Underwater Undulating Propulsion Biomimetic Robots: A Review
Abstract
:1. Introduction
2. The Swimming Mode of Fish
3. Classification of Undulating Propulsion Underwater Robots
3.1. Anguilliform Biomimetic Robots
3.2. Subcarangiform and Carangiform Biomimetic Robots
3.3. Thunniform and Ostraciiform Biomimetic Robots
Robot | Date | Description | Main Contributions | Picture |
---|---|---|---|---|
Single−Motor−Actuated Robotic Fish [85] | 2016 |
|
| |
Gliding Robotic Dolphin [84] | 2015 |
|
| |
Thunniform Robotic Fish [43] | 2022 |
|
| N/A |
Mackerel Robot [88] | 2013 |
|
| N/A |
Robot | Date | Description | Main Contributions | Picture |
---|---|---|---|---|
Boxfish Robot [86] | 2017 |
|
| |
Boxfish−like Robot [87] | 2013 |
|
| |
BoxyBot [89] | 2007 |
|
| N/A |
3.4. Rajiform Biomimetic Robots
3.5. Amiiform Biomimetic Robots
3.6. Gymnotiform Biomimetic Robots
3.7. Labriform Biomimetic Robots
4. Undulating Propulsion Underwater Robot Propulsion Mechanisms
4.1. Theoretical and Numerical Simulation Studies
4.2. Experimental Studies on the Propulsion Mechanism
4.2.1. Experimental Studies of Anguilliform Robots
4.2.2. Experimental Studies of Subcarangiform and Carangiform Robots
4.2.3. Experimental Studies of Thunniform Robots
4.2.4. Experimental Studies of Rajiform Robots
4.2.5. Experimental Studies of Amiiform and Gymnotiform Robots
5. Limitations and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Isaka, K.; Tadami, N.; Fujiwara, A.; Watanabe, T.; Sugesawa, M.; Yamada, Y.; Yoshida, H.; Nakamura, T. Study on Drilling Resistance Reduction of a Seafloor Robotic Explorer Based on the Drilling Properties of Underwater Ground. In Proceedings of the 2019 IEEE/SICE International Symposium on System Integration (SII), Paris, France, 14–16 January 2019; pp. 718–723. [Google Scholar]
- Yamada, D.; Takebayashi, T.; Kato, H.; Sakagami, N.; Kawamura, S. Underwater Robot with Negative Pressure Effect Plates for Maintenance of Underwater Structures. In Proceedings of the 2019 IEEE/ASME International Conference On Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 1092–1097. [Google Scholar]
- Ru, J.Y.; Yu, H.; Liu, H.; Liu, J.Y.; Zhang, X.Y.; Xu, H.L. A Bounded Near-Bottom Cruise Trajectory Planning Algorithm for Underwater Vehicles. J. Mar. Sci. Eng. 2023, 11, 7. [Google Scholar] [CrossRef]
- Leng, D.X.; Shao, S.; Xie, Y.C.; Wang, H.H.; Liu, G.J. A brief review of recent progress on deep sea mining vehicle. Ocean. Eng. 2021, 228, 108565. [Google Scholar] [CrossRef]
- Zheng, J.Z.; Wang, J.X.; Guo, X.; Huntrakul, C.; Wang, C.; Xie, G.M. Biomimetic Electric Sense-Based Localization: A Solution for Small Underwater Robots in a Large-Scale Environment. IEEE Robot. Autom. Mag. 2022, 29, 50–65. [Google Scholar] [CrossRef]
- Colgate, J.E.; Lynch, K.M. Mechanics and control of swimming: A review. IEEE J. Ocean. Eng. 2004, 29, 660–673. [Google Scholar] [CrossRef]
- Bu, K.L.; Gong, X.B.; Yu, C.L.; Xie, F. Biomimetic Aquatic Robots Based on Fluid-Driven Actuators: A Review. J. Mar. Sci. Eng. 2022, 10, 735. [Google Scholar] [CrossRef]
- Chutia, S.; Kakoty, N.M.; Deka, D. A Review of Underwater Robotics, Navigation, Sensing Techniques and Applications. In Proceedings of the Advances in Robotics (AIR’17), New Delhi, India, 28 June–2 July 2017. [Google Scholar]
- Wang, J.; Wu, Z.X.; Dong, H.J.; Tan, M.; Yu, J.Z. Development and Control of Underwater Gliding Robots: A Review. IEEE CAA J. Autom. Sin. 2022, 9, 1543–1560. [Google Scholar] [CrossRef]
- Castano, M.L.; Tan, X.B. Model Predictive Control-Based Path-Following for Tail-Actuated Robotic Fish. J. Dyn. Syst. Meas. Control. Trans. Asme 2019, 141, 071012. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.T.; Ye, R.D.; Zheng, R.; Geng, L.B.; Yang, Y. A highly mobile ducted underwater robot for subsea infrastructure inspection. In Proceedings of the 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Chengdu, China, 19–22 June 2016; pp. 397–400. [Google Scholar]
- Kruiper, R.; Vincent, J.F.V.; Abraham, E.; Soar, R.C.; Konstas, I.; Chen-Burger, J.; Desmulliez, M.P.Y. Towards a Design Process for Computer-Aided Biomimetics. Biomimetics 2018, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, G.; Maffi, L.; Tealdi, M.; Cinquemani, S. A Bioinspired Cownose Ray Robot for Seabed Exploration. Biomimetics 2023, 8, 30. [Google Scholar] [CrossRef]
- Shao, H.; Dong, B.B.; Zheng, C.Z.; Li, T.; Zuo, Q.Y.; Xu, Y.H.; Fang, H.T.; He, K.; Xie, F.R. Thrust Improvement of a Biomimetic Robotic Fish by Using a Deformable Caudal Fin. Biomimetics 2022, 7, 113. [Google Scholar] [CrossRef]
- Kocak, M.; Yazici, M.V.; Akdal, E.; Can, F.C.; Gezgin, E. Utilization of Function Generation Synthesis on Biomimetics: A Case Study on Moray Eel Double Jaw Design. Biomimetics 2022, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Campos, A.; Fuentes, V.; Abdelkefi, A. A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean. Eng. 2019, 172, 257–285. [Google Scholar] [CrossRef]
- Silva, A.T.; Baerum, K.M.; Hedger, R.D.; Baktoft, H.; Fjeldstad, H.P.; Gjelland, K.O.; Okland, F.; Forseth, T. The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Sci. Total Environ. 2020, 705, 135773. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, M.S.; Triantafyllou, G.S. An efficient swimming machine. Sci. Am. 1995, 272, 64–70. [Google Scholar] [CrossRef]
- Yu, J.Z.; Liu, J.C.; Wu, Z.X.; Fang, H. Depth Control of a Bioinspired Robotic Dolphin Based on Sliding-Mode Fuzzy Control Method. IEEE Trans. Ind. Electron. 2018, 65, 2429–2438. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, Z.X.; Li, Y.T.; Chen, D.; Tan, M.; Yu, J.Z. Vision-Based Underwater Target Following Control of an Agile Robotic Manta With Flexible Pectoral Fins. IEEE Robot. Autom. Lett. 2023, 8, 2277–2284. [Google Scholar] [CrossRef]
- Yu, J.Z.; Wang, C.; Xie, G.M. Coordination of Multiple Robotic Fish With Applications to Underwater Robot Competition. IEEE Trans. Ind. Electron. 2016, 63, 1280–1288. [Google Scholar] [CrossRef]
- Yang, Q.; Li, G.; Mu, W.; Liu, G.; Sun, H. Identification of crack length and angle at the center weld seam of offshore platforms using a neural network approach. J. Mar. Sci. Eng. 2020, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Leng, D.X.; Liu, D.; Li, H.Y.; Jin, B.; Liu, G.J. Internal flow effect on the cross-flow vortex-induced vibration of marine risers with different support methods. Ocean Eng. 2022, 257, 111487. [Google Scholar] [CrossRef]
- Szymak, P.; Praczyk, T.; Naus, K.; Szturomski, B.; Malec, M.; Morawski, M. Research on Biomimetic Underwater Vehicles for Underwater ISR. In Proceedings of the Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VII, Baltimore, MD, USA, 18–20 April 2016. [Google Scholar]
- Wang, R.; Wang, S.; Wang, Y.; Cheng, L.; Tan, M. Development and Motion Control of Biomimetic Underwater Robots: A Survey. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 833–844. [Google Scholar] [CrossRef]
- Wang, A.; Liu, G.; Wang, X.; Fu, B. Development and Analysis of Body and/or Caudal Fin Biomimetic Robot Fish. J. Mech. Eng. 2016, 52, 137–146. [Google Scholar] [CrossRef]
- Salazar, R.; Fuentes, V.; Abdelkefi, A. Classification of biological and bioinspired aquatic systems: A review. Ocean Eng. 2018, 148, 75–114. [Google Scholar] [CrossRef]
- Low, K.H. Modelling and parametric study of modular undulating fin rays for fish robots. Mech. Mach. Theory 2009, 44, 615–632. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Wu, Z.; Ma, L.; Guo, M.; Li, Z.; Li, Y. A comprehensive review on fish-inspired robots. Int. J. Adv. Robot. Syst. 2022, 19. [Google Scholar] [CrossRef]
- Gafurov, S.A.; Klochkov, E.V. Autonomous unmanned underwater vehicles development tendencies. In Proceedings of the 2nd International Conference on Dynamics and Vibroacoustics of Machines (DVM2014), Samara, Russia, 15–17 September 2014; pp. 141–148. [Google Scholar]
- Raj, A.; Thakur, A. Fish-inspired robots: Design, sensing, actuation, and autonomy—A review of research. Bioinspir. Biomim. 2016, 11, 031001. [Google Scholar] [CrossRef] [PubMed]
- Sfakiotakis, M.; Lane, D.M.; Davies, J.B.C. Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 1999, 24, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Liu, Z.; Tian, X.; Wang, Q.; Chen, G. A Review of the Application of Intelligent Materials in Underwater Biomimetic Robot. Period. Ocean Univ. China 2018, 48, 114–120. [Google Scholar]
- Fu, S.H.; Wei, F.N.; Yin, C.; Yao, L.G.; Wang, Y.X. Biomimetic soft micro-swimmers: From actuation mechanisms to applications. Biomed. Microdevices 2021, 23, 6. [Google Scholar] [CrossRef]
- Scaradozzi, D.; Palmieri, G.; Costa, D.; Pinelli, A. BCF swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency. Ocean Eng. 2017, 130, 437–453. [Google Scholar] [CrossRef]
- Lamas, M.I.; Rodriguez, C.G. Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations. J. Mar. Sci. Eng. 2020, 8, 479. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Liu, J.C.; Yu, J.Z. A Survey of Underwater Multi-Robot Systems. IEEE-CAA J. Autom. Sin. 2022, 9, 1–18. [Google Scholar] [CrossRef]
- Webb, P.W. Form and function in fish swimming. Sci. Am. 1984, 251, 72–83. [Google Scholar] [CrossRef]
- Lindsey, C.C. Form, function and locomotory habits in fish. Fish Physiol. 1978, 12–17. [Google Scholar] [CrossRef]
- Wang, C.; Lu, J.; Ding, X.; Jiang, C.; Yang, J.; Shen, J. Design, modeling, control, and experiments for a fish-robot-based IoT platform to enable smart ocean. IEEE Internet Things J. 2021, 8, 9317–9329. [Google Scholar] [CrossRef]
- Guanrong, H.; Zhenlong, W.; Jian, L.I.; Yangwei, W. Development of a Caudal-Fin-Propelled Micro Robot Fish Based on Flexible Fins. Robot 2008, 30, 171–175,181. [Google Scholar]
- Butail, S.; Bartolini, T.; Porfiri, M. Collective Response of Zebrafish Shoals to a Free-Swimming Robotic Fish. PLoS ONE 2013, 8, e76123. [Google Scholar] [CrossRef] [Green Version]
- Mitin, I.; Korotaev, R.; Ermolaev, A.; Mironov, V.; Lobov, S.A.; Kazantsev, V.B. Bioinspired Propulsion System for a Thunniform Robotic Fish. Biomimetics 2022, 7, 215. [Google Scholar] [CrossRef]
- Fish, F.E. Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 1996, 36, 628–641. [Google Scholar] [CrossRef]
- Rohr, J.J.; Fish, F.E. Strouhal numbers and optimization of swimming by odontocete cetaceans. J. Exp. Biol. 2004, 207, 1633–1642. [Google Scholar] [CrossRef] [Green Version]
- Wiguna, T.; Heo, S.; Park, H.C.; Goo, N.S. Design and Experimental Parameteric Study of a Fish Robot Actuated by Piezoelectric Actuators. J. Intell. Mater. Syst. Struct. 2009, 20, 751–758. [Google Scholar] [CrossRef]
- Edwards, E.F. Duration of unassisted swimming activity for spotted dolphin (Stenella attenuata) calves: Implications for mother-calf separation during tuna purse-seine sets. Fish. Bull. 2006, 104, 125–135. [Google Scholar]
- Brill, R.W. Selective advantages conferred by the high performance physiology of tunas, billfishes, and dolphin fish. Comp. Biochem. Physiol. A Physiol. 1996, 113, 3–15. [Google Scholar] [CrossRef]
- Yu, J.Z.; Wu, Z.X.; Su, Z.S.; Wang, T.Z.; Qi, S.W. Motion Control Strategies for a Repetitive Leaping Robotic Dolphin. IEEE-Asme Trans. Mechatron. 2019, 24, 913–923. [Google Scholar] [CrossRef]
- Chan, W.L.; Kang, T.; Lee, Y.J. Experiments and identification of an ostraciiform fish robot. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, Macau, China, 5–8 December 2017; pp. 530–534. [Google Scholar]
- Ikeda, M.; Hikasa, S.; Watanabe, K.; Nagai, I. Propulsive force analysis of a pectoral fin for rajiform type fish robots from fluid dynamic aspects. In Proceedings of the Eighteenth International Symposium on Artificial Life and Robotics (AROB 18th ‘13), Daejeon, Republic of Korea, 30 January–1 February 2013; pp. 65–68. [Google Scholar]
- Miyazaki, H.; Onoda, A.; Terada, H.; Nakajima, M. Species Identification of Pufferfish Products Using RAPD Analysis. Food Hyg. Saf. Sci. 2017, 58, 75–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogan, S.; Taverne, L.; Agnolin, F. First Triassic and oldest record of a South American amiiform fish: Caturus sp from the Los Menucos Group (lower Upper Triassic), Rio Negro province, Argentina. Geol. Belg. 2013, 16, 191–195. [Google Scholar]
- Crampton, W.G.R. Gymnotiform fish: An important component of Amazonian floodplain fish communities. J. Fish Biol. 1996, 48, 298–301. [Google Scholar] [CrossRef]
- George, A.B.; Westneat, M.W. Three-dimensional kinematic analyses reveal asymmetries in Xanthichthys auromarginatus (Balistidae) median fin biomechanics during steady balistiform swimming. Integr. Comp. Biol. 2021, 61, E306–E307. [Google Scholar]
- Zhang, R.; Hu, W. The numerical study on the propulsive mechanism of balistiform. Chin. J. Hydrodynomics 2020, 35, 258–265. [Google Scholar]
- Chinook Salmon. Oncorhynchus Tshawytscha. Feb. NOAA Fisheries. Available online: http://www.nmfs.noaa.gov/pr/species/fish/chinook-salmon.html (accessed on 7 July 2023).
- Sagong, W.; Jeon, W.-P.; Choi, H. Hydrodynamic characteristics of the sailfish (Istiophorus platypterus) and swordfish (Xiphias gladius) in gliding postures at their cruise speeds. PLoS ONE 2013, 8, e81323. [Google Scholar] [CrossRef] [Green Version]
- Stingray. A-z Animals. Feb. Available online: https://a-z-animals.com/animals/stingray/?r (accessed on 7 July 2023).
- Gautreau, E.; Bonnet, X.; Sandoval, J.; Fosseries, G.; Herrel, A.; Arsicault, M.; Zeghloul, S.; Laribi, M.A. A Biomimetic Method to Replicate the Natural Fluid Movements of Swimming Snakes to Design Aquatic Robots. Biomimetics 2022, 7, 223. [Google Scholar] [CrossRef]
- Crespi, A.; Ijspeert, A.J. AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator. In Proceedings of the 9th International Conference on Climbing and Walking Robots (CLAWAR 2006), Brussels, Belgium, 12–14 September 2006; pp. 19–27. [Google Scholar]
- Stefanini, C.; Orofino, S.; Manfredi, L.; Mintchev, S.; Marrazza, S.; Assaf, T.; Capantini, L.; Sinibaldi, E.; Grillner, S.; Wallen, P. A compliant bioinspired swimming robot with neuro-inspired control and autonomous behavior. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MI, USA, 14–18 May 2012; pp. 5094–5098. [Google Scholar]
- Liljebäck, P.; Stavdahl, Ø.; Pettersen, K.Y.; Gravdahl, J.T. Mamba-A waterproof snake robot with tactile sensing. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 294–301. [Google Scholar]
- Lyu, F.; Xu, X.; Zha, X.; Li, Z.; Yuan, H. A Snake Eel Inspired Multi-joint Underwater Inspection Robot for Undersea Infrastructure Intelligent Maintenance. In Proceedings of the OCEANS 2022, Chennai, India, 21–24 February 2022; pp. 1–6. [Google Scholar]
- Nguyen, D.Q.; Ho, V.A. Anguilliform Swimming Performance of an Eel-Inspired Soft Robot. Soft Robot. 2022, 9, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Crespi, A.; Karakasiliotis, K.; Guignard, A.; Ijspeert, A.J. Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits. IEEE Trans. Robot. 2013, 29, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hu, H. Biological inspiration: From carangiform fish to multi-joint robotic fish. J. Bionic Eng. 2010, 7, 35–48. [Google Scholar] [CrossRef]
- Katzschmann, R.K.; Marchese, A.D.; Rus, D. Hydraulic Autonomous Soft Robotic Fish for 3D Swimming. In Experimental Robotics; Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 405–420. [Google Scholar]
- Marchese, A.D.; Onal, C.D.; Rus, D. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robot. 2014, 1, 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palani, I.A.; Muralidharan, M. Development of Subcarangiform Bionic Robotic Fish Propelled by Shape Memory Alloy Actuators. Def. Sci. J. 2021, 71, 94–101. [Google Scholar] [CrossRef]
- Clapham, R.J.; Hu, H. iSplash-I: High performance swimming motion of a carangiform robotic fish with full-body coordination. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 322–327. [Google Scholar]
- Clapham, R.J.; Hu, H. iSplash: Realizing fast carangiform swimming to outperform a real fish. In Robot Fish: Bio-Inspired Fishlike Underwater Robots; Springer: Berlin/Heidelberg, Germany, 2015; pp. 193–218. [Google Scholar]
- Yu, J.; Wang, K.; Tan, M.; Zhang, J. Design and control of an embedded vision guided robotic fish with multiple control surfaces. Sci. World J. 2014, 2014, 631296. [Google Scholar] [CrossRef] [Green Version]
- Wiguna, T.; Heo, S.; Park, H.C.; Goo, N.S. Mechanical Design of Biomimetic Fish Robot Using LIPCA as Artificial Muscle. Key Eng. Mater. 2006, 326–328, 1443–1446. [Google Scholar] [CrossRef]
- Tong, R.; Wu, Z.; Chen, D.; Wang, J.; Du, S.; Tan, M.; Yu, J. Design and Optimization of an Untethered High-Performance Robotic Tuna. IEEE/ASME Trans. Mechatron. 2022, 27, 4132–4142. [Google Scholar] [CrossRef]
- Chen, D.; Wu, Z.; Meng, Y.; Tan, M.; Yu, J. Development of a High-Speed Swimming Robot With the Capability of Fish-Like Leaping. IEEE/ASME Trans. Mechatron. 2022, 27, 3579–3589. [Google Scholar] [CrossRef]
- Glaze, J.; Salazar, R.; Vasconcellos, R.; Abdelkefi, A. Comparative design, hydrodynamic analysis, and physical performance of fish-like robots. Appl. Ocean Res. 2021, 106, 102443. [Google Scholar] [CrossRef]
- Ozmen Koca, G.; Korkmaz, D.; Bal, C.; Akpolat, Z.H.; Ay, M. Implementations of the route planning scenarios for the autonomous robotic fish with the optimized propulsion mechanism. Measurement 2016, 93, 232–242. [Google Scholar] [CrossRef]
- Marchese, A.D.; Katzschmann, R.K.; Rus, D. A Recipe for Soft Fluidic Elastomer Robots. Soft Robot 2015, 2, 7–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Borstel, F.D.; Haro, M.S.; Villa-Medina, J.F.; Gutiérrez, J. Propulsive Element Normal Force Based on Acceleration Measurements Experienced by a Subcarangiform Robotic Fish. J. Intell. Robot. Syst. 2022, 104, 73. [Google Scholar] [CrossRef]
- Zhong, Y.; Song, J.; Yu, H.; Du, R. Toward a Transform Method From Lighthill Fish Swimming Model to Biomimetic Robot Fish. IEEE Robot. Autom. Lett. 2018, 3, 2632–2639. [Google Scholar] [CrossRef]
- Zheng, C.Z.; Ding, J.; Dong, B.B.; Lian, G.Y.; He, K.; Xie, F.R. How Non-Uniform Stiffness Affects the Propulsion Performance of a Biomimetic Robotic Fish. Biomimetics 2022, 7, 187. [Google Scholar] [CrossRef] [PubMed]
- Marras, S.; Porfiri, M. Fish and robots swimming together: Attraction towards the robot demands biomimetic locomotion. J. R. Soc. Interface 2012, 9, 1856–1868. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Yu, J.; Yuan, J.; Tan, M.; Zhang, J. Mechatronic design and implementation of a novel gliding robotic dolphin. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 267–272. [Google Scholar]
- Yu, J.; Zhang, C.; Liu, L. Design and Control of a Single-Motor-Actuated Robotic Fish Capable of Fast Swimming and Maneuverability. IEEE/ASME Trans. Mechatron. 2016, 21, 1711–1719. [Google Scholar] [CrossRef]
- Mainong, A.; Ayob, A.; Arshad, M. Investigating pectoral shapes and locomotive strategies for conceptual designing bio-inspired robotic fish. J. Eng. Sci. Technol. 2017, 12, 1–14. [Google Scholar]
- Wang, W.; Xie, G. CPG-based Locomotion Controller Design for a Boxfish-like Robot. Int. J. Adv. Robot. Syst. 2014, 11, 87. [Google Scholar] [CrossRef]
- Wen, L.; Wang, T.; Wu, G.; Liang, J. Quantitative Thrust Efficiency of a Self-Propulsive Robotic Fish: Experimental Method and Hydrodynamic Investigation. IEEE/ASME Trans. Mechatron. 2013, 18, 1027–1038. [Google Scholar] [CrossRef]
- Crespi, A.; Lachat, D.; Pasquier, A.; Ijspeert, A.J. Controlling swimming and crawling in a fish robot using a central pattern generator. Auton. Robot. 2007, 25, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Chen, X.; Zhou, F.; Liang, Y.; Xiao, Y.; Cao, X.; Zhang, Z.; Zhang, M.; Wu, B.; Yin, S.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Um, T.I.; Bart-Smith, H. Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles. Int. J. Smart Nano Mater. 2012, 3, 296–308. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Chen, H.; Wang, Z.; He, Q.; Chen, L.; Li, W.; Li, R.; Cui, W. A Manta Ray Robot with Soft Material Based Flapping Wing. J. Mar. Sci. Eng. 2022, 10, 962. [Google Scholar] [CrossRef]
- Chew, C.-M.; Lim, Q.-Y.; Yeo, K. Development of propulsion mechanism for Robot Manta Ray. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1918–1923. [Google Scholar]
- Valdivia y Alvarado, P.; Chin, S.; Larson, W.; Mazumdar, A.; Youcef-Toumi, K. A soft body under-actuated approach to multi degree of freedom biomimetic robots: A stingray example. In Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 473–478. [Google Scholar]
- Yurugi, M.; Shimanokami, M.; Nagai, T.; Shintake, J.; Ikemoto, Y. Cartilage structure increases swimming efficiency of underwater robots. Sci. Rep. 2021, 11, 11288. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sheng, C.; Wu, J.; Wu, G.; Zhou, C.; Wang, H. Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot. Appl. Ocean Res. 2021, 108, 102528. [Google Scholar] [CrossRef]
- Zhou, C.; Low, K.H. Design and Locomotion Control of a Biomimetic Underwater Vehicle With Fin Propulsion. IEEE/ASME Trans. Mechatron. 2012, 17, 25–35. [Google Scholar] [CrossRef]
- Hu, T.; Shen, L.; Lin, L.; Xu, H. Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by Gymnarchus niloticus. Mech. Mach. Theory 2009, 44, 633–645. [Google Scholar] [CrossRef]
- Yin, S.; Hu, Q.; Zeng, Y.; Wei, C.; Chen, Z. Kinetic Analysis and Design of a Bio-Inspired Amphibious Robot with Two Undulatory Fins. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Xining, China, 15–19 July 2021; pp. 1368–1373. [Google Scholar]
- Xie, H.; Zhou, H.; Shen, L.; Yin, D. Mechanism Design, Dynamics Modelling and Experiments of Bionic Undulating Fins. Int. J. Robot. Autom. 2016, 31. [Google Scholar] [CrossRef] [Green Version]
- Low, K.; Zhou, C.; SEET, G.G.; Yu, J. Learning from Gymnotiform swimmers—Design and implementation of robotic knifefish NkF-II. Int. J. Inf. Acquis. 2008, 5, 137–147. [Google Scholar] [CrossRef]
- Pham, C.A.T.; Kim, D.H.; Nguyen, T.T. A study on force generated by gymnotiform undulating fin. In Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, HI, USA, 26–30 June 2018; pp. 241–246. [Google Scholar]
- Liu, H.; Curet, O. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion. Bioinspir. Biomim. 2018, 13, 056006. [Google Scholar] [CrossRef]
- Curet, O.M.; Patankar, N.A.; Lauder, G.V.; MacIver, M.A. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir. Biomim. 2011, 6, 026004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siahmansouri, M.; Ghanbari, A.; Fakhrabadi, M.M.S. Design, implementation and control of a fish robot with undulating fins. Int. J. Adv. Robot. Syst. 2011, 8, 60. [Google Scholar] [CrossRef]
- Zhang, S.; Qian, Y.; Liao, P.; Qin, F.; Yang, J. Design and Control of an Agile Robotic Fish With Integrative Biomimetic Mechanisms. IEEE/ASME Trans. Mechatron. 2016, 21, 1846–1857. [Google Scholar] [CrossRef]
- Behbahani, S.B.; Tan, X. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins. Bioinspir. Biomim. 2016, 11, 036009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitorus, P.E.; Nazaruddin, Y.Y.; Leksono, E.; Budiyono, A. Design and Implementation of Paired Pectoral Fins Locomotion of Labriform Fish Applied to a Fish Robot. J. Bionic Eng. 2009, 6, 37–45. [Google Scholar] [CrossRef]
- Gray, J.; Hancock, G. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 1955, 32, 802–814. [Google Scholar] [CrossRef]
- Taylor, G.I. Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1952, 214, 158–183. [Google Scholar]
- Lighthill, M. Note on the swimming of slender fish. J. Fluid Mech. 1960, 9, 305–317. [Google Scholar] [CrossRef]
- Lighthill, M.J. Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 1970, 44, 265–301. [Google Scholar] [CrossRef]
- Wu, T.Y.-T. Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 1971, 46, 337–355. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.Y.-T. Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems. J. Fluid Mech. 1971, 46, 521–544. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.Y.-T. Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. J. Fluid Mech. 1971, 46, 545–568. [Google Scholar] [CrossRef] [Green Version]
- Chopra, M. Hydromechanics of lunate-tail swimming propulsion. J. Fluid Mech. 1974, 64, 375–392. [Google Scholar] [CrossRef]
- Cheng, J.-Y.; Blickhan, R. Bending moment distribution along swimming fish. J. Theor. Biol. 1994, 168, 337–348. [Google Scholar] [CrossRef]
- Costello, J.H.; Colin, S.P.; Gemmell, B.J.; Dabiri, J.O. Hydrodynamics of Vortex Generation during Bell Contraction by the Hydromedusa Eutonina indicans (Romanes, 1876). Biomimetics 2019, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Stamhuis, E.J.; Videler, J.J. Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry. J. Exp. Biol. 1995, 198, 283–294. [Google Scholar] [CrossRef]
- Triantafyllou, M.; Barrett, D.; Brown, N.; Morgan, B.; Yue, D.P.; Anderson, J. A new paradigm of propulsion and maneuvering for marine vehicles. Discussion. Authors’ closure. Trans. -Soc. Nav. Archit. Mar. Eng. 1996, 104, 81–100. [Google Scholar]
- Costa, D.; Palmieri, G.; Palpacelli, M.C.; Scaradozzi, D.; Callegari, M. Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment. Biomimetics 2020, 5, 46. [Google Scholar] [CrossRef]
- Lau, W.P.; Zhong, Y.; Du, R.; Li, Z. Bladderless swaying wire-driven robot shark. In Proceedings of the 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, Cambodia, 15–17 July 2015; pp. 155–160. [Google Scholar]
- Zhao, W.; Hu, Y.; Wang, L.; Zhang, L. Design and CPG-based control of biomimetic robotic fish. IET Control Theory Appl. 2009, 3, 281–293. [Google Scholar] [CrossRef]
Robot | Date | Description | Main Contributions | Picture |
---|---|---|---|---|
Multi-Joint Underwater Robot [64] | 2022 |
|
| |
Soft Eel Robot [65] | 2022 |
|
| |
Mamba Waterproof Snake Robot [63] | 2014 |
|
| |
Salamandra Robotica II [66] | 2013 |
|
| N/A |
Robot | Date | Description | Main Contributions | Picture |
---|---|---|---|---|
Untethered High−Performance Robotic Tuna [75] | 2022 |
|
| |
Untethered Bioinspired Robotic fish [76] | 2022 |
|
| |
Bio−inspired AUV [77] | 2021 |
|
| |
Four−link Carangiform Fish Robot [78] | 2016 |
|
| |
Four−link Robotic Fish Large Pectoral Fin Control Surfaces [73] | 2014 |
|
| |
Soft−bodied Robotic Fish [69] | 2013 |
|
| |
Self−contained Hydraulic Fish [79] | 2013 |
|
| |
Improved ACP Robot Fish [80] | 2012 |
|
| |
G9fish [67] | 2010 |
|
| |
Fabricated Bionic Robotic Fish [70] | 2021 |
|
| N/A |
ACP Robot Fish [81] | 2018 |
|
| N/A |
Robot | Date | Description | Main Contributions | Picture |
---|---|---|---|---|
Cartilage Structure Underwater Robot [95] | 2021 |
|
| |
Manta Ray Robot [92] | 2021 |
|
| |
Hybrid Manta Ray Robot [96] | 2021 |
|
| |
RoMan−II [97] | 2012 |
|
| |
Self−powered Soft Robot [90] | 2021 |
|
| N/A |
Bionic Fin Manta Ray [93] | 2015 |
|
| N/A |
IPMC Manta Ray [91] | 2012 |
|
| N/A |
Robot | Date | Description | Main Contributions | Picture |
---|---|---|---|---|
Bio−inspired Amphibious Robot [99] | 2021 |
|
| |
RoboGnilos [98] | 2009 |
|
| |
Dorsal Undulation Fin Robot [100] | 2016 |
|
| N/A |
Robot | Date | Description | Main Contributions | Picture |
---|---|---|---|---|
Undulatory Fin Propulsion Bio−Inspired Robot [103] | 2018 |
|
| |
Gymnotiform Undulating Fin Robot [102] | 2018 |
|
| |
Knifefish Robot [105] | 2011 |
|
| |
Robotic Knifefis [104] | 2011 |
|
| N/A |
Robot | Date | Description | Main Contributions | Picture |
---|---|---|---|---|
Wrasse Robot [108] | 2009 |
|
| |
Pectoral Fin and Dual Caudal Fin Robot [106] | 2016 |
|
| N/A |
Robot | Test Objectives | Test Conclusions | Picture |
---|---|---|---|
Multi-Joint Underwater Robot [64] |
|
| |
Soft Eel Robot [65] |
|
| |
Salamandra Robotica II [66] |
|
| N/A |
Robot | Test Objectives | Test Conclusions | Picture |
---|---|---|---|
Untethered High-Performance Robotic Tuna [75] |
|
| |
Untethered Bioinspired Robotic Fish [76] |
|
| |
G9fish [67] |
|
| |
Bio-inspired AUV [77] |
|
| |
Soft-bodied Robotic Fish [69] |
|
| |
Improved ACP Robot Fish [80] |
|
| |
Four-link Carangiform Fish Robot [78] |
|
| |
Four-link Robotic Fish Large Pectoral Fin Control Surfaces [73] |
|
| |
Fabricated Bionic Robotic Fish [70] |
|
| N/A |
ACP Robot Fish [81] |
|
| N/A |
Robot | Test Objectives | Test Conclusions | Picture |
---|---|---|---|
Gliding Robotic Dolphin [84] |
|
| |
Single-Motor-Actuated Robotic Fish [85] |
|
| |
Thunniform Robotic Fish [43] |
|
| N/A |
Mackerel Robot [88] |
|
| N/A |
Robot | Test Objectives | Test Conclusions | Picture |
---|---|---|---|
Cartilage Structure Underwater Robot [95] |
|
| |
Manta Ray Robot [92] |
|
| |
Self-Powered Soft Robot [90] |
|
| N/A |
IPMC Manta Ray [91] |
|
| N/A |
Bionic Fin Manta Ray [93] |
|
| N/A |
Robot | Test Objectives | Test Conclusions | Picture |
---|---|---|---|
RoboGnilos [98] |
|
| |
Bio-inspired Amphibious Robot [99] |
|
| |
Dorsal Undulation Fin Robot [100] |
|
| N/A |
Robot | Test Objectives | Test Conclusions | Picture |
---|---|---|---|
Undulatory Fin Propulsion Bio-Inspired Robot [103] |
|
| |
Robotic Knifefis [104] |
|
| N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Liu, G.; Leng, D.; Fang, X.; Li, G.; Wang, W. Underwater Undulating Propulsion Biomimetic Robots: A Review. Biomimetics 2023, 8, 318. https://doi.org/10.3390/biomimetics8030318
Li G, Liu G, Leng D, Fang X, Li G, Wang W. Underwater Undulating Propulsion Biomimetic Robots: A Review. Biomimetics. 2023; 8(3):318. https://doi.org/10.3390/biomimetics8030318
Chicago/Turabian StyleLi, Gongbo, Guijie Liu, Dingxin Leng, Xin Fang, Guanghao Li, and Wenqian Wang. 2023. "Underwater Undulating Propulsion Biomimetic Robots: A Review" Biomimetics 8, no. 3: 318. https://doi.org/10.3390/biomimetics8030318
APA StyleLi, G., Liu, G., Leng, D., Fang, X., Li, G., & Wang, W. (2023). Underwater Undulating Propulsion Biomimetic Robots: A Review. Biomimetics, 8(3), 318. https://doi.org/10.3390/biomimetics8030318