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Abstract: This work aimed to compare the effect of four new toothpastes (P1–P4) based on pure
and biomimetic substituted nano-hydroxyapatites (HAPs) on remineralization of human enamel.
Artificially demineralized enamel slices were daily treated for ten days with different toothpastes
according to the experimental design. Tooth enamel surfaces were investigated using atomic force
microscope (AFM) images and surface roughness (Ra) determined before and after treatment. The
surface roughness of enamel slices was statistically analyzed by one-way ANOVA and Bonferroni’s
multiple comparison test. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) data revealed
the HAP structure with crystal sizes between 28 and 33 nm and crystallinity between 29 and 37%. The
average size of HAP particles was found to be between 30 and 40 nm. The Ra values indicated that
P3 (HAP-Mg-Zn-Sr-Si) toothpaste was the most effective after 10 days of treatment, leading to the
lowest mean roughness. The P3 and P2 (HAP) toothpastes were found to be effective in promoting
remineralization. Specifically, their effectiveness can be ranked as follows: P3 = P2 > P4 (HAP-Mg-
Zn-Si) > P1 (HAP-Zn), considering both the chemical composition and the size of their constitutive
nanoparticles. The proposed toothpastes might be used successfully to treat early tooth decay.

Keywords: atomic force microscope (AFM); crystallinity; demineralization; enamel; hydroxyapatite;
surface roughness; X-ray diffraction (XRD)

1. Introduction

Human caries is a disease for which a cure has been sought since the earliest days of
mankind [1–3]. Dental caries, referred to as tooth decay cavities or simply caries, is caused
by bacteria that demineralize and destroy the tooth’s hard tissues, including enamel, dentin,
and cementum. If left untreated, the decay can progress into the tooth, causing pain and
infection, which can eventually lead to tooth loss [4–7].

Tooth enamel is the outermost layer of teeth and protects them from deterioration.
However, enamel can erode due to factors such as acidic foods or poor oral hygiene [8].
Toothpastes are essential for maintaining oral hygiene and preventing dental problems [9].
Developing new toothpastes with advanced formulations can enhance their effectiveness in
preventing cavities. Biomimetic toothpastes replicate the natural processes and structures
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of teeth and can help improve oral health by promoting the remineralization of tooth
enamel, strengthening the teeth, and reducing the risk of dental caries. These formulations
can aid in the treatment of early-stage tooth decay and prevent further damage [10–15].

Synthetic stoichiometric hydroxyapatite (HAP) is one of the materials being researched
in this area [16,17]. Its composition differs from that of biological hydroxyapatite in that
HAP contains ionic substitutions within its lattice, such as Mg2+, Na+, and CO3

2−, just
to name a few. Since the 1950s, hydroxyapatite, the mineral that is the principal compo-
nent of human bone and teeth, together with some organic components and water, has
been widely researched in regenerative science as a material for numerous biomedical
applications [18,19]. It is considered biocompatible because its chemical composition is
similar to the mineral components of hard tissue and because it is well tolerated by living
tissue without causing adverse reactions [20,21].

Different HAP-containing toothpastes have been developed to (i) minimize tooth
sensitivity, which causes discomfort when eating food at temperatures quite different from
the temperature of the tooth, by forming a protective layer over exposed dentin, thus
reducing the transmission of external stimuli to the nerves in the teeth [22]; (ii) control
dental plaque, a biofilm that forms on the teeth and contributes to the development of tooth
decay by inhibiting the growth and attachment of harmful bacteria, reducing the risk of
oral diseases [23]; and (iii) remove surface stains from the tooth by being a mild abrasive,
thus being employed as a tooth whitening ingredient [24].

Hydroxyapatite is used as such in toothpastes [25–27] and bone regeneration [28,29], or
as substituted in its lattice with various physiological elements to enhance its bioactivity, like
Zn [30], Zn-carbonate [31], Sr [32,33], Zn and Sr [34], Cu and Zn [35], Zn and fluoride [36],
fluorine [37], Ag and fluoride [38], Mg and Sr [39], Mg [40], Mg and Zn [41], Mg and Si [42],
Ag [43], and Si [44]. These components play various roles; for some, the particular role
they play in the substituted HAP is known; for others, it is only assumed. Even if the
substitution is minor, it might alter the space group, morphology, and stability properties
of the substituted HAP.

Zinc-substituted hydroxyapatite generally exhibits good biocompatibility because zinc
ions can interact with surrounding tissues, promoting biomineralization and bone regener-
ation processes. It also has bactericidal and fungicidal properties and has been described
to promote cell proliferation, differentiation, and mineralization [30]. In magnesium-
substituted hydroxyapatite, Mg2+ replaces a portion of Ca2+ in the HAP lattice, which alters
both the crystal structure and properties of HAP, which in turn influences the material’s
chemical stability, namely its dissolution behavior and biocompatibility. Furthermore, these
ions help suppress acid-producing bacteria, lowering their potential to induce tooth decay.
They may also ease inflammation while reducing tooth sensitivity by blocking exposed
dentinal tubules [45]. As in the case of Mg-HAP, strontium can be a substitute for a part
of the calcium ions in the HAP structure. Strontium has been shown to possess some
desensitizing properties by blocking or reducing the transmission of nerve impulses in
the dentin and remineralization properties, thus strengthening the enamel and helping to
repair the early stages of tooth decay [46]. When silicon is substituted into the hydroxyap-
atite structure, the resulting material exhibits enhanced remineralization properties and
increased resistance to acid attacks without causing any harm or irritation to the teeth or
gums [47].

An ideal toothpaste should be nontoxic, non-irritating, and not overly abrasive, with
the primary goal of preventing tooth decay and biofilm formation [48,49]. Starting from all
of this, we designed and prepared four toothpastes: one containing nano-hydroxyapatite
(HAP) and three containing substituted HAPs, namely Zn-HAP, Zn-Mg-Si-HAP, and Zn-
Mg-Sr-Si-HAP. Thus, we used ingredients that are more biocompatible with oral tissues,
reducing the risk of irritation or allergic reactions.

Typically, a toothpaste should contain several main components: binders used to keep
the solid and liquid phases together, while preventing the toothpaste from drying out and
conferring adequate viscosity; anticaries agents, which, as the name suggests, are powerful
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anticaries tools; antiplaque agents used to remove the plaque; abrasives with the role of
mechanically removing stains from teeth; foaming agents (surfactants), with their ability to
lower surface tension facilitating the contact between the teeth and the toothpaste contents
and the dissolution of dental plaque; whitening agents capable of increasing the whiteness
of teeth by abrasion; sweeteners to give a pleasant taste to the paste; and, of course, water as
a solvent [50,51]. Also, depending on the specific toothpaste, it may contain desensitizing
compounds, anti-halitosis agents, other pharmaceutical agents, preservatives, flavoring
and coloring agents, etc.

In our previous work, monosubstituted HAP (HAP-Zn [52]) and multisubstituted
HAP (i.e., HAP-Mg-Zn-Si [53,54] and HAP-Mg-Zn-Sr-Si [55,56]) samples were synthesized
and characterized. The ions released from these multisubstituted HAPs (ms-HAPs) were
examined in simulated body fluid and displayed a good relationship as a function of the
amount of Mg, Zn, Sr, and Si incorporated into ms-HAPs and the ion release time. Among
all the synthesized nanomaterials, HAP-Zn, HAP-Mg-Zn-Si, and HAP-Mg-Zn-Sr-Si seem to
provide a good balance of properties for bone regeneration and osseointegration [53,55–57].

According to published research, there is a gap in the development of toothpastes
containing ms-HAP, which could have an enhanced outcome in the remineralization of
enamel. Therefore, in this study, we extend our previous work by developing new ms-HAPs
to control their structure and crystallinity, as well as the shape and size of the nanoparticles,
while also assessing their biomimetic mineralization of enamel.

2. Materials and Methods
2.1. Materials

Nitrates were purchased from Sigma-Aldrich: Ca(NO3)2·4H2O (calcium nitrate tetrahy-
drate, >99%), Mg(NO3)2·6H2O (magnesium nitrate hexahydrate, 99%), Zn(NO3)2·6H2O
(zinc nitrate hexahydrate, >98%), and Sr(NO3)2 (strontium nitrate, 99.995%). Also, sorbitol
(≥98%), polyethylene glycol (PEG 400), sodium dodecyl sulfate (≥99.0%), SiO2 (silicon
dioxide, nanopowder, 10–20 nm particle size, 99.5%), H3PO4 (orthophosphoric acid, 85 wt%
in H2O), and xanthan gum were bought from Sigma-Aldrich. (NH4)2HPO4 (diammonium
hydrogen phosphate, >99%) and ammonia solution (NH4OH, 25%) were purchased from
Chempur, and tetraethyl orthosilicate (TEOS 98%) was purchased from Alfa Aesar. All
substances were used as received without additional purification.

2.2. Synthesis of Four HAPs Used in Toothpastes

Pure HAP and the substituted HAPs were prepared using a wet chemical route,
starting from a solution containing the necessary cations and another with specific anions,
according to the composition to be attained [56,58]. The first solution was prepared from the
corresponding nitrates dissolved in ultrapure water to achieve a total cation concentration
of 0.25 M using Ca(NO3)2·4H2O for pure HAP (P2 paste) and for all the substituted
HAPs and Zn(NO3)2·6H2O (for HAP-5% Zn, P1, and also for P3 and P4), together with
Mg(NO3)2·6H2O (for P4) and with Sr(NO3)2 (for P3). The 0.15 M anion aqueous solution
consisted of PO4

3− and (for P3 and P4) also SiO4
4-, obtained from (NH4)2HPO4 and

TEOS, respectively, in the calculated ratio. The adequate working pH was established at
11.5 with the aid of an ammonia solution. The two solutions (equal volumes, to maintain
the mole ratio (Ca+Mg+Zn+Sr)/(P+Si) at the theoretical value for HAPs, 5/3) were quickly
mixed at an ambient temperature of 22 ◦C. The acquired suspension underwent two
stages of maturation, the first one at approximately 22 ◦C/24 h and the second one at
70 ◦C/24 h under discontinuous mixing. The obtained precipitate was filtered (using
a grade 389 Munktell filter, 8–12 m pore size, 150 mm diameter, 84 g/m2). Then, at
room temperature, it was rinsed repetitively with ultrapure water until it was nitrate-free,
followed by lyophilization, and ground to a fine powder using a ball mill.
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2.3. Preparation of Toothpastes

The development of new experimental toothpastes is a complex procedure that neces-
sitates several technological steps. These are connected to the manufacture of an aqueous
suspension, which requires the exact mixing of several components.

Preparation for 100 g of toothpaste: Step I in this case entails combining a specific
amount of silica dioxide (9.00 g) with a precise amount of distilled water (27.67 g). After
resting for 25 min, the suspension is vigorously homogenized in a sealed container be-
fore resting for another half hour. Step II involves preparing an aqueous suspension by
dispersing hydroxyapatite (3.70 g) in an exact amount of distilled water (24.33 g). This is
followed by 50 min of mixing with a magnetic stirrer (200 rpm). The hydrated silica dioxide
is then added while constantly swirling until thoroughly homogenized. Step III involves
combining sorbitol (7.35 g) with an exact amount of distilled water (20.0 g), to which PEG
400 (7.35 g) and xanthan gum (0.40 g) are added. The mixture is homogenized until it
forms a fine, white paste. Step IV: The paste from step III is vigorously mixed with the
mixture from step II. The mixture is stirred for about 8–10 min, and then sodium dodecyl
sulfate (0.20 g) is added. The prepared toothpastes were used to remineralize the artificially
demineralized dental enamel.

2.4. Study Protocol for Obtaining Enamel Slices

The study protocol and all the procedures were approved by the Ethics Committee of
“Iuliu Hatieganu” University of Medicine and Pharmacy (UMP), Cluj-Napoca (Approval
No. 85/19 July 2017). Eighteen healthy adult third molars removed for orthodontic
purposes were used in this investigation. The lack of cracks, the lack of hypoplastic
or carious lesions, and the lack of restorations on the molar surfaces were the selection
criteria. For 5 min, the extracted molars were ultrasonically cleaned of soft tissue debris
and stored in deionized water. The qualitative evaluation of the enamel surface was
performed through a clinical examination using a stereomicroscope (Carl Zeiss Stereo
475002, Gottingen, Germany). Third molars were placed within auto-polymerizing acrylate
prisms (Duracryl Plus, Spofadental Inc., Jin, Czech Republic) to enhance sample handling,
while the coronal part was left exposed.

Using a microtome (Microtome IsoMet®), longitudinal enamel slices with dimensions
of 8 mm × 6 mm and a thickness of 1.5 mm were sectioned from the buccal and lingual
surface of every third molar specimen. A total of 36 enamel samples were collected and
divided into two groups: one control group (Ctrl), with n = 6 slices of natural enamel that
did not receive any treatment, and another group of 30 enamel slices that were artificially
demineralized for 60 s using orthophosphoric acid 37.5% (Gel Etchant, Kerr Dental, Orange,
CA, USA). They were washed for half a minute with ultrapure water to neutralize and
eliminate compounds present on the tooth enamel surface and divided into two groups:
the negative control group (the NC group with n = 6 demineralized samples, which were
deposited into deionized water), and the group of 24 demineralized slices which were
divided equally into the four test groups, with each test group having n = 6 demineralized
enamel slices. These demineralized enamel slices were treated with toothpastes; the P1 test
group was treated with P1 toothpaste, the P2 test group was treated with P2 toothpaste,
the P3 test group was treated with P3 toothpaste, and the P4 test group was treated with P4
toothpaste. The sample size was established using the same approach as in related studies
on the subject [59–62].

2.5. Enamel Treatment with Toothpaste

For 10 days, a certain toothpaste of those tested (P1–P4) was applied to a particular
test group (P1–P4) of enamel slices. The samples were brushed in circular motions with a
brush applicator (3MTM Applicator Handles and Disposable Applicator Brush Tips, Corona,
CA, USA). The treatment consisted of brushing the demineralized enamel slices for 3 min
twice a day (morning and evening), followed by gentle cleaning with distilled water and
storage in deionized water. The collected samples were stored in sterile PET containers
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with screw-on lids, in deionized water. Before the AFM measurements were performed, the
samples were cleansed with an ultrasonic cleaner for 5 min and dried. Then, the samples
were investigated.

2.6. Methods

X-ray diffraction (XRD) investigations were conducted using a DRON-3 diffractometer
in Bragg–Brentano geometry with an X-ray tube containing cobalt Kα radiation, wavelength
1.79026 Å, 25 kV/20 mA. The XRD powder patterns were collected using a 2◦ angle scale
(10–80◦) with a step size of 0.02◦ and a normalized count time of 1 s/step to 2 s/step.

FT-IR spectra were measured on KBr pellets containing the HAP powders (0.5 wt%)
using a JASCO 6100 FT-IR spectrometer in the 4000–400 cm−1 range of wavenumbers
(resolution 4 cm−1).

To analyze the nanostructure of the HAP samples, a Hitachi SU-8230 field emission
scanning electron microscope (FE-SEM or SEM) operated at 30 kV was employed. For
HAP elemental analysis, an FE-SEM equipped with an Oxford energy-dispersive X-ray
spectrometer (EDS) was employed (energy-dispersive X-ray spectroscopy (EDX) spectra).
Carbon coatings ranging in thickness from 10 to 20 nm were applied to Cu SEM grids.
Powdered HAP particles were deposited in thin layers on SEM grids to make SEM samples.
A Hitachi HD-2700 scanning transmission electron microscope (STEM) operating at 200 kV
and 30 kV was also used.

An OPTIMA 5300DV inductively coupled plasma optical emission spectrometer (ICP-
OES) (Perkin-Elmer, Waltham, MA, USA) was used for the elemental analysis.

Images were obtained using an AFM JEOL 4210 instrument in tapping mode with
traditional cantilevers with silicon nitride tips (resonant frequency 200–300 kHz, spring
constant 17.5 N/m) [63–65]. After being dispersed, the particles were adsorbed onto an
optically polished glass support. The dispersion of HAPs in water used for AFM imaging
was homogenized using a high-intensity ultrasonic device (Sonics Vibra-Cell).

Surface analysis was performed after 10 days of enamel treatment with toothpaste
to obtain the following data: Ra (mean arithmetic roughness). The results were analyzed
using GraphPad Prism 5 software, 5.0 applying one-way ANOVA analysis followed by
Bonferroni’s multiple comparison test.

3. Results

Table 1 lists the four hydroxyapatites and substituted hydroxyapatites, as well as their
theoretical formulas.

Table 1. Four innovative nanomaterials used to prepare the four toothpastes.

Toothpaste Symbol HAPs Type Substitution Elements (wt%) HAPs Chemical Formula

P1 HAP-Zn Zn 5.00 Ca9.22Zn0.78(PO4)6(OH)2

P2 HAP - Ca10(PO4)6(OH)2

P3 HAP-Mg-Zn-Sr-Si

Mg 0.23
Zn 3.09
Sr 10.00
Si 2.00

Ca8.19Mg0.10Zn0.5Sr1.21(PO4)5.25(SiO4)0.75(OH)1.25

P4 HAP-Mg-Zn-Si
Mg 2.50
Zn 1.34
Si 2.90

Ca8.80Mg1.00Zn0.20(PO4)5.00(SiO4)1.00(OH)1.00

The XRD patterns for the four HAPs used are given in Figure 1, along with the pattern
for pure HAP from PDF:74-0566 (red vertical lines). The calculated lattice parameters (a = b
and c values), crystallite sizes, and crystallinity degree are included in Table 2, compared
with average NP (nm) diameters estimated from AFM images.
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Figure 1. XRD for four HAPs: (A) for hydroxyapatite, HAP, Ca10(PO4)6(OH)2; (B) for HAP-Zn,
Ca9.22Zn0.78(PO4)6(OH)2; (C) for HAP-Mg-Zn-Si, Ca8.80Mg1.00Zn0.20(PO4)5.00(SiO4)1.00 (OH)1.00;
and (D) for HAP-Mg-Zn-Sr-Si, Ca8.19Mg0.10Zn0.50.Sr1.21(PO4)5.25(SiO4)0.75(OH)1.25, compared with
PDF:74-0566.

Table 2. XRD estimates of crystallite size, crystallinity degree, and lattice parameters for pure
hydroxyapatite (HAP) and substituted hydroxyapatites: HAP-Zn, HAP-Mg-Zn-Si, and HAP-Mg-Zn-
Sr-Si.

Hydroxyapatites HAP-Zn HAP HAP-Mg-Zn-Sr-Si HAP-Mg-Zn-Si

Toothpastes P1 P2 P3 P4

Crystallites size (nm), from XRD data 30.3 33.1 28.2 30.6

Crystallinity (%), from XRD data 30.5 36.6 28.7 30.3

Lattice parameters:
a = b (nm) 0.9421 0.9426 0.9466 0.9445

c (nm) 0.6862 0.6881 0.6904 0.6883

Average diameter of NPs (nm), from
AFM approach * 40 ± 5 30 ± 3 37 ± 4 38 ± 5

* Average diameter of nanoparticles (NPs) self-assembled as a layer on a glass plate, estimated from AFM
approach.

The calculated lattice parameters (a and c values) revealed only slight changes with the
compositional modification within the HAP structure. The small composition differences
lead to a slight distortion of the HAP lattice and, thus, a small drop in its crystallinity
(Table 2). It was also discovered that the lattice constants, a and c, diminished slightly with
Zn substitution in the HAP structure.
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Figure 2 presents the experimental FTIR spectra of lyophilized HAP (A) and HAP-Mg-
Zn-Sr-Si (B), both used in our toothpastes, The wavenumbers (cm−1) of absorption peaks
and the assignments of the corresponding vibrations are given in Table 3.
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Table 3. Wavenumbers (cm−1) of IR absorption peaks and assignment of vibrations, from FTIR
spectra of the samples.

HAP HAP-Zn HAP-Mg-Zn-Si HAP-Mg-Zn-Sr-Si Assignment of HAP Vibrations

3570 sh sh sh stretching: structural O-H from HAP
3438 3437 3430 3430 O-H. . .O stretching: absorbed water with H-bonding
1635 1635 1632 1633 absorbed water bending mode ν2

- - 1488 1489 CO3
2−

1421 1407 1421 1420 CO3
2−

1385 - - - CO3
2−

1094 1096 1096 1096 PO4 asymmetric stretching ν3
1043 1039 1039 1039 PO4 asymmetric stretching ν3
962 963 963 963 PO4 symmetric stretching ν1 (forbidden in IR)
875 - 874 - CO3

2−

634 sh sh sh OH vibration
603 604 605 605 PO4 asymmetric bending ν4
567 566 566 566 PO4 asymmetric bending ν4
472 474 473 - PO4 symmetric bending ν2

sh—shoulder.

For SEM-EDX measurement, the powder HAP samples were deposited in slim sheets
on SEM grids. An FE-SEM image (Figure 3A) shows individual particles at high magnifica-
tion. The average diameter of HAP particles was found to be 40.0 ± 7.5 nm.

Figure 4A shows the STEM image of the self-assembled trisubstituted HAP nanoparti-
cles, and Figure 4B shows that, in addition to the elements present in the pure HAP, the
elements with which the HAP has been doped also appear.
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Atomic force microscopy (AFM) images were collected for all the prepared HAP sam-
ples (Figures 6–9), as well as all teeth, both unmineralized and demineralized with phospho-
ric acid (Figure 10), and those treated with the newly developed toothpaste (Figure 11). On
optically polished glass plates, the particles were adsorbed from their aqueous dispersion;
then, in all cases, the area scanned was 1 µm × 1 µm.
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Figure 6. AFM images of HAP-5% Zn: (A) topography image, (B) phase image, (C) amplitude image,
(D) 3D image, and (E) histogram for image (A). Scanned area 1 µm × 1 µm. Particle diameter is
determined from histograms (at least 3) as 40 ± 5 nm.
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Figure 7. AFM images of HAP: (A) topography image, (B) phase image, (C) amplitude image, (D) 3D
image, and (E) histogram for image (A). Scanned area 1 µm × 1 µm. Particle diameter is determined
from histograms (E) (at least 3) as 30 ± 3 nm.
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Figure 8. AFM images of HAP-Mg-Zn-Sr-Si (HAP-0.23%Mg-3.09%Zn-10%Sr-2%Si): (A) topography
image, (B) phase image, (C) amplitude image, (D) 3D image, and (E) histogram for image (A).
Scanned area 1 µm × 1 µm. Particle diameter is determined from histograms (E) (at least 3) as
37 ± 4 nm.
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and is marked with a white arrow, and the other half was demineralized by treatment with 
phosphoric acid: (A) topography image; (B) amplitude image; (C) 3D image; (D) cross-section 

Figure 9. AFM images of HAP-Mg-Zn-Si (HAP-2.50%Mg-1.34%Zn-2.90%Si): (A) topography image,
(B) phase image, (C) amplitude image, (D) 3D image, and (E) histogram for image (A). Scanned area
1 µm × 1 µm. Particle diameter is determined from histograms (E) (at least 3) as 38 ± 5 nm.
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Figure 10. AFM images of two half-slices: one half-slice was untreated (natural enamel for control)
and is marked with a white arrow, and the other half was demineralized by treatment with phosphoric
acid: (A) topography image; (B) amplitude image; (C) 3D image; (D) cross-section profile for white
arrow in image (A), representing natural enamel zone; and (E) histogram for image (A). Average
diameter of NPs was 42 ± 5 nm on natural enamel and 73 ± 6 nm on demineralized enamel. Scanned
area 1 µm × 1 µm.

It can be noted that the particles in HAP samples are spherical or oval, and their sizes
range from 30 nm for unsubstituted HAP (Figure 7) to 40 nm for HAP-5% Zn (Figure 6),
values close to those of natural enamel (42 nm, Figure 10E). These values are fairly similar
to those obtained by XRD (Table 2). In the case of artificially demineralized teeth (Figure 10),
there is not only an increase in roughness (Ra = 9.92 nm) but also an increase in the average
particle size (73 nm).

Figure 11 shows AFM images of a remineralized enamel surface treated with P1 to
P4 toothpastes for 10 days, showing 2D topography (A,D,G,J), 3D topography (B,E,H,K),
and histograms (C,F,I,L) for the 2D images for artificially demineralized enamel treated for
10 days with the four toothpastes P1 (A–C), P2 (D–F), P3 (G–I), and P4 (J–L), for scanned
area of 1 µm × 1 µm.

These images show the surface morphology of the enamel surface, confirming the
globular nature of HAP nanoparticles that are uniformly dispersed across the enamel
surface with an average diameter of about 40 nm for enamel treated with P1 (Figure 11C),
with an average diameter of around 30 nm for P2 (Figure 11F), with an average diameter
of about 37 nm for P3 (Figure 11I), and with an average diameter of about 35 nm for P4
(Figure 11L).
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Figure 11. AFM images: 2D topography (A,D,G,J), 3D topography (B,E,H,K), and histograms for
images (C,F,I,L) for demineralized enamel treated for 10 days with four toothpastes: P1 (A–C), P2
(D–F), P3 (G–I), and P4 (J–L), for scanned area of 1 µm × 1 µm.

In the surface roughness investigation employing one-way ANOVA and Bonferroni’s
multiple comparison as a post-test of enamel samples, the scanned (1 µm × 1 µm) area
revealed quite large variations between the artificially demineralized enamel (NC) and
the natural enamel control. After 10 days of treatment with the four toothpastes, P1–P4,
the lowest arithmetic mean roughness (Ra) was observed for P2 toothpaste containing
nanostructured HAP, with Ra values that were not significantly different from control
values in the statistical analysis, indicating a relative remineralization efficiency when
compared to the corresponding Ra value of intact enamel. It was observed that Ra values
for using P1–P4 toothpastes decline in the following order: P1 > P4 > Ctrl > P3 > P2
(Figure 12).
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0 days), natural enamel (Ctrl) at 0 days and artificially demineralized surfaces treated with P1–P4
toothpastes for 10 days (10 d treatment). The degrees of statistical significance are marked by asterisks
as follows: * 0.01 < p < 0.05; ** 0.001 < p < 0.01; *** p < 0.001.

4. Discussion

Dental caries begins at the enamel level with the demineralization of the hard tissue
caused by net mineral loss from the hydroxyapatite (HAP) lattice [66]. The disintegration
of hydroxyapatite crystals in an acidic oral environment results in the loss of calcium and
phosphate from the tooth enamel structure [25]. Biomimetic mineralization, which involves
the attachment of a mineral layer to the surface of the teeth, is an excellent method for
restoring the enamel structure [67].

This work provides a thorough examination of four novel nanomaterials utilized in
the manufacture of toothpastes (Table 1). The toothpastes were prepared utilizing various
substituted hydroxyapatites containing magnesium (Mg), zinc (Zn), strontium (Sr), and
silicon (Si) as substitution elements. According to the literature, zinc (Zn2+), magnesium
(Mg2+), and strontium (Sr2+) ions can be placed in the calcium position; SiO4

4− ions can
be placed in the PO4

3− and hydroxyl position of hydroxyapatite; and carbonate (CO3
2−)

ions can be placed in the hydroxyl and phosphate positions [56], with a change in their
mechanical properties accordingly [66].

The rationale for using these substitution elements in our toothpastes was that the
hardness of enamel is highly correlated with the zinc content, the presence of which marks
the beginning of biomineralization. Mg2+ ions can regulate HAP crystallization, hindering
the growth of HAP crystals and thus forming new nano-HAP crystals [67]. Strontium
demonstrates desensitizing and remineralization attributes, consequently bolstering enamel
integrity [46]. Conversely, silicon manifests heightened remineralization characteristics,
conferring resilience against acid-induced degradation [47].

The interactions between nano-HAP particles and the enamel surface that result in
remineralization are not fully understood. One potential mechanism is that nano-HAP
particles induce remineralization by acting as a nucleus that attracts calcium and phosphate
from saliva [68].
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X-ray diffraction (XRD) was used in our study to confirm the presence of a distinct
HAP phase in both pure and substituted hydroxyapatites (Figure 1). Due to compositional
modifications, lattice parameters a and c showed minor changes, with Zn substitution
resulting in a little decrease in lattice constants (Table 2). The Ca (II) site in the HAP lattice
delivered energetically favorable sites for Zn substitution. However, the ms-HAP lattice,
both for three and four substitutions, exhibited a small increase in a and c values, indicating
that there is a compensation effect of substitution of these elements within the HAP lattice
leading to a stable ms-HAP lattice.

Table 3 provides an interpretation of the results acquired from the FTIR study. The
FT-IR spectra of all samples (e.g., Figure 2) are very comparable, displaying all absorption
peaks for the PO4

3−, OH-, and CO3
2− groups in hydroxyapatites. FTIR spectra lack

bands assigned to vibrations of non-apatitic HPO4
2− ions as well as peaks suggestive of

nonstoichiometric apatites [56,69–71].
At high magnification, scanning electron microscopy (FE-SEM) images revealed in-

dividual hydroxyapatite particles (Figure 3A). According to the indicated composition,
energy-dispersive X-ray spectroscopy (EDX) revealed the presence of calcium (Ca), phos-
phorous (P), and oxygen (O) elements for stoichiometric HAP (Figure 3B) and all substi-
tuting elements within ms-HAPs (STEM images and EDX spectra in Figures 4 and 5). The
average diameter of HAP particles was found from FE-SEM images (as in Figure 3A) to be
40.0 ± 7.5 nm. From the EDX spectra (as in the example given in Figure 3B), the concentra-
tions of the elements are found to be in agreement with the theoretical composition of these
elements determined by ICP-AOS. All the HAP components (Ca, P, and O) are visible in
Figure 3B. Similar to this, the presence of all doping elements, specifically Mg, Zn, and Si,
is confirmed from STEM images for multisubstituted HAPs employed in our toothpastes
(Figures 4A and 5A) and their EDX spectra (Figures 4B and 5B).

AFM images were used to visualize the morphology and NP size characteristics for the
pure HAPs used in the preparation of the four toothpastes (Figures 6–9). The morphology
of pure (natural) enamel and of artificially demineralized enamel is shown in Figure 10A–D,
jointly with the histogram of their constitutive NPs (Figure 10E). Also, the morphological
effects of treatment with the four toothpastes on the artificially demineralized enamel
surface are given in Figure 11. Natural enamel contains 20–40 nm HAP nanoparticles,
and it has been proposed that using 20 nm HAP nanoparticles is efficient in repairing
damaged enamel [25]. In this study, HAP nanoparticles from demineralized enamel had a
larger average size (73 nm) than those from naturally occurring enamel (42 nm), as seen in
Figure 10E. This finding shows that biological HAP nanoparticles on the healthy enamel
surface are smaller than those found inside the enamel due to surface erosion over time.
Similar observations were previously shown [54,69,72].

Surface roughness (Figure 12) and particle size differences have been identified in
AFM studies of natural enamel and demineralized enamel (Figure 10) and toothpaste-
treated enamel (Figure 11). AFM images indicated round or oval nanoparticles with
diameters ranging from 30 to 40 nm. Studies on surface roughness (Ra values) found
that P2 toothpaste (containing HAP, Ca10(PO4)6(OH)2, with NPs of about 30 nm) had the
highest remineralization efficacy and the lowest Ra corresponding values, comparable
with P3 toothpaste (ms-HAP: Ca8.19Mg0.10Zn0.5Sr1.21(PO4)5.25(SiO4)0.75(OH)1.25 with NPs
of around 37 nm) indicating that both toothpastes have a close resemblance to natural
enamel properties. These dimensions are similar to those found in natural enamel, meaning
that the degree of remineralization achieved with these toothpastes would be comparable.
Furthermore, these findings might be linked to the formation of an evenly distributed
coating layer of synthetic HAP nanoparticles on the enamel surface, limiting the depths
and types of lesions induced by the demineralizing process. These results are somewhat in
agreement with existing evidence as described in previous studies [31,47,48,57,70,72,73].
Although the remineralization process is not completely understood, our findings suggest
that the biomimetic hydroxyapatite nanoparticles adsorbed on the enamel surface can
function as reservoirs for calcium and phosphate ions as well as for substituting ions in
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the HAP lattice. The released ions can contribute to biomimetic remineralization and
regeneration of the enamel surface [56,57].

Statistical analysis of the roughness described by the mean Ra values from AFM imag-
ing indicated (Figure 12) significant variations in roughness between NC and control with
a p value of 0.0001 and between NC and all other surfaces treated with P1–P4 toothpastes
with a p value of 0.0001. It should be noted that the P2 test group exhibited the lowest
values when compared to all the P1, P3, and P4 groups, each of which was treated with
the corresponding toothpaste, and even lower values than the control when compared to
untreated intact enamel. This is explained by the use of smaller HAP nanoparticles (30 nm)
to fill the smallest erosion cavity depths more efficiently. P1 toothpaste had the lowest
remineralization efficiency with increasing Ra values, which was statistically significantly
different from the control (p value 0.05), P2 (p value 0.01), and P3 (p value 0.05). The P3
and P4 remineralization efficiencies were about the same as the control value. As a result,
P2 and P3 toothpastes shown a strong ability to repair artificially demineralized human
enamel. The remineralization process has significant clinical value in the prevention and
treatment of early stages of dental caries disease, and it is thus regarded as an important
treatment technology in minimally invasive dentistry [67]. Nanosized HAP can facilitate
HAP penetration into enamel pores (or microcracks); nanosized HAP fills the small cavi-
ties [73] and allows the addition of calcium and phosphate back into the enamel structure
from supersaturated oral fluids and consequently may lead to its remineralization [25].

Changes in the concentration of substitution elements within the HAP lattice, as a
future research direction, may allow for even more exact control over the enamel remineral-
ization process. This potential advancement could lead to toothpastes tailored to various
levels of enamel damage and sensitivity. Another approach could be to develop hydroxya-
patite nanoparticles that accurately transport active compounds, such as antimicrobial or
anti-inflammatory molecules [29]. These nanoparticles might be engineered to gradually
release beneficial bio-compounds over time. This controlled release mechanism may give
long-term protection against tooth decay, enamel demineralization, or gingivitis. As these
new toothpaste formulations evolve, thorough biocompatibility and safety evaluations will
become increasingly vital. Researchers will need to conduct thorough studies to explore the
long-term consequences of nanoparticle exposure on oral tissues, overall systemic health,
and potential interactions with existing dental therapies or medications. Finally, the future
of hydroxyapatite-based toothpaste formulations holds enormous promise for personalized
dental care, enhanced enamel remineralization, and the incorporation of cutting-edge tech-
nologies. Continued research and collaboration among dentists, materials scientists, and
regulatory agencies will be critical in influencing these technical breakthroughs. We will be
able to build a biomimetic remineralization technique by modeling the biomineralization
process as our understanding of the biomineralization of dental hard tissues advances [66].

While these results provide valuable insights on enamel remineralization using nano-
materials, some limitations might be accepted to ensure an adequate comprehension of
the implications of this research. This study is based on controlled laboratory conditions
that may not fully reproduce the complex and dynamic oral environment. pH variations
and bacterial activity can have a major impact on the efficiency of toothpaste formulations.
This research work focuses on the short-term effects of toothpaste treatments, examining
changes in enamel characteristics over a short period of time. In a future investigation, the
strength of enamel remineralization will be considered jointly with the development of
toothpaste containing supplementary antimicrobial components.

5. Conclusions

In conclusion, four biomimetic toothpastes (P1–P4) with a low concentration (3.7%)
of pure hydroxyapatite or substituted hydroxyapatite and low crystallinity were devel-
oped with the potential to promote oral health and prevent tooth decay through enamel
remineralization. The AFM study revealed that P3 toothpaste with tetrasubstituted hydrox-
yapatite (HAP-Mg-Zn-Sr-Si) performed the best in terms of human enamel remineralization
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when compared to the other toothpastes P1 (HAP-Zn) and P4 (HAP-Mg-Zn_Si), with ap-
proximately the same remineralization efficiency as P2 (HAP) toothpaste after 10 days of
toothpaste treatment. The smallest nanosized particles (about 30 nm in average size of
HAP) showed great potential in the remineralizing process by covering lesion regions of
enamel. All results of treating human enamel for 10 days with each of the P1–P4 toothpastes
lead us to assume that these toothpastes can be used successfully to treat early tooth decay
and, more importantly, artificially demineralized enamel.
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73. Babayevska, N.; Woźniak-Budych, M.; Litowczenko, J.; Peplińska, B.; Jarek, M.; Florczak, P.; Bartkowiak, G.; Czarnecka, B.; Jurga,
S. Novel nanosystems to enhance biological activity of hydroxyapatite against dental caries. Mater. Sci. Eng. C Mater. Biol. Appl.
2021, 124, 112062. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2174/138620711795222491
https://doi.org/10.1007/s10856-021-06583-x
https://www.ncbi.nlm.nih.gov/pubmed/34455518
https://doi.org/10.1038/srep40701
https://doi.org/10.1038/s41598-022-21545-1
https://doi.org/10.1016/j.sjbs.2020.11.020
https://doi.org/10.1039/D3RA02580B
https://doi.org/10.1016/j.powtec.2012.08.030
https://doi.org/10.1039/b806090h
https://doi.org/10.1016/j.msec.2021.112062
https://www.ncbi.nlm.nih.gov/pubmed/33947556

	Introduction 
	Materials and Methods 
	Materials 
	Synthesis of Four HAPs Used in Toothpastes 
	Preparation of Toothpastes 
	Study Protocol for Obtaining Enamel Slices 
	Enamel Treatment with Toothpaste 
	Methods 

	Results 
	Discussion 
	Conclusions 
	References

