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Abstract: In this paper, we present a two-phase multimodal optimization model designed to effi-
ciently and accurately identify multiple optima. The first phase employs a population-based search
algorithm to locate potential optima, while the second phase introduces a novel peak identification
(PI) procedure to filter out non-optimal solutions, ensuring that each identified solution represents a
distinct optimum. This approach not only enhances the effectiveness of multimodal optimization
but also addresses the issue of redundant solutions prevalent in existing algorithms. We propose
two PI algorithms: HVPI, which uses a hill-valley approach to distinguish between optima, without
requiring prior knowledge of niche radii; and HVPIC, which integrates HVPI with bisecting K-means
clustering to reduce the number of fitness evaluations (FEs). The performance of these algorithms
was evaluated using the F-measure, a comprehensive metric that accounts for both the accuracy
and redundancy in the solution set. Extensive experiments on a suite of benchmark functions and
engineering problems demonstrated that our proposed algorithms achieved a high precision and
recall, significantly outperforming traditional methods.

Keywords: multimodal optimization; peak identification; evolutionary computation

1. Introduction

Many real-world problems have multiple satisfactory solutions. When dealing with
such multimodal problems, for two reasons, it is often desirable to locate multiple optima
instead of a single optimum. First, multiple optima can provide useful domain knowledge
of the problem at hand. Second, sometimes the optimal solution cannot be realized due to
physical constraints. Under such circumstances, users can quickly switch to other solutions
if multiple good solutions are provided. Multimodal optimization, which aims to find
multiple optimal solutions to a given problem, has received increased attention recently.

A promising approach to multimodal optimization is bio-inspired optimization algo-
rithms, which are population-based metaheuristics inspired by natural processes [1-4]. These
algorithms have been successfully applied to various search and optimization tasks [5-8].
Evolutionary algorithms (EAs) represent a prominent branch of bio-inspired optimization
algorithms [9,10]. Traditionally, the population of an EA will converge to a single solution,
with the final output being the best solution found. Nevertheless, the intrinsic parallelism
of EAs suggests that they should be able to simultaneously locate multiple optima for a
multimodal problem. Over the years, a number of studies have been performed on the
use of EAs to tackle multimodal optimization problems. The techniques developed are
commonly referred to as “niching” [11,12], which preserve multiple stable niches and pre-
vent global convergence to a single solution. Some prominent niching techniques include
crowding [13,14], fitness sharing [15], restricted tournament selection [16], and species
conserving [17]. Species are formed within basins of attraction using these niching tech-
niques. According to whether the species are maintained explicitly, niching techniques can
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be divided into two categories, explicit niching and implicit niching techniques. Explicit
niching techniques divide the population into subpopulations using radius-based meth-
ods [18,19], topology-based methods [20,21], or clustering methods [22,23]. In comparison,
implicit niching uses a mechanism that facilitates the maintenance of population diversity.
Species are formed automatically after several successive iterations using implicit niching
techniques. Some recently proposed multimodal optimization algorithms [24-26] fall into
this category.

The general framework of a current multimodal optimization system is shown in
Figure la. It contains two parts. The first part is a multimodal optimization algorithm, and
the second part is an evaluation system. In the first part, the output of an EA-based multi-
modal optimization algorithm is the final generation (or with an additional archive [27]).
Note that there may be some duplicated or inferior individuals in the final generation.
We need a procedure to extract the determined optima from the population. Therefore,
in the evaluation system, efforts are first made to identify representative individuals. In
the literature, the algorithm proposed by Parrott and Li [28,29] (denoted as PL hereafter)
is commonly used to identify the found optima. It is the standard peak identification
(PI) procedure for performance comparison of algorithms participating in a multimodal
optimization competition. The input of the PL algorithm includes the final generation, the
fitness value of global optima (peak height), a parameter called niche radius, and a user-
specified accuracy level, while its output is a solution set containing all identified peaks.

Output: Output:

Final generation \ / Solution list
( Multimodal algorith\xn ( Measurer%ent system

Population-based ‘

Search Algorithm

Peak Identification Performance Measure —»

Input:
. Output:
\ Peak height Pu put: /
eak ratio
Accuracy level
Niche radius

(a)

Output: Output:

Final generation ~ Solution list
( Multin\odal algorithm Measurement system

Performance Measure

Population-based
Search Algorithm

Peak Identification

Output:
Input: Peak ratio
Accuracy level F-score

(b)

Figure 1. Frameworks of multimodal optimization: (a) current of multimodal optimization system,
(b) modified multimodal optimization system.

There is a defect in the system model shown in Figure 1a. When dealing with real-
world problems, to our knowledge, there does not exist a peak identification technique
to extract the set of optima from the final generation. The aforementioned PL algorithm
cannot be used, because it is impractical to know the niche radius and the peak height. For
algorithms using explicit niching techniques, it is possible to output the best individual
(species seed) in each species as the set of optima. However, if several species converge to
the same peak, similar solutions will appear in the output. On the other hand, for implicit
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niching techniques, it is even harder to find representative individuals in a population.
Existing algorithms generally use a population whose size is larger than the number of
optima, and this potentially results in redundant solutions. If an algorithm outputs the
final generation, users will have to try out each candidate solution (individual), which is a
tedious task.

To summarize, for practical use, multimodal optimization algorithms should explicitly
output the number of found optima and their positions. It should be the multimodal
algorithm that engages peak identification, rather than the evaluation system, as shown in
Figure 1b. In this work, we propose a generic two-phase framework for multimodal opti-
mization algorithms. As illustrated in Figure 1b, the first phase is a population-based search
algorithm (SA), which have been extensively studied in the literature. The second phase is
a peak identification (PI) process that is used to rectify the output of the population-based
search algorithms. We suggest deploying the PI process in the optimization component of
a multimodal optimization system rather than in the evaluation component. Differently
from existing works that focused on SA, this paper is dedicated to the second phase and
aims to design a PI algorithm that can be used to identify representative individuals in the
optimization component. To this end, we propose new PI algorithms that eliminate the
need for any a priori knowledge. Instead of using the niche radius parameter, we check
whether two individuals are in the same region of attraction by applying the hill-valley
approach [30]. The use of the hill-valley approach involves fitness evaluations (FEs). To
reduce the cost of the FEs, a bisecting clustering technique is embedded in the developed PI
algorithm. The resulting algorithm is termed HVPIC (hill-valley-based peak identification
algorithm using clustering). To the best of our knowledge, this work is the first attempt to
tackle the peak identification task without using a priori knowledge.

To study the performance of two-phase multimodal algorithms, a performance index
called the F-measure [31] was introduced. Using the F-measure, multimodal algorithms
that find more optima and output fewer redundant individuals can receive higher scores.
The F-measure is an improvement on the traditional performance measure peak ratio
(PR) [29]. PR only takes into consideration the number of optima found. In comparison,
the F-measure also takes into account the redundancy rate of the output. It encourages
multimodal algorithms to output a redundancy-free solution list. Experiments were carried
out on a number of widely used test functions to investigate the effect of the designed PI
algorithm. The results showed that the HVPIC model was able to correctly identify the
representative individuals.

There are some conventions used in this paper: the terms “peak” and “optimum”
are used interchangeably when we are solving a maximization multimodal problem. In
addition, we differentiate between the terms “niche” and “species” [32]. Each region of
attraction is called a niche and each subpopulation is called a species.

The rest of this paper is organized as follows: Section 2 reviews the peak identification
algorithms used in the literature. Section 3 details the proposed peak identification algo-
rithm. A comprehensive performance measure for multimodal algorithms is introduced
in Section 4. In Section 5, experiments were carried out to investigate the performance of
the HVPIC model. Experimental results and discussions are also included in this section.
Finally, conclusions are drawn in Section 6.

7

2. Niche Radius-Based Peak Identification

To evaluate the performance of a multimodal algorithm, it is necessary to determine
the number of distinct peaks located by the population. The PL algorithm is an algorithm
designed to handle this task. In this section, we first review the PL algorithm, then discuss
defects in the algorithm.

2.1. PL Algorithm

The general idea of the PL algorithm is as follows: We first identify the best individual
in a species. Then, we delete all other individuals whose distance to the species seed is less
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than a threshold value r (a parameter called niche radius). The process is repeated until we
obtain all the species seeds. Figure 2 illustrates the idea.

6

Species seed

Niche radius

Figure 2. Illustration of the principle of the PL algorithm. The colored lines represent the contours of
the Himmelblau function.

The pseudo code of the PL algorithm is shown in Algorithm 1. The algorithm maintains
a solution list S, which is initially empty. The final generation is first sorted in descending
order, according to their fitness values. Then, the algorithm looks through the individuals
in the sorted list and adds an individual to the solution list if it satisfies the following
two conditions:

Algorithm 1 PL

Input:
Lsorteg—individuals sorted in descending order;
r—niche radius;
e—accuracy level;
ph—the fitness of global optima;
Output:
S—a set of individuals identified as solutions
1: S+ O
2: while not reaching the end of L,y do

3:  Get the next unprocessed p € Lgysteq;
4:  notNewNiche < False;

5. if ph—fit(p) < e then

6: foreachs € Sdo

7: if [|s — p|| < r then

8: notNewNiche < True;

9: break;
10: end if
11: end for
12: if notNewNiche ==False then
13: S« Su{p};
14: end if
15:  end if

16: end while

1.  The difference between the optimal fitness value and the fitness of the individual is
less than the specified accuracy level ¢;
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2. The individual belongs to a different niche from those in S:
VseS:|s—X||>r (1)

where ||s — X|| denotes the Euclidean distance between s and X.

The output of the PL algorithm is S, which contains all the distinct global optima (species
seeds) found.

2.2. Complexity Analysis of PL Algorithm

The complexity of the PL algorithm can be measured by the number of distances
calculated (i.e., the number of executions of the condition test in line 7). Suppose there
are N individuals in the Lg,,+.4. In the best case, all the individuals are in the same niche,
and the solution list S will contain only one element throughout the running process. The
code in the for loop (lines 7-10) will execute only once for each p € Lg,,44. Consequently,
the running time of the PL algorithm, in the best case, is O(N). In the worst case, all the
individuals have reached the accuracy level and each individual belongs to a different
niche. For the i-th individual in Lg,.4, i — 1 comparisons are needed before it is added to S.
Therefore, the complexity T(N) of the PL algorithm is bounded by the following inequality:

N _
TIN) <Y (i-1)= w (2)

i=1

It can be inferred that the worst-case complexity of the PL algorithm is O(N?). Generally,
the total number of distance calculations will not exceed N - N, where N; is the number of
species in the final generation. This is a much tighter upper bound of the complexity of the
algorithm, since N; is generally much less than N.

2.3. Difficulty of Setting the Niche Radius

If all species in the final generation have sufficiently converged, the identification task
becomes trivial. As an extreme case, suppose that individuals in the same species have
converged to a single point, then we just need to delete the duplicated individuals in the
final generation and we will obtain the answer, i.e., each individual exclusively represents
a possible optimum. However, for more general cases, due to the limited budget for fitness
evaluations, it is more likely that individuals in the same species are scattered within a
promising region.

The PL algorithm uses a parameter called niche radius to differentiate between indi-
viduals in different niches. Research works have been carried out on the setting of the niche
radius. In [33], Deb and Goldberg proposed a simple method to set the niche radius. They
first calculate the radius of the smallest hypersphere containing the feasible space, which is
given as

where D represents the number of dimensions of the problem at hand, and x;* and xf are
the upper and lower bounds of the i-th dimension, respectively. Then, the niche radius is
estimated as

r=—— 4)

where N, is the number of global optima. The formula is based on the assumption that
the optima are evenly distributed in the search space [34]. The main drawback of this
approach is that it is practically impossible to know the number of optima in advance.
Moreover, a fixed niche radius setting implicitly assumes equally sized and spherically
shaped niches [35,36]. To tackle the problem of finding unevenly spread optima, Jelasity and
Dombi [37] proposed using a radius function instead of a single radius. Some adaptation
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methods were later proposed in the literature [18,26]. Note that the adaptation of the niche
radius is a long-term process and is difficult to generalize to other algorithms. The setting
of the niche radius for the PL algorithm remains a difficult task.

Here, we illustrate the challenges in finding the right setting for the niche radius. As
long as the niche radius is set to less than the distance between the two closest optima,
individuals in two different niches can be well separated. On the other hand, if the niche
radius is set too small, there is a danger that individuals in the same niche will be regarded
as being in two species. This situation occurs when the regions of attraction are of different
shapes or sizes. Figure 3 gives an example to illustrate the situation. In Figure 3, there are
three niches and four individuals. The stars (S1, Sy, and S3) are used to denote the peaks
and the solid points (A, B, C, and D) are used to represent the individuals. Two individuals
are located in the niches on the left, and the other two are located in the niche on the right.
Suppose that the distance between A and B is d 45 and the distance between C and D is d¢p.
We assume that the fitness values of the individuals have reached the required accuracy
level. To separate A and B, the niche radius must be smaller than d 45. On the other hand,
tojoin C and D, the niche radius must be larger than dcp. The fact that dcp is larger than
d sp leads to a dilemma when setting the niche radius.

Search space

Figure 3. A situation where the PL algorithm fails.

The disadvantage of using niche radii is observed when we use NCDE [38], a state-of-
the-art population-based search algorithm, to optimize the Vincent function. The Vincent
function is a frequently used test function in the literature [29]. Figure 4 shows a landscape
of its 2-D version. The niches are of elliptical shape. They have different eccentricities and
their sizes vary significantly. The parameters of the NCDE algorithm are set according
to [38] and the population size is fixed at 200. The NCDE algorithm terminates after
100 iterations. Figure 5a shows the distribution of individuals in the final generation of the
NCDE algorithm. The PL algorithm is used to identify the representative individuals. Its
input parameters are set as follows: ¢ = 0.1, ph = 1.0. Two niche radii, i.e.,, r = 0.1 and
r = 0.5, are tested in the example. The outputs of the PL algorithm with the two settings
are shown in Figure 5b and c respectively. From Figure 5b, it can be seen that dozens of
optima are identified. However, several of the optima are actually in the same region of
attraction. The reason for this is that the niche radius is too small for some niches. On the
other hand, a larger niche radius may jeopardize the detection of optima located in narrow
niches, as depicted in Figure 5c. From Figure 5c¢, it can be observed that some optima are
mistakenly excluded from the output.
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Figure 5. Effect of PL, HVPI, and HVPIC. The colored lines represent the contours of the func-
tion landscape. (a) Distribution of individuals in the final generation of the NCDE algorithm.
(b) Optima identified by PL with r = 0.1. (c) Optima identified by PL with r = 0.5. (d) Optima
identified by HVPI. (e) Optima identified by HVPIC.
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3. The Proposed Topology-Based Peak Identification Algorithm

The PL algorithm works well when the following two conditions are met: (1) all peaks
are of similar shape and size, (2) the niche radius is correctly set. However, in practice, the
first condition is not always satisfied and the niche radius is difficult to set. Therefore, a
more rigorous algorithm whose performance is robust to the problem landscape is desired.
We therefore propose using topology-based methods. In this way, the final generation
can be correctly divided into species, regardless of the shapes and sizes of the niches.
Specifically, we developed two improved algorithms, as follows:

1.  HVPL a hill-valley-based peak identification algorithm.
2. HVPIC: a hill-valley-based peak identification algorithm coupling with clustering.

3.1. Hill-Valley-Based Peak Identification (HVPI)
3.1.1. The HVPI Algorithm

The first improvement is based on the intuition that two individuals are located in
different niches if there is a valley between them. In the new HVPI algorithm, the topology-
based hill-valley approach is used to determine whether two individuals are in the same
niche. The hill-valley approach is rigorously defined in the following manner. For any
two points p; and p; in the search space, a valley exists between them if there exists a
point p3 on the line segment L connecting p; and p; such that the fitness value at p3 is less
than the fitness values at both p; and p;. Mathematically, the hill-valley condition can be
expressed as

fit(ps) < min{fit(p1), fit(p2)} (5)

where p3 = p1 + (p2 — p1) - t and t is a real value within (0,1). To negate the existence of
a valley, checking every point along the line segment L would be impractical. Therefore,
the hill-valley approach employs an approximation scheme, where a decision is made
based on a fixed number of sampled points. If the test returns TRUE, a valley is identified
between the two individuals. Conversely, if the result is FALSE, it is likely that the two
individuals belong to the same niche. The sample points are determined by an array
Samples = [t1,tp,...,ty], where each element ; is within the interval (0,1) and « is the
sample size. The detailed procedures are described in Algorithm 2 and Figure 6 illustrates
the process.

A i
Fitness

»

Pi Ds P2 Search sparce

Figure 6. Illustration of hill-valley.

The hill-valley approach has been adopted by researchers to enhance the niching
performance of population-based multimodal algorithms [39-41]. In this paper, it is used
as an elementary operation of the improved PI algorithm. By replacing the test condition
in line 7 of Algorithm 1 with the hill-valley approach, we obtain a peak identification
algorithm that can handle the situation in which niches have different shapes and sizes. In
addition, the niche radius r is removed from the parameter list. The resulting algorithm is
termed hill-valley-based peak identification (HVPI). For completeness, the pseudo code of
the HVPI algorithm is provided in Algorithm 3.
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Algorithm 2 hill-valley

Input:
p1, p2—two individuals;
Output:
valleyExists—a Boolean value indicating whether there is a valley between the two
individuals;
1: valleyExists < False;
2: for each t € Samples (Samples is a fixed array of real values within [0, 1]) do

3 ppeprt(pa—p)-t
4. iffit(p3) < min{fit(p1),fit(p2)} then
5 valleyExists < True;
6: break;
7 end if
8: end for
Algorithm 3 HVPI
Input:

Lsorteg—individuals sorted in decreasing fitness values;
e—accuracy level;
ph—the fitness of global optima;
Output:
S—a set of individuals identified as solutions
1: S+ O
2: while not reaching the end of L,y do
3:  Get the next unprocessed p € Lgysteq;
4:  notNewNiche < False;
5. if ph—fit(p) < e then
6: foreachs € S do
7 if hill-valley(s, p)==False then
8 notNewNiche < True;
9

: break;
10: end if
11: end for
12: if notNewNiche ==False then
13: S« Su{p};
14: end if
15:  end if

16: end while

To further aid comprehension, a diagram that visually represents the flow of oper-
ations within the HVPI algorithm is depicted in Figure 7. The algorithm accepts a list
of individuals, L4, arranged in order of their fitness values. It starts with the first
individual, Xj, and subsequently evaluates the presence of a valley between X; and each
subsequent individual in the list {X3, X3, ..., Xg} using the hill-valley approach. If no
valley is found between X; and another individual, such as X4, the algorithm concludes
that these individuals belong to the same niche. As shown in the diagram, no valley is
detected between X; and Xy, so Xy is considered redundant and removed from Lg,,.4. The
same logic applies to individual Xg. After the initial assessment, X; is extracted from Lg;teq
and added to the solution set S. This procedure is repeated iteratively for the remaining
individuals in Lgyye4. In the end, the HVPI algorithm produces a solution set S that consists
of non-redundant, optimally diverse individuals.
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@ Cases where no valley
-« .
. is detected

Figure 7. Illustration of HVPL

Continuing the experiment conducted at the end of Section 2, the HVPI algorithm
is used to filter the final generation of the NCDE algorithm. The optima identified using
HVPI are plotted in Figure 5d. It can be seen that no any two individuals in the output are
located in the same niche.

3.1.2. Discussion

In the optimization process, information about the problem is enclosed in a black
box and is invisible to the PI algorithm. The distance between the two closest optima are
unknown. Therefore, we developed a topology-based PI algorithm (HVPI) to avoid using
this knowledge. While topology methods eliminate the need for fine-tuning the niche
radius, they require sampling and evaluating new individuals to capture the landscape
topology, incurring extra FEs. According to the complexity analysis of the PL algorithm,
it can be inferred that, in the worst case, approximately O(N; - N) FEs are required by
HVPI. In the best case, approximately O(N) FEs are needed. In both cases, the number of
FEs is related to the number of individuals N. In real-world applications where FEs are
expensive or time-consuming, an excess requirement for FEs will reduce the practicability
of the algorithm. Therefore, another design challenge for a topology-based PI algorithm is
to reduce the number of FEs.

3.2. Hill-Valley-Based Peak Identification Using Clustering (HVPIC)
3.2.1. Rationale

The second improved algorithm takes inspiration from clustering techniques. Clus-
tering techniques have been adopted by researchers in the EC community to investigate
population distributions. They can be used to discover the natural groupings of a set of
individuals and thereby serve the purpose of dividing a population into multiple subpopu-
lations [42,43].

Clustering techniques have become powerful tools for EAs in multimodal optimiza-
tion. Generally, the clustering tendency of individuals is evident in the final stage of the
optimization process and clustering algorithms are very effective when used in the stage.
The rationale for the HVPIC algorithm is as follows. In HVPI algorithm, the hill-valley ap-
proach calls for a large number of pairs of individuals, without considering the population
distribution. If a clustering algorithm is applied to the population, individuals assigned
to a cluster are very likely to be in the same niche. This suggests that one can exploit the
clustering outcome to avoid unnecessary use of the hill-valley approach, which will greatly
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reduce the number of FEs. Based on this consideration, a robust clustering algorithm
named bisecting K-means algorithm is employed in HVPIC. According to the characteristic
of the bisecting K-means algorithm, we show that the number of FEs consumed by HVPIC
is proportional to the number of optima of the problem at hand.

3.2.2. K-Means and Bisecting K-Means

Before moving on to the improved algorithm, a brief introduction to K-means and
bisecting K-means is presented as a preliminary to the forthcoming discussions. K-means
is one of the most popular clustering algorithms. Let Xy, ..., X;; be a set of m points to be
clustered into K clusters Cy, ..., Ck. Let y; be the centroid of cluster C;. The objective of the
K-means algorithm is to minimize the sum of the squared error (SSE):

K
SSE({Cy,....Ck}) =Y Y IX — wil? (6)

i=1 X€C;

The detailed procedures of the algorithm can be found in [44]. K-means outputs a cluster list,
which indicates the cluster assignments of the data points. Working in an iterative manner,
the algorithm is, however, sensitive to the random initialization of cluster centroids.

Bisecting K-means, proposed by Steinbach et al. [45], is a straightforward extension
of the basic K-means algorithm. It maintains a cluster list, which initially includes the
cluster containing all the data points. In each iteration, the algorithm selects a cluster
from the cluster list and splits the cluster into two smaller ones using the basic K-means
algorithm. The two new clusters are then added to the cluster list. The process is repeated
until the cluster list contains K clusters. Algorithm 4 shows the pseudo code of the bisecting
K-means algorithm. Compared with K-means, the bisecting K-means algorithm is less
susceptible to the initialization problem, because it tries several bisections and takes the
one with the lowest SSE, and there are only two new centroids in each step [44].

Algorithm 4 bisecting K-means

Input:
X1, ..., Xm— a set of points to be clustered;
K-number of clusters;
Output:
Lc—a cluster list indicating the cluster assignments of the points;
1: Initialize a list of cluster L¢ to contain the cluster consisting of all the points;
2: repeat
3:  Remove the cluster C with the largest SSE from the list of clusters L;
4 {C1,Cy} + K-means(C,2)
5. fori = 2 to number of trials do
6: {C{,C5} < K-means(C,2)
7 if SSE({C},C,}) < SSE({C1,C3}) then
8 {C1,C2} — {CI,CQ}
9 end if
10:  end for
11:  Lc + LcU{Cy, G}
12: until |Lc| == K (the size of L¢ is equal to K)

3.2.3. The HVPIC Algorithm

The input of the HVPIC algorithm includes the final generation and a user-specified
accuracy level. No problem-specific knowledge is required. The fitness value of the best
individual is adopted as an estimated value of the peak height, as suggested in [34]. HVPIC
maintains a solution list and a cluster list. The solution list is initially empty, whereas
the cluster list contains a single cluster consisting of all the individuals in the population.
In each iteration, the cluster Cj, at the head of the list is removed. Two new clusters (C;
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and Cp) are generated by applying K-means to Cj,. Subsequently, the hill-valley approach
is applied to check whether the representative individual (best individual) in C; lies in
the same niche as the one in Cy. If the answer is yes, then it is considered that all the
individuals in Cj, are in the same niche. Therefore, the best individual cbest;, in Cj, is added
to the solution list. Otherwise, C; and C; are added to the head of the cluster list for further
division, as depicted in Figure 8. The above process is repeated until the cluster list is
empty. Algorithm 5 gives the detailed procedures of HVPIC.

Cluster list Cluster list

Cy C G| G

bisecting™ Add C, and C, bisecting\
® C, to the cluster list Cy
C . valleyExists o N
. 3 N
Hill-valley Hill-valley

Figure 8. Illustration of the bisecting process of HVPIC.

Algorithm 5 HVPIC

Input:
POP-the final generation of an EA;
e—accuracy level;
Output:
GS—a set of individuals identified as solutions;
1: Initialize a cluster list L¢ to contain the cluster consisting of all the points, initialize the
solution list;

2. ph = gbest fitness / / ph is the estimated peak height
3: repeat
4:  Remove the cluster C;, at the head of the clusters list;
5. if |Cp| > 1 then
6: {C1,Cy} < K-means(Cy,,2);
7: for i = 2 to number of trials do
8: {C{,C,} - K-means(Cy,2);
9: if SSE({C},C}}) < SSE({Cy,C,}) then
10: {C],Cz} — {C/,Cé}
11: end if
12: end for
13:  else
14: cbesty, < the best individual in Cy;
15: S« SU{cbesty};
16 continue;
17:  end if
18:  cbest; < the best individual in Cy;
19:  chestp < the best individual in Cy;
20:  if hill-valley(cbest;, cbest,)==TRUE then
21: if ph — cbest fitness < € then
22: Le+ LcU{C};
23 end if
24: if ph — cbest; fitness < € then
25: Lc+ LcU {Cz},'
26: end if
27:  else
28: S < SU {cbest;};
29:  end if

30: until Lo = @
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In Algorithm 5, gbest denotes the best individual in the population. The number of
trials in the bisecting process is set to 20. HVPIC inherits the robustness of the bisecting
K-means algorithm. Moreover, some modifications have been introduced to make the
algorithm suitable for the peak identification task.

1.  The selection of the cluster to be bisected is simplified. In bisecting K-means, the
cluster is chosen using specific rules (choose the largest cluster or the one with the
largest SSE). In the HVPIC algorithm, the cluster at the head of the list is chosen.

2. The rule that determines whether new clusters should be added to the cluster list is
redesigned. In bisecting K-means, two new clusters are added to the cluster list. In
HVPIC, only clusters consisting of individuals from different niches are added to the
cluster list.

3. The termination criterion of HVPIC also differs from bisecting K-means. Bisecting K-
means terminates when there are K clusters in the cluster list. In comparison, HVPIC
terminates when the cluster list is empty. The number of executions of the do-while
block depends on the distribution of the population and the landscape of the problem
at hand. This eliminates the need for specifying the number of clusters (species).

It is convenient to use a binary tree diagram to show the bisection process. Figure 9
illustrates the HVPIC algorithm. The root of the binary tree represents the cluster consisting
of all the individuals. Arrows pointing from a parent node to its child nodes denote the
bisection of a cluster. Each horizontal double-headed arrow indicates a call of the hill-valley
approach. A node stops spanning when (1) the best individual in it does not reach the
accuracy level or (2) the best individual in it belongs to the same niche as that in its sibling
node. The nodes that stop spanning because of the first condition contribute nothing to the
final solution set. The more general case is that leaf nodes (denoted by square in Figure 9)
are formed due to the second condition. We use T to denote the final tree, and T’ is the
tree generated by removing the leaf nodes of T. The leaf nodes of T” (denoted by concentric
circles) represent the clusters whose best individual is added to the solution list. Therefore,
the number of leaf nodes of T’ is equal to the number of optima identified by HVPIC.

Figure 9. Tree representation of the bisecting process of HVPIC.

3.2.4. Analysis of the Number of FEs Required by HVPIC

To analyze the number of FEs required by the HVPIC algorithm, we introduce the
concept of full binary trees and one of its important properties.

Definition 1. A full binary tree is a tree in which every node other than the leaves has two children.

Property 1. For any non-empty full binary tree with Ny leaf nodes and Ny internal nodes, Ny =
Ny + 1.

The property can be easily proved by induction. According to the definition, T’ is a
full binary tree. Suppose the number of leaf nodes and the number of internal nodes of
T’ are Ny and Nj, respectively. To generate T’ from the root, N, executions of the bisection
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process are conducted. Each execution will produce two new nodes. Therefore, we obtain
the following equation:
No+ Ny —1=2N, )

By applying the property, we have N, = Ny — 1. Combining the result with Ny = N;,
it gives N, = N; — 1, where N; is the number of optima identified by the HVPIC algorithm.
Meanwhile, it can be noticed that the number of executions of the bisection process is
equal to the number of calls of the hill-valley approach. The required number of FEs is
therefore given by O(aN;), which is invariant of the population size. This is an important
property. Generally, a large population size is required for problems with many optima.
This property guarantees that the number of FEs required by HVPIC will not be influenced
by the population size.

4. Performance Measure

Several performance measures have been proposed to evaluate the performance of
EAs for multimodal optimization, among which the peak ratio (PR) and success rate
(SR) are two frequently used measures [29]. Peak ratio is the percentage of successfully
located peaks:
NR
-1 NPF;
pR = L=t NPE ®)
Ng - NR
where NPF; denotes the number of global optima found in the i-th run, Ny the number of
global optima, and NR the number of runs. Success rate is the percentage of runs in which
all the peaks are successfully located:

_ NSR

SR =S (9)

where NSR is the number of successful runs.

The two performance measures are indifferent to the redundancy in the output. How-
ever, in some real-world applications (e.g., multi-object detection [46]), a redundant solution
will result in a false-positive error. It is hard for users to remove redundant solutions man-
ually. Therefore, a performance measure that forces multimodal algorithms to provide a
redundancy-free output is desired. To this end, the concept of F-measure [31] is introduced.
F-measure is an extensively used measure in the research area of information retrieval.
It is a combination of two important concepts, i.e., precision and recall. Before introduc-
ing the F-measure, we first give the definitions of precision and recall in the context of
multimodal optimization.

Consider a multimodal algorithm consisting of two components: a population-based
search algorithm and a peak identification algorithm. At the termination of the search
algorithm, we obtain a population of individuals. Then, we apply the PI algorithm to the
population and obtain a set of output solutions (denoted as Sps). Suppose the set of global
optima is given by Sgo (illustrated in Figure 10). Let |S| be the number of elements in set S.
The precision and recall of a multimodal algorithm are defined as follows:

Definition 2. Precision is the fraction of actual optima which have been identified:

Precision = [Sos N Scol (10)
|Sos|
Definition 3. Recall is the fraction of identified optima which are actual optima:
Recall = M (11)

1Scol
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Figure 10. Illustration of precision and recall.

The F-measure is the harmonic mean of the precision and recall. It provides a way to
combine precision and recall into a single value. It is computed as follows:

2 Precision - Recall
" Precision + Recall

(12)

The F-measure assumes a high value only when both the recall and precision are high.
In particular, F becomes 1 when all the optima have been located and all the redundant
individuals have been removed. Maximizing F can be interpreted as an attempt to find the
best compromise between precision and recall.

From the above definitions, it can be noticed that PR is equal to the average recall over
multiple runs. Compared with PR, F-measure is a more comprehensive measure, since
it takes into consideration both the peak ratio and the redundancy rate. If a multimodal
algorithm outputs an entire population, it is probable that it will obtain a very low precision,
resulting in low F-scores. Hence, an additional benefit of using the F-measure is that
it encourages multimodal algorithms to remove redundant solutions before the output
process. It is coupled with the new model (Figure 1b) to increase the practicability of
evolutionary multimodal algorithms.

5. Experiments

To see whether the proposed PI algorithm can effectively remove the redundant
solutions in the population, in this section, experiments were carried out on a set of bench-
mark functions. The performance of the algorithms was evaluated using the performance
measure introduced in Section 4.

5.1. Experimental Setup
5.1.1. Benchmark Functions

The CEC2013 benchmark function set [29] was adopted to study the performance of
the PI algorithms. The function set contains 20 functions with different characteristics and
levels of difficulty. They are listed in Table 1. All the functions are maximization problems.
F) — F5 are simple, non-scalable, low-dimensional multimodal functions. Fs — Fjp are
scalable multimodal functions. For Fs and F;, the number of global optima was determined
by the dimensionality. For Fg — Fjp, the number of global optima was independent of
the dimensionality. Fg — Fj are non-symmetric composition functions constructed using
several basic functions. Fy and Fj are separable, while Fj; and Fj, are non-separable. More
detailed descriptions about the test functions can be found in [29].
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Table 1. Test Functions.

No. Function Name ph Ng
1 Fi(1D) Five-Uneven-Peak Trap 200 2
2 F,(1D) Equal Maxima 1 5
3 F5(1D) Uneven Decreasing Maxima 1 1
4 F,(2D) Himmelblau 200 4
5 F5(2D) Six-hump Camel Back 1.03163 2
6 Fs(2D) Shubert 186.7309 18
7 F,(2D) Vincent 1 36
8 Fs(3D) Shubert 2709.0935 81
9 F,(3D) Vincent 1 216
10 F5(2D) Modified Rastrigin -2 12
11 Fy(2D) Composition Function 1 0 6
12 F10(2D) Composition Function 2 0 8
13 F11(2D) Composition Function 3 0 6
14 F11(3D) Composition Function 3 0 6
15 F1>(3D) Composition Function 4 0 8
16 F11(5D) Composition Function 3 0 6
17 F1»(5D) Composition Function 4 0 8
18 F;1(10D)  Composition Function 3 0 6
19 F5(10D)  Composition Function 4 0 8
20 F5(20D)  Composition Function 4 0 8

5.1.2. Population-Based Search Algorithms and Parameter Settings

The proposed PI algorithm can be integrated with different population-based search
algorithms. In the experiment, two popular population-based search algorithms, i.e., the
neighborhood-mutation-based crowding DE (NCDE) [38] and the locally informed particle
swarm (LIPS) [47], were adopted. The scale factor F and crossover rate Cr of NCDE
were set to 0.5 and 0.1, respectively. The neighborhood size nsize introduced by LIPS
was dynamically increased from 2 to 5 over the function evaluations. The settings of the
population size and MaxFEs for the test functions are shown in Table 2. The final generation
of each search algorithm was stored in an archive for further analysis.

Table 2. Settings of the Popsize and MaxFEs for the test functions.

Function Popsize MaxFEs

F, to F5 (1D or 2D) 100 1.00 x 10*
E, to F; (2D) 200 2.00 x 10%

Fg to Fi1 (2D) 100 5.00 x 10*

F, to F; (3D) 500 5.00 x 10%

Fg to Fip (3D or higher) 200 1.00 x 10°

Four PI algorithms (PIy, PL, HVPI, and HVPIC) were used to remove redundant solu-
tions in the final generation, and the F-measure was adopted to evaluate the performance
of the integrated algorithms (SA+PI). PIj is a dummy PI algorithm that directly outputs the
final generation. The niche radius required by PL was estimated using (3) and (4). Since
the peak height (ph) was unavailable in the optimization process, the fitness value of the
best individual in the final generation was used as an approximation. For topology-based
PI algorithms, we assigned the sample array as Samples = [0.02,0.25,0.5,0.75,0.98]. The
accuracy level € used to determine whether an optimum was found was set to 0.01. The
effect of € will be investigated later in this section.

5.2. Overall Performance

There were eight combinations when given two search algorithm (NCDE and LIPS)
and four PI algorithms (PI, PL, and HVPI, and HVPIC). The experimental results of the
combinations are visualized in Figure 11. Figure 11 displays the average performance
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of each algorithm over 50 independent runs on the CEC2013 benchmark functions. This
average was calculated to ensure statistical robustness, providing a reliable comparison
of the peak detection capabilities of the HVPI, HVPIC, and PL algorithms. This approach
reduced the potential impact of variations due to random initialization or other stochastic
factors inherent in evolutionary algorithms.
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Figure 11. Precision, recall, and F-score of the integrated algorithms (SA+PI) on the benchmark
functions. (a) Precision of LIPS+PI, (b) recall of LIPS+PI, (c) F-score of LIPS+PI, (d) precision of
NCDE+P], (e) recall of NCDE+PI, (f) F-score of NCDE+PI.

In most cases, there was no significant difference between the HVPI and HVPIC
algorithms in terms of the F value. For low dimensional functions with a small number of
optima (F; — F5), the algorithms reached an F of 1. The FEs consumed by the HVPI and
HVPIC algorithms in these cases were very small (reported in Table 3). For functions with
many optima (Fs — F7), only part of the optima were located by LIPS and NCDE. The recall
values with these test functions were not as good as those for F; — F5, causing a drop in
the F values. Moreover, an increase in the required number of FEs was observed as the
number of optima in the final generation increased, as shown in Table 3. For complex
composition functions (Fg — Fjp), the F value oscillated with the change in the recall value.
Note that the recall value was mostly determined by the search algorithm (i.e., NCDE and
LIPS). The oscillation could not be eliminated using any PI algorithms. Therefore, the goal
of the PI algorithms in these cases was to achieve a 100% precision, while preserving the
maximum recall. The maximum recall is always given by Ply, since it does not remove
any individuals in the population. From Figure 11, it can be seen that the recall obtained
by HVPI and HVPIC was the same as that of Plj, indicating that HVPI and HVPIC were
capable of preserving the maximum recall.

To evaluate the performance of the HVPIC algorithm and assess whether any peaks
were missed due to the reduced calculations, we conducted an additional experiment on
the Vincent function, and the results are shown in Figure 5e. For the specific case shown
in Figure 5a, the output of HVPIC was identical to that of HVPL To further investigate
whether the reduction in FEs in HVPIC resulted in missed detections, Table 4 presents the
average precision, recall, and F values for both the HVPI and HVPIC algorithms across all
benchmark problems. The table shows that the performance of HVPIC was comparable to
that of HVPI. While HVPIC significantly reduced the FEs compared to HVPI, it maintained
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a high peak detection accuracy, with no notable difference in the number of identified
peaks across all tested multimodal landscapes. These results demonstrate that the HVPIC
algorithm struck an effective balance between computational efficiency and accuracy.

Table 3. Average number of FEs used in the peak identification process.

Function NCDE+HVPI ~ NCDE+HVPIC LIPS+HVPI LIPS+HVPIC
F(1D) 1.00 1.00 1.00 1.00
F,(1D) 475.12 29.94 220.00 30.18
F5(1D) 52.10 4.90 42.90 5.00
F,(2D) 266.70 23.00 590.44 23.00
F5(2D) 210.90 11.00 378.00 11.00
F(2D) 74.20 11.36 104.50 17.88
F,(2D) 1827.04 120.92 1800.94 94.42
F¢(3D) 1008.60 43.22 440,52 31.94
F(3D) 13,443.90 379.76 9368.30 254.48
F5(2D) 323.52 4744 65.56 10.48
Fy(2D) 73.14 14.70 7.32 3.54
F10(2D) 8.14 2.96 4.90 2.66
F11(2D) 76.12 22.48 528 2.76
F1;:(3D) 206.00 15.20 5.76 2.92
F1,(3D) 98.32 11.70 6.20 2.84
F11(5D) 326.34 21.74 2.08 1.30
F1»(5D) 173.48 10.64 424 2.20

F11(10D) 170.84 10.90 10.30 5.74

F12(10D) 5.80 1.70 19.62 5.58

F15(20D) 289.34 10.88 88.20 7.46

Table 4. Average precision, recall, and F values obtained by HVPI and HVPIC on benchmark problems.

HVPI HVPIC
Function
Precision Recall F Precision Recall F
F,(1D) 1.00 1.00 1.00 1.00 1.00 1.00
F(1D) 1.00 1.00 1.00 1.00 1.00 1.00
F5(1D) 1.00 1.00 1.00 1.00 1.00 1.00
F4(2D) 1.00 1.00 1.00 1.00 1.00 1.00
F5(2D) 1.00 1.00 1.00 1.00 1.00 1.00
Fs(2D) 0.99 0.66 0.79 0.99 0.66 0.79
F(2D) 1.00 0.78 0.87 1.00 0.78 0.87
Fs(3D) 0.99 0.54 0.69 0.99 0.54 0.69
F,(3D) 1.00 0.52 0.69 1.00 0.52 0.69
F5(2D) 1.00 1.00 1.00 1.00 1.00 1.00
Fy(2D) 1.00 0.67 0.80 1.00 0.67 0.80
F1o(2D) 0.86 0.23 0.35 0.86 0.23 0.35
F11(2D) 1.00 0.63 0.77 1.00 0.63 0.77
F11(3D) 1.00 0.66 0.80 1.00 0.66 0.80
F12(3D) 1.00 0.28 0.43 1.00 0.28 0.43
F11(5D) 1.00 0.64 0.78 1.00 0.64 0.78
F»(5D) 1.00 0.24 0.39 1.00 0.24 0.39
F11(10D) 1.00 0.33 0.50 1.00 0.33 0.50
F1»(10D) 0.22 0.03 0.05 0.22 0.03 0.05
F1>(20D) 1.00 0.25 0.40 1.00 0.25 0.40

To see the effect of the peak identification algorithm, Figure 12 plots the population
distribution of NCDE on two-dimensional test functions, as well as the optima identified
by HVPIC. The F value of PL follows a similar pattern to that of HVPI and HVPIC. It can be
noticed the recall value of PL was not as good as Ply, HVPI, and HVPIC, implying that some
of the optima in the population were mistakenly removed. PL was able to catch up with



Biomimetics 2024, 9, 643

19 of 30

HVPI and HVPIC when the estimated niche radius fit the landscape of the test function, but
in other cases, the F value obtained by PL was unsatisfactory. In comparison, Py always
obtained the highest recall among the PI algorithms. However, due to the existence of a
large number of redundant individuals, its precision remained at a very low level.
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Figure 12. Cont.
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Figure 12. Effect of the HVPIC. The colored lines represent the contours of the test function. (a,c,e,g):
Distribution of individuals in the final generation of NCDE on F4(2D), F5(2D), Fs(2D), and Fg(2D).
(b,d,f,h): Optima identified by HVPIC on F4(2D), F5(2D), Fs(2D), and Fg(2D).

It is worth noting that the experiments were conducted using particle distributions
stored in a data file. These distributions were derived from the final iterations of LIPS and
NCDE across 50 independent runs. The same particle distributions were fed into the four
peak recognition algorithms, to ensure fair comparisons. To assess the robustness of the
proposed algorithms, Tables 5-8 present the best, worst, average, and error values for the
precision and recall over 50 independent runs. The error values, in particular, indicate
the robustness of the proposed HVPI and HVPIC algorithms. As shown in the tables,
the precision values for PL, HVPI, and HVPIC were very similar in most test cases, with
consistently low error values. In terms of recall, HVPI and HVPIC exhibited lower error
values compared to PL, demonstrating an advantage in eliminating redundancy. This
suggests that the redundant elimination capability of PL was not as effective as that of
HVPI and HVPIC. Overall, the experimental results showed that both HVPI and HVPIC
performed consistently well, with minimal variation in precision and recall, highlighting
their robustness to variations in particle distributions.

Table 5. Best, worst, average, and standard deviation of precision across 50 independent runs

of NCDE.

F . P1 HVPI HVPIC
unction Best Worst Avg. Std. Best Worst Avg. Std. Best Worst Avg. Std.
F(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F4(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F5(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
Fs(2D) 1.00 0.88 1.00 0.02 1.00 0.91 0.99 0.02 1.00 0.91 099 0.02
F,(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F¢(3D) 1.00 0.93 0.99 0.02 1.00 0.93 0.99 0.02 1.00 0.93 099 0.02
F,(3D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
Fg(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
Fy(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
Fip(2D) 1.00 0.00 0.87 031 1.00 0.00 0.86 031 1.00 0.00 086 0.31
F11(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F11(3D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
Fi»(3D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F11(5D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F1»(5D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F11(10D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F1»(10D) 1.00 0.00 022 041 1.00 0.00 022 041 1.00 0.00 022 041
F1»(20D) 1.00 1.00 1.00  0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
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Table 6. Best, worst, average, and standard deviation of recall across 50 independent runs of NCDE.

PI HVPI HVPIC
Function Best Worst Avg. Std. Best Worst Avg. Std. Best Worst Avg. Std.
F;(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F,(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F3(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F4(2D) 0.75 0.75 0.75 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F5(2D) 0.50 0.50 050 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
Fs(2D) 0.50 0.28 044 0.05 0.89 0.44 066 010 0.89 0.44 0.66 0.10
F;(2D) 0.47 0.33 041 0.03 0.86 0.69 078 0.04 0.86 0.69 0.78 0.04
Fs(3D) 0.32 0.20 029 0.03 0.75 0.28 054 010 0.75 0.28 054 0.10
F;(3D) 0.26 0.20 023 0.01 0.1 0.46 052 0.03 0.61 0.46 0.52  0.03
Fg(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Fy(2D) 0.50 0.50 050 0.00 0.67 0.67 0.67 0.00 0.67 0.67 0.67  0.00
Fio2D)  0.38 0.00 020 011 0.50 0.00 023 012 0.50 0.00 023 0.12
F;12D)  0.50 0.33 047 0.07 0.67 0.50 0.63 0.07 0.67 0.50 0.63 0.07
F1(3D)  0.67 0.50 0.66 0.02 0.67 0.50 0.66 0.02 0.67 0.50 0.66 0.02
F,(3D)  0.38 0.25 028 0.05 0.38 0.25 028 0.05 0.38 0.25 028 0.05
F1(5D)  0.67 0.50 064 0.06 0.67 0.50 064 0.06 0.67 0.50 0.64 0.06
Fp(5D)  0.25 0.13 024 003 025 0.13 024 003 025 0.13 024 0.03
F;1(10D)  0.17 0.17 0.17 0.00 0.33 0.33 033 0.00 0.33 0.33 033  0.00
Fi»(10D)  0.13 0.00 0.03 0.05 0.13 0.00 003 0.05 0.13 0.00 0.03 0.05
Fi»(20D)  0.25 0.13 025 0.02 025 0.13 025 0.02 025 0.13 025 0.02

Table 7. Best, worst, average, and standard deviation of precision across 50 independent runs of LIPS.

PI HVPI HVPIC
Function Best Worst Avg. Std. Best Worst Avg. Std. Best Worst Avg. Std.
F;(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F,(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F3(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00  0.00
F,(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F5(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F¢(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F,(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F¢(3D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F,(3D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Fg(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Fy(2D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Fio2D)  1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F;1(2D)  1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F;1(3D)  1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F»(3D)  1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F;1(5D)  1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F»(5D)  1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F11(10D)  1.00 0.00 096 020 1.00 0.00 063 018 1.00 0.00 063 0.17
F1»(10D)  1.00 0.00 090 030 1.00 0.00 0.87 030 1.00 0.00 0.89 0.30
F12(20D)  1.00 0.00 0.80 040 1.00 0.00 0.80 040 1.00 0.00 0.80 040

Table 8. Best, worst, average, and standard deviation of recall across 50 independent runs of LIPS.

PI HVPI HVPIC
Function Best Worst Avg. Std. Best Worst Avg. Std. Best Worst Avg. Std.
F(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F,(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F;(1D) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F,(2D) 0.75 0.75 075 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F5(2D) 0.50 0.50 050 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F¢(2D) 0.50 0.39 048 0.03 0.89 0.44 066 0.09 0.89 0.44 0.66  0.09
F;(2D) 0.39 0.25 032 0.03 0.58 0.39 048 0.05 0.8 0.39 048 0.05
F¢(3D) 0.33 0.22 028 0.02 043 0.27 035 0.03 043 0.27 035 0.03
F,(3D) 0.18 0.13 015 0.01 027 0.18 021 0.02 027 0.18 021 0.02
Fg(2D) 1.00 0.75 090 0.07 1.00 0.75 090 0.07 1.00 0.75 090 0.07
Fy(2D) 0.50 0.33 048 0.06 0.67 0.50 064 0.06 0.67 0.50 0.64 0.06
Fio(2D)  0.50 0.13 028 0.08 0.63 0.25 041 0.09 0.63 0.25 041 0.09
F;1(2D)  0.50 0.33 046 0.07 0.67 0.50 063 0.07 0.67 0.50 0.63 0.07
F;1(3D)  0.67 0.50 0.65 0.05 0.67 0.50 065 0.05 0.67 0.50 0.65 0.05
F»(3D)  0.63 0.13 046 012 0.63 0.13 046 012 0.63 0.13 046 0.12
F;1(5D)  0.50 0.17 028 010 0.50 0.17 028 010 0.50 0.17 028 0.10
F»(5D)  0.50 0.13 025 010 0.50 0.13 033 011 0.50 0.13 033 0.1
Fi1(10D)  0.17 0.00 016 0.03 0.50 0.00 033 015 0.0 0.00 032 0.14
Fi»(10D)  0.25 0.00 012 0.05 025 0.00 017 0.08 0.25 0.00 0.17  0.08
Fi»(20D)  0.25 0.00 010 0.05 0.50 0.00 013 010 0.50 0.00 0.13 0.10
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5.3. Effect of Population Size

To investigate the influence of the population size parameter, different population
sizes (50, 100, 200, 500, 800, and 1000) were adopted by LIPS. Experiments were conducted
on F¢(2D), F4(3D), F;(2D), and F;(3D). From Table 1, it can be seen that these test functions
had a large number of optima. In particular, F;(3D) had a number of global optima up to
216. The size of Spg in these test cases varied significantly with respect to the setting of the
population size.

The F values obtained by HVPI and HVPIC were the same. To study the influence
of population size on the required number of FEs, boxplots are depicted in Figure 13. It
can be observed that the numbers of FEs consumed by HVPI increased more dramatically
than that of HVPIC. According to the analysis in Section 3, the number of FEs consumed by
HVPIC was invariant of the population size. The increase in the number of FEs was mostly
due to the growth in the size of Spg (i.e., the number of identified optima). To illustrate this,
#FEs/|Sog| versus the population size is plotted in Figure 14 (#FEs denotes the number
of FEs). In Figure 14, the polyline representing HVPIC is near horizontal, implying that
the quantity #FEs/|Sos| was not influenced by the population size. In contrast, for HVP],
#FEs/|Sog| increased linearly as the population size grew.
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5.4. Effect of Convergence Degree

In this section, we investigate the performance of the PI algorithms when the individ-
uals in the population are not sufficiently converged. In general, the difficulty level of the
peak identification task is associated with the degree of convergence of individuals. The
more scattered the individuals, the more difficult the task. To generate populations that had
different degrees of convergence, the termination criterion of LIPS was modified. Specifi-
cally, MaxFEs was set to 10,000, 25,000, 50,000, and 100,000, respectively. The experiment
was conducted on F;(3D) and the population size was fixed at 500.

The experimental results are listed in Table 9. The best results are displayed in boldface.
None of the PI algorithms could reach 100% precision when MaxFEs was set to 10,000. This
was due to the fact that the difference between the fitness of the best individual gbest and
the exact peak height was not negligible. If the fitness of gbest is used as the estimated
peak height, some imperfect individuals will also be identified as optima, causing a decline
in precision.

Table 9. Experimental results for F;(3D) under different degrees of convergence.

MaxFEs 10,000 25,000 50,000 100,000
Alg. Avg. Std. Avg. Std. Avg. Std. Avg. Std.
|ISosNSco| 1136 236 40.20 3.05 58.98 3.98 67.66 335
Precision 0.02 0.00 0.08 0.01 0.12 0.01 0.14 0.01
Plp Recall 0.05 0.01 0.19 0.01 0.27 0.02 0.31 0.02
F 003; 001 011} 0.01 016 0.01 019} 0.01
|Sos| 1192 235 3090 2.20 39.00 2.56 42.80 2.74
|SosNSco| 1090  2.08 30.90 2.20 39.00 2.56 42.80 2.74
PL Precision 0.92 0.10 1.00 0.00 1.00 0.00 1.00 0.00
Recall 0.05 0.01 0.14 0.01 0.18 0.01 0.20 0.01
F 0.10 002 025 0.02 031} 0.02 033} 0.02
|Sos| 1258  2.68 40.22 3.07 58.98 3.98 67.66 3.35
|SosNSco| 1136 236  40.20 3.05 58.98 3.98 67.66 3.35
Precision 0.91 0.11 1.00 0.00 1.00 0.00 1.00 0.00
HVPI Recall 0.05 0.01 0.19 0.01 0.27 0.02 0.31 0.02
F 0.10 0.02 0.31 0.02 0.43 0.02 0.48 0.02
#FEs 17418 5628 376156 405.11 9210.18 57832 11,439.86 572.74
|Sos| 1258  2.68 40.22 3.07 59.00 3.99 67.66 335
|SosNSco| 1136 236  40.20 3.05 58.98 3.98 67.66 335
Precision 0.91 0.11 1.00 0.00 1.00 0.00 1.00 0.00
HVPIC Recall 0.05 0.01 0.19 0.01 0.27 0.02 0.31 0.02
F 0.10 0.02 0.31 0.02 0.43 0.02 0.48 0.02
#FEs 3514 887 18816 1566 30070  17.26 355.16 15.32

The notation “*’ (‘b’) indicates that the F value achieved by HVPI (HVPIC) is significantly better than that of the
corresponding algorithm according to the t-test at significance level 0.05.

The HVPI and HVPIC algorithms reached the maximum F value when the MaxFEs
were set to 25,000, 50,000, and 100,000. They had a consistent performance with different
degrees of convergence. The results obtained by PL were worse than that of HVPI and
HVPIC. The low recall values of PL were probably due to incorrect setting of the niche
radius. Figure 15 shows the effect of the niche radius r. The use of a large niche radius
tends to clear more redundant individuals in the population, so the precision increases as
the niche radius increases. However, there is a danger that it will also eliminate possible
optima near a species seed. Hence, the recall will correspondingly drop as the niche radius
grows, as illustrated in Figure 15a. The recall versus precision is plotted in Figure 15b.
There was only one setting of niche radius that gave the best compromise between precision
and recall. It can be seen that the precision decreased rapidly if the niche radius was set to
less than 0.2. Conversely, the recall dropped significantly if the niche radius was greater
than 0.2. This indicates the difficulty in choosing a suitable niche radius.
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Figure 15. Performance of LIPS+PL on F;(2D) using different niche radii. popsize = 100, ¢ = 0.01.
(a) Trend in precision and recall. (b) Recall versus precision.

5.5. Effect of Accuracy Level

The number of identified optima is related to the setting of the user-specified accuracy
level e. To investigate the influence of ¢, the PI algorithms were tested at four levels of
accuracy (0.1, 0.01, 0.001, and 0.0001). The population size and MaxFEs were fixed at 500
and 50,000, respectively.

The experimental results are tabulated in Table 10. The HVPI and HVPIC algorithms
were able to reach the maximum recall value with respect to the different settings of e.
Meanwhile, they also achieved a precision value of 1, implying that their output solutions
were redundancy-free. In comparison, PL failed to obtain a high recall with all settings of ¢,
indicating that some optima were mistakenly excluded.

Table 10. Experimental results for F;(3D) under different accuracy levels.

Accuracy Level & 0.1 0.01 0.001 0.0001
Alg. Avg. Std. Avg. Std. Avg. Std. Avg. Std.
|Sos N Sco 78.18 5.19 58.98 3.98 42.14 2.59 31.00 2.88
Precision 0.16 0.01 0.12 0.01 0.08 0.01 0.06 0.01
Pl Recall 0.36 0.02 0.27 0.02 0.20 0.01 0.14 0.01
F 0227 0.01 0.16; 0.01 0.12; 0.01 0.09; 0.01
1Sos| 4442 2.32 39.00 2.56 3252 2.26 25.80 237
[Sos N Sco| 4438 2.36 39.00 2.56 3252 2.26 25.80 2.37
PL Precision 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Recall 0.21 0.01 0.18 0.01 0.15 0.01 0.12 0.01
r 0.34; 0.02 031} 0.02 026} 0.02 021; 0.02
|Sos] 78.18 5.19 58.98 3.98 42.14 2.59 31.00 2.88
[Sos N Scol 78.18 5.19 58.98 3.98 42.14 2.59 31.00 2.88
Precision 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
HVPI Recall 0.36 0.02 0.27 0.02 0.20 0.01 0.14 0.01
F 0.53 0.03 0.43 0.02 0.33 0.02 0.25 0.02
#FEs 12,14556 66827 9210.18 57832 615872 593.62 3227.04 42820
|Sos] 78.18 5.28 58.98 3.98 42.14 2.59 31.00 2.88
[Sos N Scol 77.86 5.20 58.98 3.98 42.14 2.59 31.00 2.88
Precision 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00
HVPIC Recall 0.36 0.02 0.27 0.02 0.20 0.01 0.14 0.01
F 0.53 0.03 0.43 0.02 0.33 0.02 0.25 0.02
#FEs 366.48 2360 30078 1727 22984 1588 16510  16.09

The notation *’ (‘b’) indicates that the F value achieved by HVPI (HVPIC) is significantly better than that of the
corresponding algorithm according to the ¢-test at significance level 0.05.

To summarize, the HVPI algorithm was capable of reaching high F values under
different parameter settings, but it required a large number of FEs. The HVPIC algorithm
exhibited a similar performance as HVP], and the number of FEs consumed was relatively
small. In comparison, the performance of PL was very sensitive to the setting of the
niche radius.
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5.6. Application to Engineering Problems

To demonstrate the practical value of the HVPI and HVPIC algorithms in real-world
engineering applications, we applied them to the multiple steady states problem, the
molecular conformation problem, and the robot kinematics problem. A brief introduction
to these problems is provided below.

*  Multiple Steady States Problem: Evaluating multiple steady states in reaction networks
is crucial in various chemical engineering applications, particularly in the analysis
and design of chemical reactors. Steady states refer to conditions where the reaction
rates and physical properties remain constant over time. Multiple steady states can
exist in complex reaction networks, meaning there are several sets of conditions that
satisfy the system’s governing equations.

*  Molecular Conformation Problem: In molecular biology and drug design, determining
the three-dimensional structure of a molecule is critical, particularly when identifying
the minimum energy state or low-energy states. These low-energy conformations
are likely the natural shapes of the molecule, significantly influencing its chemical
reactivity, physical properties, and biological activity.

*  Robot Kinematics Problem: A fundamental problem in robotics, kinematics studies
the relationship between a robot’s joint configuration and the resulting motion of
its end-effector. Understanding kinematics is crucial in determining the position,
orientation, and velocity of robot components, without considering the forces driving
the motion.

These problems can be framed as multimodal optimization challenges. The mathe-
matical formulations of the engineering problems can be found in [48-50]. We used NCDE
to solve them and applied peak recognition algorithms to filter out redundant solutions.
Table 11 summarizes the average optimization results, demonstrating that both HVPI and
HVPIC identified optimal configurations with high accuracy. The three engineering prob-
lems are referred to as P1, P2, and P3, respectively. The proposed algorithms consistently
outperformed the baseline PL algorithm, which is highly sensitive to parameter selection.
Without prior knowledge, it can be difficult to determine an appropriate niche radius
for PL, and an unsuitable choice can cause the F-value to drop significantly. To visually
represent the effect of the proposed algorithms, Figure 16a shows the final generation
of the NCDE algorithm, where the red circles denote optimal solutions and the red dots
represent individuals in the final generation. el and e2 are the mathematical constraints of
the problem. Figure 16b,c show the outputs of PL and HVPIC, respectively. The output of
HVPI was identical to that of HVPIC. HVPIC correctly eliminated all redundant solutions,
while PL mistakenly removed some optima, due to incorrect niche radius settings.

Table 11. Application of the proposed algorithm to engineering problems.

PL HVPI HVPIC
Problem Precision Recall F Precision Recall F Precision Recall F
P1 1.00 0.53 0.69 1.00 0.94 0.97 1.00 0.94 0.97
P2 1.00 0.06 0.12 1.00 0.41 0.58 1.00 0.41 0.58
P3 1.00 0.30 0.46 1.00 0.53 0.69 1.00 0.53 0.69

These results demonstrate the effectiveness of the proposed algorithms and their
applicability to practical engineering challenges. Their ability to efficiently identify multiple
optimal solutions in complex, multimodal landscapes suggests that they could be valuable
in fields such as mechanical design, aerodynamics, and control system optimization. Future
work will explore additional engineering applications, further validating the broad utility
of the proposed algorithms.
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Figure 16. Experimental results on the multiple steady states problem. (a) Final generation of NCDE.
(b) Output of PL. (¢) Output of HVPIC.

5.7. Embedding HVPI and HVPIC into Group-Based Optimization Algorithms

While group-based optimization algorithms, such as PSO and DE, often rely on a single
globally optimal particle or solution, this can limit their ability to explore multiple peaks in
multimodal problems. In this regard, the integration of HVPI and HVPIC algorithms into
such optimization methods becomes essential for overcoming this limitation. It is possible
to integrate HVPI and HVPIC directly into the optimization process, enabling group-based
algorithms to recognize and maintain multiple peaks during the search process. This can
be achieved by incorporating a niche-based peak recognition mechanism that operates in
parallel with the primary search algorithm. By doing so, the population is encouraged to
explore multiple promising areas of the search space, rather than solely converging towards
a single global solution. This approach enhances the exploration—exploitation balance of
the algorithm and helps maintain diversity in the population, ensuring that multiple peaks
are identified and explored during the optimization process.

6. Conclusions

In this paper, an attempt was made to rectify the output of multimodal optimization
algorithms. The main results of the paper are summarized as follows:

1.  We proposed a practical two-phase multimodal optimization model. The first phase
is the population-based search algorithm that has been extensively studied in the
literature. The second phase is the peak identification (PI) procedure. The new model
containing PI eliminates the users” burden of dealing with redundant solutions.

2. New PI algorithms that alleviate the need for problem-specific knowledge were
developed. Specifically, a PI algorithm previously used in the evaluation system was
integrated with the hill-valley approach, to avoid having to preset the niche radius.
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Furthermore, to reduce the number of FEs required by the hill-valley approach, we
combined HVPI with bisecting K-means in the HVPIC algorithm. Theoretical analysis
showed that the number of FEs consumed by the HVPIC algorithm was proportional
to the number of identified optima.

3.  To evaluate the performance of multimodal algorithms, the F-measure, which considers
both precision and recall values, was introduced. Compared to the PR and SR measures
that are widely used in the literature, the F-measure is more comprehensive, since it is
capable of evaluating the redundancy rate of the outputs of multimodal algorithms.

Experiments were carried out to investigate the performance of the proposed PI
algorithm. The experimental results showed that the HVPIC algorithm was able to correctly
identify the representative individuals under different parameter settings. In most of the
test cases, HVPIC reached the maximum recall and achieved precision of 100%. Meanwhile,
the number of FEs used for the identification task was relatively small.

It is noteworthy that the recall is largely determined by the population-based search
algorithm. The goal of PI is to eliminate redundant individuals in the final generation, to
increase the precision while at the same time preserving the recall. When given a search
algorithm, the maximum F value we can obtain is upper bounded by a certain value.
Therefore, more effective search algorithms are of great importance for improving the
overall performance of multimodal algorithms on complex problems (e.g., Fi2(10D) and
F12(20D)). In future work, we plan to implement and test the effectiveness of embedding
HVPI and HVPIC in a range of optimization algorithms to validate the broader applicability
and impact of the proposed methods.
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