruit a
larger number of pilots.

On a general note, one might keep in mind that our training program and all eye-
tracking results are based on the fixation point, just as commonly performed in most
aviation-related studies [8,9,70,71]. According to Just and Carpenter’s “eye-mind” hy-
pothesis [20], the location of a person’s gaze corresponds to the most immediate thought
in a person’s mind. However, one cannot exclude that the focus of attention does not
always correspond to the fixation point or that some information is processed in parafoveal
vision [72]. For example, the pilot can fixate on the center of the attitude indicator and
might process other information at the same time, for example speed information which is
very close.

Finally, one must keep in mind that improving flight performance does not only rely
on improving the way pilots perform their visual scanning. Other factors such as mental
workload, fatigue, or stress must be considered.

5. Conclusions

We showed in this study that sub-optimal monitoring of flight instruments was
associated with lower flight performance. Lower performance could be attributed to under-
or over-focalization on some instruments, longer dwell times and a lower number of
visual scanning patterns (indicating a lower scanning frequency), and less frequent visual
scanning patterns that integrate important primary flight parameters. The results also
suggest that it is possible to improve the visual scanning strategies with a training that
incorporates personalized feedback and eye-tracking video recordings showing “adequate
cockpit scanning” examples from highly accurate pilots. The use of videos as a debriefing
tool to strengthen learning strategies [65] is not new, but very few studies have tried to use
eye-tracking recordings as training material with professional airline pilots. Eye-tracking
recordings and synthetic eye-tracking data (on a graph) seem to be an efficient way to teach
efficient visual information intake, a process that is largely automatic and unconscious [25].
Therefore, our results suggest that the introduction of such a training using a replay of
in-flight ocular behavior (recorded during a real flight or a simulator session) and charts
showing eye-tracking data could help pilots to increase their awareness on inadequate
visual scanning strategies (lack of consultation of critical information, under- or over-
focalization, etc.). Moreover, it could be interesting to use this technology with pilots who
face hand-flying difficulties after a significant period of inactivity. The real-time usage of
eye-tracking also seems promising. A study of Dubois et al. [73] assessed the interest of
using eye tracking during military pilot training. The authors trained 15 ab initio military
pilots to monitor outside, avoiding focusing too much the cockpit instruments. A system
masked the cockpit when a “head-down” position lasting more than two seconds was
detected. The results showed that masking greatly reduced the two-second violation rule.

Interestingly, depending on the training material, ocular behavior can be influenced
in different ways. For example, in the Shapiro and Raymond [39] study, the group of
participants who received the efficient oculomotor training were administered a training
designed to minimize eye movements and optimize scanpaths during a video game. This
group showed higher performance and fewer foveations, considered, in this context, as
better ocular behavior (lower dispersion of the attention). By contrast, in our study, we
did not design the training program to minimize eye movements. The video examples
of eye tracking from the most accurate pilots showed a high distribution of the attention
(without under- or over-focalization on some instruments), and we raised the importance
of the four efficient visual scanning patterns with schematic representations. As expected
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in the experimental group, the under- or over-focalization disappeared, and the number
of efficient visual scanning patterns increased, in particular among pilots who initially
performed an unstabilized approach during the pre-training session. The way to improve
visual scanning could be different whether the goal is to learn visual scanning from scratch
or to modify already acquired visual scanning strategies.

In this study, we chose to focus on manual control during the approach because this is
one of the flight phases during which pilots intensively focus on a small set of core flight
instruments to manage flight path deviations. We propose a better codification and teaching
of the visual scanning patterns during this phase. The largest portion of other flight phases
is performed under autopilot and requires a much less rigorous and more variable scanning
of a larger number of displays. Our method may transfer to specific flight tasks, such as
failure management, but we do not believe that it may apply to all flight tasks or flight
phases (an extreme illustration being the meal break). In the future, it might be interesting
to investigate the distinct contribution of personalized feedback and the use of eye-tracking
material to the observed performance improvement. Indeed, in our study, both concepts
were used with the experimental group. In addition, other studies might focus on different
aspects of the flying activity. Shapiro and Raymond [39] showed that the best way to
improve psychomotor performance is to work on separate components of the tasks. For
example, it would be possible to help pilots regain a correct flight path from an unstabilized
situation by showing appropriate visual scanning strategies. In addition, fighter pilots
could be trained with eye-tracking recordings to specifically improve their aiming skills.
Eye tracking might also be used in operational settings; for example, pilots could review
their ocular behavior after an in-flight incident. One-point calibration techniques are fast
and convenient, and pilots may easily accept modern eye-tracker systems, in particular if
they are discretely embedded in the cockpit. Finally, future experiments might explore the
tight relationship between the perception of the instruments’ information and the actual
actions on the flight control inputs to manage flight path deviations. Such studies may
help distinguish whether poor individual flight performance is related to the inappropriate
attention to the appropriate instruments or to low effectiveness of control inputs (for
example, pilot-induced oscillations are more likely due to the latter). The fine-grained
examination of these links between perception and action would require a high temporal
resolution flight simulator together with a perfectly accurate synchronization of the flight
simulator and the eye-tracking system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/safety7040070/s1, Figure S1: Top, vertical and lateral deviations of the considered partic-
ipant compared to the most accurate pilots. Bottom, other performance metrics of the considered
participant compared to the most accurate pilots, Figure S2: Eye tracking video showing the gaze
behavior of the considered participant. The red circle indicated by the arrow represents the current
fixation point, Figure S3: Bar chart showing the percentage of dwell times spent by the most accurate
pilots on each of the 9 AOIs and by the considered pilots. Error bars of the dark gray bars represent
the efficient interval. Dwell times of the considered pilot are represented with the light gray bar,
Figure S4: Representation of the four efficient visual patterns, as shown to the eye tracking group.
These visual patterns were related to the speed (visual pattern A), the vertical deviation (visual
pattern B), the lateral deviation (visual pattern C), and the general attitude of the aircraft including
the engine (visual pattern D). Patterns represented in solid lines (A, B, C) are more frequent than the
one represented with dashed lines (D), Figure S5: Eye tracking video showing the gaze behavior of
one of the most accurate pilots. The red circle indicated by the arrow represents the current fixation
point, Figure S6: Each pilot from the control group were presented with a generic video about aircraft
attitude changes maneuvers and associated visual scan strategies used during pilots’ initial training,
Figure S7: Video of the approach without gaze allocation of the pilot (without the moving red circle).
The video was recorded with a head-mounted GoPro camera and had the same point of view as
the eye tracking video, Table S1: Percentage of dwell times on each cockpit AOI for all PFs during
the pre-training session. (Undefined = undefined locations plus loss of gaze). HLD = Heading and
Lateral Deviation, AVSVD = Altitude, Vertical Speed and Vertical Deviation, Table S2: Total dwell
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times (s) on each cockpit AOI for all PFs during the pre-training session. (Undefined = undefined
locations plus loss of gaze). HLD = Heading and Lateral Deviation, AVSVD = Altitude, Vertical
Speed and Vertical Deviation, Table S3: Percentage of the four efficient visual scanning patterns and
other patterns for all PFs during the pre-training session, Table S4: Percentage of dwell times on
each cockpit AOI for the PFs of the control group during the post-training session. (Undefined =
undefined locations plus loss of gaze). HLD = Heading and Lateral Deviation, AVSVD = Altitude,
Vertical Speed and Vertical Deviation, Table S5: Dwell times (s) on each cockpit AOI for the PFs
of the control group during the post-training session. (Undefined = undefined locations plus loss
of gaze). HLD = Heading and Lateral Deviation, AVSVD = Altitude, Vertical Speed and Vertical
Deviation, Table S6: Percentage of dwell times on each cockpit AOI for the PFs of the experimental
group during the post-training session. (Undefined = undefined locations plus loss of gaze). HLD =
Heading and Lateral Deviation, AVSVD = Altitude, Vertical Speed and Vertical Deviation, Table S7:
Dwell times (s) on each cockpit AOI for the PFs of the experimental group during the post-training
session. (Undefined = undefined locations plus loss of gaze). HLD = Heading and Lateral Deviation,
AVSVD = Altitude, Vertical Speed and Vertical Deviation, Table S8: Percentage of the four efficient
visual scanning patterns and other patterns for the control group during the post-training session,
Table S9: Percentage of the four efficient visual scanning patterns and other patterns for the experi-
mental group during the post-training session.
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