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Abstract: This study compares bio-inspired optimization algorithms for enhancing an ANN-based
Maximum Power Point Tracking (MPPT) forecast system under partial shading conditions in photo-
voltaic systems. Four algorithms—grey wolf optimizer (GWO), particle swarm optimization (PSO),
squirrel search algorithm (SSA), and cuckoo search (CS)—were evaluated, with the dataset aug-
mented by perturbations to simulate shading. The standard ANN performed poorly, with 64 neurons
in Layer 1 and 32 in Layer 2 (MSE of 159.9437, MAE of 8.0781). Among the optimized approaches,
GWO, with 66 neurons in Layer 1 and 100 in Layer 2, achieved the best prediction accuracy (MSE
of 11.9487, MAE of 2.4552) and was computationally efficient (execution time of 1198.99 s). PSO,
using 98 neurons in Layer 1 and 100 in Layer 2, minimized MAE (2.1679) but had a slightly longer
execution time (1417.80 s). SSA, with the same neuron count as GWO, also performed well (MSE
12.1500, MAE 2.7003) and was the fastest (987.45 s). CS, with 84 neurons in Layer 1 and 74 in Layer 2,
was less reliable (MSE 33.7767, MAE 3.8547) and slower (1904.01 s). GWO proved to be the best
overall, balancing accuracy and speed. Future real-world applications of this methodology include
improving energy efficiency in solar farms under variable weather conditions and optimizing the
performance of residential solar panels to reduce energy costs. Further optimization developments
could address more complex and larger-scale datasets in real-time, such as integrating renewable
energy sources into smart grid systems for better energy distribution.

Keywords: MPPT; ANN; optimization algorithm; bioinspired; GWO; PSO; CS; SSA

1. Introduction

Advancements in modern technology have made renewable energy a highly discussed
global topic driven by the ongoing energy crisis. As a result, the quest for green energy has
introduced various renewable sources, including solar, wind, ocean, hydropower, biomass,
geothermal resources, biofuels, and hydrogen, which are derived directly from the sun or
geothermal heat. Solar energy, in particular, is abundant and environmentally safe, making
it a reliable power source [1].

Engineers developing solar inverters use Maximum Power Point Tracking (MPPT)
algorithms to optimize the power output of photovoltaic (PV) solar systems. These algo-
rithms adjust for changes in irradiance and temperature to ensure that the photovoltaic
system consistently produces maximum power [2]. MPPT algorithms are critical because
they address these variable factors to maintain optimal performance [3-6]. MPPT algo-
rithms can be classified according to their voltage, current, or duty cycle control variable.
Their primary advantage lies in their ability to solve non-linear problems and generate
optimal solutions efficiently, including multiple peaks for global maxima. These methods
outperform conventional algorithms in tracking performance [7,8].
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The review of previous research on MPPT algorithms initially points to the Perturb
and Observe (P&O) method, recognized for its simplicity and fundamental nature but
often unsuitable due to its lower accuracy [9,10]. The system is expected to oscillate around
the Maximum Power Point (MPP) in real-world scenarios, implying that a continuous
perturbation in a fixed direction can significantly move the operating point away from the
true MPP. This behavior persists until the irradiance is decreased or eliminated. Among the
alternative techniques available, the IC method is one of the most prominent [11]. Although
the method offers higher accuracy than the P&O method, its implementation is complex.
Both Perturb and Observe and Incremental Conductance are “slope climbing” algorithms
that allow for locating the point of maximum local power on the power curve under the
operating conditions of a solar PV system. However, the Fractional Open Circuit Voltage
(FOCV) and Fractional Short Circuit Current (FSCC) methods are also widely used, as they
are more efficient than the P&O method [12].

The main objective of PV systems is to extract as much solar energy as possible quickly
and reliably, even under variable environmental conditions, using MPPT techniques. Under
uniform solar irradiance, many of these techniques achieve satisfactory system performance.
However, when Partial Shade Condition (PSC) occurs, the MPPT process becomes more
complicated as the characteristics of the photovoltaic system become non-linear. This can
lead to a Local Maximum Power Point (LMPP), even though there is only one Global
Maximum Power Point (GMPP). In addition, PSCs can cause power losses, the formation
of hot spots, and risks to the safety and reliability of the system. Several methods have
been designed to overcome these obstacles that allow MPPT to be performed efficiently
under PSC.

The research of MPPT techniques under uniform and non-uniform irradiances has
been a significant focus. Recently, there has been a growing interest in metaheuristic
techniques, often used in machine learning applications and now being explored for
optimization in commercial settings.

This article focuses on the application of metaheuristic algorithms in the MPPT ap-
proach, providing key contributions:

*  Algorithm types: The study explores bio-stimulated, nature-inspired, and swarm-
based algorithms, including particle swarm optimization (PSO), grey wolf optimizer
(GWO), squirrel search algorithm (SSA), and cuckoo search (CS), highlighting their
distinct approaches to optimization.

*  Methodology: To compare these algorithms, a partial shade condition is introduced to
the base dataset, simulating real-world challenges in photovoltaic systems.

¢ Neural network optimization: The optimization algorithms are also tasked with tuning
the number of neurons in each layer of the ANN, allowing them to propose alternative
network architectures that minimize MAE, MSE, and R2.

This paper is organized as follows. Section 2 discusses the state-of-the-art and the-
oretical background, where the relevant information is analyzed. Section 3 outlines the
methodology and the approach used. Sections 4 and 5 present the results and the discussion,
respectively. Finally, the conclusions are summarized in Section 6.

2. State of the Art

The bibliometric network shown in Figure 1 highlights critical research trends in the
field of MPPT for photovoltaic systems. It strongly focuses on integrating neural networks
and optimization algorithms, such as PSO with MPPT techniques. Significant research also
links photovoltaic technology with control systems and efficiency improvements.

The clusters suggest that interdisciplinary approaches combining artificial intelligence,
optimization, and control methods are key to advancing MPPT and photovoltaic system
performance. This indicates a trend towards more sophisticated Al-driven techniques to
enhance the efficiency and reliability of renewable energy systems.

The state-of-the-art analysis reveals that PSO is the predominant algorithm employed
for MPPT in photovoltaic systems. The popularity of PSO stems from its consistent and
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reliable performance in various conditions, including partial shading and dynamic weather
changes. Its effectiveness is often bolstered by careful tuning of hyperparameters, such as
inertia weight and cognitive coefficients, which optimize power output and efficiency.

However, the extensive reliance on PSO also highlights the need to explore alternative
optimization algorithms that could offer superior performance in specific scenarios. While
PSO excels in general applications, algorithms like GWO have shown the potential to
achieve faster convergence times or better accuracy under challenging conditions, such as
rapidly changing environments.

Figure 1. Bibliometric network using keywords such as MPPT, ANN, and optimization algorithm
in Scopus.

Moreover, recent developments in optimization algorithms, such as SSA and CS,
present promising alternatives that could enhance the speed of MPPT systems. These newer
algorithms are designed to tackle complex optimization problems, potentially offering
advantages over more established methods, such as PSO.

This analysis shown in Table 1 underscores the relevance of investigating these alterna-
tives, as they could outperform PSO in areas with limitations, such as speed or adaptability
to sudden operating conditions. Pursuing such options could lead to developing more
efficient and responsive MPPT systems, ultimately enhancing the overall stability and
efficiency of photovoltaic energy systems.

Table 1. State-of-the-Art Comparison of Optimization Algorithms.

Reference Ogﬁgtgiiz&t:n Optimized Metric Prf\ccizlizg C;nd Conditions Tuning
. PSO: Inertia
PSO,GWO,CS,  Power Output, GWO: 98.37% Uniform and weight, cognitive
[13] ’ T - ' o0 Non-Uniform !
HHO Efficiency PSO: 99.32% ; and social
Irradiance -
coefficients
. . Inertia weight,
[14] PSO Power Output Efficiency: 93.31% Paétcl;l dsizzi?g cognitive and
social coefficients
. . PSO: Inertia
i . . Dynamic Shading, . L
[15] SHO, PSO g;}W?r Harvesting  SHO: gg%;’;o, PSO: Temperature welgh(ti cogmfwe
iciency -75% Variations and social

coefficients
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Table 1. Cont.

Reference ngign;iiz&tlil?n Optimized Metric I’rje:j;iﬂg:;nd Conditions Tuning
MPSO: Inertia
: Power Output, MPSO: 98.42%, Variable Weather weight, cognitive
1] MPSO, GWO Efficiency GWO: 98.76% Conditions and social
coefficients
Partial Shading, . .
[17] SSA g?f‘.”?r Output, Efficiency: 97.65% Dynamic SSA‘lst?P size,
iciency Conditions population size
Firefly:
. . . . X . . Attractiveness
[18] Firefly éigsorlthm, Power Output Fn’efly.9 2783%, EAS: Varﬁf_b}le;irrardltarice coefficient; EAS:
e and lemperature  pheromone update
rate .
(] WOA, ANN, PSO,  Power Output, WOA: 98.72%, Smart Grid v;ot{x: SFZEIN
Ccs Efficiency PSO: 97.55% Integration updating, :

Learning rate

2.1. Artificial Neural Network (ANN) Model

The ANN used is designed to predict the generated power (P) based on various
independent variables, such as temperature, irradiance, voltage at maximum power (Vmp),
and current at maximum power (Imp). The ANN can be described by the following model.

2.1.1. Structure of the ANN
The ANN model consists of:

* Aninput layer with neurons corresponding to the number of input features.
*  One or more hidden layers with a specified number of neurons.
*  An output layer with a single neuron representing the predicted power.

Input Layer
The input layer receives the normalized input features, as shown in Equation (1):

X = [Temperature, Irradiance, Vmp, Imp| 1)

where X represents the key variables, such as temperature, irradiance, the voltage at
maximum power (Vmp), and the current at maximum power (Imp).

Each hidden layer applies a transformation to the inputs as it follows.

Weighted Sum: For each neuron j in the hidden layer [, the weighted sum is computed
as shown in Equation (2):

1
zh = Z wfjaﬁ_l + b} )

i=1

where:

I

. wi],
the current layer I.

. aﬁfl are the activations from the previous layer (I —1).

. b} is the bias term for neuron j in layer /.

are the weights connecting neuron i from the previous layer (I — 1) to neuron j in

2.1.2. Activation Function

An activation function ¢ is applied to the weighted sum to introduce non-linearity, as
shown in Equation (3):

a§ = U(Z;-) 3)

where a; is the activation of neuron j in layer /, and zj» is the weighted sum as computed in
Equation (2).
Common activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh.
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P = (f(w

2.1.3. Output Layer

The output layer produces the final prediction P as shown in Equation (4):

P = aj @)

where L is the last layer (output layer) and at is the activation of the single output neuron.

2.1.4. ANN Equation

The ANN prediction can be expressed as a composite function of the input features as
shown in Function (5).

i (o (wh X+ 0l Xo + ol Xs +wlyXa+0) +- ) +0ET) ) +0}) 5)

Here, X, X3, X3, and X4 represent the input features (Temperature, Irradiance, Vmp,
Imp), w and b represent the weights and biases, and ¢ represents the activation functions
applied at each layer.

2.1.5. Incorporation of Data into the ANN Model

The input features (Temperature, Irradiance, Vmp, Imp) are fed into the input layer
of the ANN. Each input feature is multiplied by its corresponding weights and added to
the bias terms as it passes through each layer. The activation function transforms these
weighted sums to produce activations for the next layer. This process continues through
the hidden layers until the final prediction is generated at the output layer.

In this model, the network learns the optimal weights and biases during training
by minimizing the error between the predicted and actual power in the dataset. This
optimization is typically performed using algorithms such as gradient descent, often
implemented as the Adam optimizer.

The training process adjusts the weights and biases iteratively to improve the accuracy
of the predictions, allowing the ANN to effectively model the complex relationships
between the input features and the power output.

2.2. Particle Swarm Optimization

PSO is a nature-inspired optimization algorithm based on the social behavior of
birds flocking or fish schooling [20]. This algorithm models the collaborative process of
individuals (particles) as they explore the search space to find the optimal solution [21].
The key components of PSO are:

¢ Social Sharing of Information: In the PSO algorithm, each particle modifies its position
in the search space based on its individual experience (personal best position) as well
as the collective experience of the swarm (global best position). This collaborative
approach facilitates the swarm to approach optimal solutions.

*  Velocity and position update: The algorithm adjusts the position of each particle based
on its velocity. This velocity is determined by considering the particle’s previous
velocity, the distance to its personal best position, and the distance to the best global
position discovered so far.

*  Balance Between Exploration and Exploitation: PSO balances exploration (searching
new areas of the search space) and exploitation (refining known reasonable solutions)
through parameters such as inertia weight, cognitive coefficient, and social coefficient.

The position and velocity update rules for the particles can be represented mathemati-

cally. The velocity update, Equation (6), is:

Fl =w g tepor - (B -3+ eor (3 7 6)

where:

o ¥l is the velocity of particle i at iteration ¢,
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*  wis the inertia weight controlling the influence of the previous velocity,

*  is the cognitive coefficient representing the influence of the particle’s best position,
*  (is the social coefficient representing the influence of the global best position,

e ryand r are random numbers uniformly distributed in the range [0, 1],

o  plis the personal best position of particle i at iteration ¢,

*  J'is the global best position the swarm finds at iteration ¢.

After updating the velocity, the position of each particle is updated using Equation (7):

2t+1 =t —t+1
xl- = xl' + Ui (7)

where:

o  X!is the position of particle i at iteration ¢,

. z"if“ is the updated velocity of particle i for the next iteration.

By iteratively updating the velocities and positions of the particles, PSO converges
to an optimal solution by leveraging both individual learning (personal best) and social
learning (global best), effectively balancing the exploration of the search space and the
exploitation of known good solutions.

2.3. Gray Wolf Optimizer

In 2014, a new algorithm known as GWO was introduced, which joined the family of
swarm intelligence-based optimization methods, as shown in [13]. The hunting behavior of
gray wolves inspires the GWO algorithm. These animals hunt in packs and operate under a
four-tier hierarchy. The pack leaders, alpha wolves («), make all hunting-related decisions.
Betas () are subleaders who assist the alphas in making decisions. Next in the hierarchy
are deltas (6), obedient to alphas and betas but rank higher than omegas (w). At the lowest
level, omegas shows deference to all other wolves of higher rank [22].

The GWO approach divides candidate solutions into four groups, with alpha being
the best, beta being the second best, and delta being the third best, to mimic the leadership
hierarchy. Omega refers to the remaining solutions. When hunting, grey wolves encircle
their prey, and this behavior can be modeled using Equations (8) and (9):

—

D =

C-%(1) = %(1)| ®)

H(t+1) = ‘J?p(t) —A-B\ 9)

where t denotes the current iteration, A and C are coefficient vectors, 5(',, is the position
vector of the prey, and ¥ is the position vector of the grey wolf. Calculations for the vectors
A and C are shown in Equations (10) and (11):

A=23-7—1 (10)
C =27, (11)

where 71 and 7, are random numbers in the range [0, 1], and the elements of 7 are linearly
decreased from 2 to 0 throughout iterations. Beta and delta wolves occasionally participate
in the hunt, but leadership and control primarily rest with the alpha wolf. The delta and
omega wolves care for wounded wolves within the pack. Because of this, the alpha is
considered the most reliable source for determining the location of prey. Once the target
stops, the gray wolves complete the hunt by attacking it.

2.4. Cuckoo Search Algorithm

The CS algorithm was first introduced by Yang and Deb in 2009 [23], inspired by the
breeding behavior of cuckoos. The CS algorithm follows three main rules:
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*  Each cuckoo lays one egg at a time and places it in a randomly chosen nest.

¢  The best nests with high-quality solutions will carry over to the next generation.

e The number of host nests is fixed, and there is a probability P, € [0,1] that a host bird
will discover an alien egg.

The following Levy flight Equation (12) describes the position update of the CS:

X =yl a @ Levy(A) (12)

1

where X; = [xq,x2,x3,...,xp] represents a solution vector, D is the problem dimensionality,
and A > 0 represents the step-size scale. The term t denotes the iteration number. The
product symbol & denotes entrywise multiplication, and Levy(A) generates a random walk
with step lengths drawn from a Lévy distribution, as shown in Equation (13):

Levy(A) = 74, (1< A<3) (13)

2.5. Squirrel Search Algorithm

The SSA is a nature-inspired optimization algorithm based on the foraging behavior of
squirrels [24]. This algorithm models the dynamic search process of squirrels as they gather
food and store it in different locations to survive during winter. The key components of
SSA are:

e  Foraging Strategy: Squirrels use a dynamic foraging strategy that includes searching
for food, hoarding it, and retrieving it later. This strategy helps squirrels to adapt to
seasonal changes and ensures their survival.

¢  Energy and Food Storage: The algorithm considers the energy levels of squirrels
and the amount of food stored. Squirrels with higher energy levels can search more
extensively, while those with lower energy levels focus on retrieving stored food.

*  Predator Avoidance: Squirrels need to avoid predators while foraging. The SSA mod-
els this by incorporating a risk factor that influences the foraging paths of the squirrels.

The position update rules for the squirrels can be represented mathematically. If a
squirrel finds a high-quality food source, it updates its position towards that source. The
position update Equation (14) is:

e an I 2t 2t ot 2t
T =X 4B (Fhest — %) + 7 (Frgua — 1) (14)
where:
o Xlisthe position of squirrel i at iteration ¢,
* X}, isthe position of the best food source found so far,
o &, is the position of a randomly selected food source,

. B and vy are coefficients controlling the influence of the best and random food sources,
respectively.

A risk factor R € [0,1] modulates the risk of predator encounters. When a squirrel
encounters a predator, it updates its position using Equation (15):

@l =x+5 R (15)
where:
e {isa coefficient representing the impact of the predator risk,
e  Risarandom vector indicating the direction of escape.

By iteratively updating the position of the squirrels, the SSA converges on an optimal
solution that balances exploration and exploitation, adapts to environmental changes, and
avoids risks.
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2.6. Performance Metrics

When developing an artificial intelligence model, it is crucial to assess the model’s
quality. This assessment involves determining how effectively the model has been trained
using the training data and how accurately it moves test observations [25].

Solar energy monitoring systems require the ability to analyze complex atmospheric
datasets. To address this, optimization algorithms selectively filter the necessary informa-
tion. This process involves removing irrelevant features to prevent model performance
degradation [26]. To evaluate the effectiveness of the model, various metrics are employed,
including the following.

e R?: This metric determines what fraction of the variation in the dependent variable
can be explained by the independent variables. In multiple regression models, R?
represents the squared correlation between the observed outcomes and the predictor
variables used in the model. A higher R? value indicates better model performance.

¢  RMSE: It measures the average error magnitude in a model’s predictions. It is calcu-
lated as the square root of the Mean Squared Error (MSE), quantifying the variance
between observed values and the model’s predicted values. A lower RMSE suggests
higher model accuracy.

¢  MAE: Similar to RMSE, MAE evaluates the accuracy of predictions by computing
the average absolute difference between observed and predicted values. Its normal-
ized version (nMAE or NMAE) is commonly used for comparison across different
scales [26]. Unlike RMSE, MAE is less sensitive to outliers.

*  Neurons per layer: The number of neurons in each hidden layer is variable and
determined by the optimization algorithm. Each algorithm explores a range of config-
urations for the two hidden layers, with the number of neurons limited by the search
bounds (e.g., between 10 and 100 neurons per layer). Consequently, the architecture
provided by each algorithm may vary, optimizing the model based on its specific
search process.

*  Optimization time: The time taken for optimization will be measured over 50 iterations
as each algorithm adjusts the hyperparameters of the model. The total optimization
time may vary depending on the algorithm and the complexity of the search space
but will be consistently measured across all algorithms.

3. Materials and Methods

The proposed methodology shown in Figure 2 for predicting the MPPT begins by
pre-processing the PV dataset to ensure it is suitable for model input. An ANN model
is then constructed, with key components such as weights, biases, activation function,
solver, and epochs tuned for optimal performance. Following this, four optimization
algorithms—GWO, SSA, CS, and PSO—are applied to fine-tune the hidden layer sizes
and other model parameters. The optimized ANN model generates predictions for MPPT,
which are then evaluated using performance metrics: MSE, which measures the average
squared difference between predicted and actual values; MAE, which calculates the average
absolute difference between the expected and actual values; and the R?, which indicates
how well the model explains the variance in the actual MPPT values. These metrics assess
the accuracy of the model’s predictions, ensuring the effectiveness of the optimization
techniques and overall methodology.
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Model & tuning X . Power prediction Comparation
(Hidden layer sizes)
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— GWO
ANN Model
Weights SSA Output .| Performance
Biases metrics
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Solver — CS
epoch
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Figure 2. Methodology flowchart.

3.1. Pre-Process
3.1.1. Analysis EDA

The dataset used in this study was obtained from [27]. Four perturbations of dif-
ferent magnitudes were added to the data to simulate partial shade conditions. These
perturbations affect both the current and voltage of the photovoltaic panel.

In this analysis, perturbations were explicitly applied to the columns of voltage at
the MPP (V;;»(V)) and current at the maximum power point (I_mp(A)). The perturbation
was implemented by multiplying these columns by a reduction factor within certain
defined intervals.

3.1.2. Perturbation Equations

For each defined perturbation interval, the Equations (16) and (17) describe the pertur-
bation applied to the Vy;, (V) and I,y (A).

Vmp(v)perturbed = VmP(V) X fﬂCtOT (16)

Imp(A)pfrturbed = Imp(A) X factor (17)
where:
*  Viup(v) is the original voltage value at the maximum power point.
*  Iyp(a) is the original current value at the maximum power point.
*  factor is the reduction factor applicable in the specified interval.

After applying the perturbations, the Power column is recalculated using Equation (18).

Powerperturbed =V (18)

mp(v)pertwbed X Imp(A)pertwbed

The detailed steps followed to apply the perturbations and recalculate the power are
described below:

The Viup(V) and Iy, (A) columns are multiplied to create the Power column.

The perturbation intervals and their reduction factors are defined.

The perturbations are applied to Vi, (V) and I, (A) within the specified intervals.
The Power column is recalculated after applying the perturbations.

The resulting DataFrame is saved to a new Excel file.

G LN

As illustrated in Figure 3, these perturbations affect the current and voltage, simulating
the partial shade conditions.
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— Voltage (Vmp)

Voltage (V)

0 200 400 600 800 1000 1200

—— Current (I_mp(A))

0 200 400 600 800 1000 1200

—— Power (Power)

Power (W)

0 200 400 600 800 1000 1200

()

Figure 3. Perturbation results: (a) voltage vs. index, (b) current vs. index, and (c) power vs. index.

A correlation matrix shown in Figure 4 was generated to understand the relationships
between the variables. A correlation matrix was created with a heat map visualization to
observe data trends. It can be observed that the lighter values refer to a direct relationship
between the variables. In contrast, a darker value refers to a negative correlation, where
one variable increases as another decreases. It is observed that there is no multicollinearity
in the data since there are no variables that present a high correlation between the input
data. In addition, some trends are identified that directly impact the target variable, which
is power:

*  Temperature and Voltage (Vmp): There is a strong negative correlation (—0.94), indi-
cating that higher temperatures significantly reduce the voltage.

* Irradiance and Voltage (Vmp): There is a strong positive correlation (0.28), indicating
that higher irradiance results in higher voltage.

*  Current (I,;5(4)) and Power: There is a robust positive correlation (0.99), indicating
that higher current leads to higher power output.

¢ Irradiance and Power: There is a strong positive correlation (0.90), suggesting that
increased irradiance levels lead to higher power output.
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These correlations suggest that Temperature, Irradiance, Current, and Voltage are
crucial factors influencing Power.

-1.0

-0.8

Irradiance Temperature (deg. C)

Vmp

p(A)

I_m

Power

1 1 1
Temperature (deg. C) Irradiance Vmp I_mp(A) Power

Figure 4. Heatmap of variables.

The theoretical EDA reveals significant relationships between temperature, irradiance,
voltage, current, and power. Key observations include:

¢  Temperature negatively impacts voltage.
e Irradiance is a strong positive influencer of voltage and power.
e  Current is a primary power driver with a direct positive correlation.

These insights are critical for understanding the behavior of the photovoltaic system
represented by the dataset, and they can inform further analysis and optimization strategies
for improving power output under varying environmental conditions.

3.2. Model and Tuning

To standardize the input features, the MinMaxScaler from the scikit-learn library is
employed to scale the data within the range [0, 1].

e Fit the scaler to the input data and then transform the features.

The dataset is divided into training and testing sets to evaluate the ANN'’s perfor-
mance.

¢ Use the train_test_split function with 80% of the data for training and 20% for testing.
*  Setarandom state of 42 to ensure reproducibility.

An MLPRegressor from the scikit-learn library is defined to model the relationship
between the input features and power output.

*  Configure the model with two hidden layers of 64 and 32 neurons, respectively.
*  Use the ReLU function as the activation function.

e  Employ the Adam optimizer for training, with a maximum of 200 epochs.

*  Set arandom state of 42 for reproducibility.
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The defined ANN model is trained using the training dataset.
e (Call the fit method with the training data.
The trained model is evaluated on the test dataset to assess its predictive performance.

*  Generate predictions for the test set using the predict method.
¢ Evaluate performance using the following metrics:

—  Mean Squared Error (MSE);
—  Mean Absolute Error (MAE);
- R?Score.

The evaluation results are printed and visualized to compare the predicted power
output against the actual values.

¢  Create a plot to visualize the actual versus predicted power output.
¢ Print the performance metrics to the console.

This process ensures that the ANN is accurately trained and evaluated under par-
tial shade conditions, providing a robust model for predicting the power output of a
photovoltaic panel.

The schematic diagram of the ANN used for MPPT in a photovoltaic panel is shown in
Figure 5. The diagram shows the input features (Temperature, Irradiance, Vmp, I_mp), the
hidden layers with 64 and 32 neurons, and the output layer predicting the power output.

N
\\\\\\’(‘V{ll',,/ N
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Figure 5. Schematic diagram of the proposed ANN.

The ANN model was defined with specific hyperparameters to optimize its perfor-
mance. Unlike model parameters learned during training, hyperparameters must be set
before learning begins [28]. Effective hyperparameter optimization enhances model perfor-
mance by finding the optimal configuration that minimizes error and improves predictive
accuracy [29]. The hidden layer sizes were set to 64 and 32 neurons to capture the com-
plex relationships between the input features and the target output. The ReLU activation
function was chosen for its effectiveness in deep learning models, helping to mitigate the
vanishing gradient problem. The Adam optimizer, known for its adaptive learning rate
capabilities, was used to train the model efficiently over 200 epochs. A random state of 42
was set to ensure the reproducibility of the results.
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3.3. Optimization

Determining the architecture in neural network optimization is critical in achieving
optimal performance. One of the primary aspects of optimizing is the number of neurons
in each hidden layer, as this directly impacts the model’s ability to learn complex patterns.
Bioinspired optimization algorithms can explore a broader search space to facilitate this
process. These algorithms are designed to dynamically adjust the number of neurons in
each layer, searching for configurations that can enhance the network’s performance by
increasing or decreasing the number of neurons per layer. This allows the model to discover
the most influential architecture tuned to the specific problem.

Optimizing the size of hidden layers in an ANN is crucial because these layers signifi-
cantly influence how the network learns to represent and process information. Focusing on
hidden layer sizes can be both sufficient and beneficial for several reasons:
¢ Learning Capacity:

-  Representation Complexity: The sizes of the hidden layers determine the net-

work’s capacity to learn from data by capturing complex features and patterns.
More extensive layers enable the network to model more intricate patterns.

- Balance between Capacity and Generalization: Adjusting the hidden layer sizes
allows for finding an optimal balance between a sufficiently complex network to
capture functional patterns and one that avoids overfitting by not being overly
complex.

e Computational Efficiency:

-  Control of Parameter Count: By modifying the hidden layer sizes, you directly
control the number of parameters in the network, impacting memory require-
ments and training speed, which is crucial in resource-constrained environments.

- Simplicity in Optimization: Focusing on hidden layer sizes simplifies the opti-
mization process, allowing computational and methodological resources to be
concentrated on determining the optimal size without the added complexity of
altering other parts of the architecture.

¢ Impact on Activation Function and Learning:

-  Improvement in Training Dynamics: Adjusting hidden layer sizes can improve
the propagation of gradients during training, potentially mitigating issues like
vanishing or exploding gradients.

- Adaptation to Data Characteristics: Depending on the complexity of the data,
modifying hidden layer sizes enables the network to better adapt to the specific
features of the data being modeled.

¢  Flexibility and Adaptability:

-  Easy Experimentation: Changing hidden layer sizes is a straightforward and ef-
fective way to experiment with different configurations and observe their impact
on network performance.

- Optimization in a Specific Context: If the overall architecture is already effective,
optimizing only the hidden layer sizes allows for fine-tuning of the network to
meet specific problem requirements without redesigning the entire structure.

¢ Reduction in Design Complexity:

-  Fewer Design Hypotheses: Concentrating on optimizing hidden layer sizes re-
duces the number of architectural decisions, streamlining the design process and
enabling a more targeted optimization approach.

Optimizing hidden layer sizes is a focused and efficient approach that can lead to
significant improvements in the performance of an ANN, particularly when the overall
network structure is already well-suited to the task. The goal of the optimization process
is to minimize the prediction error of the ANN model. Specifically, the objective function
is a combination of the MSE, MAE, and the R? score, which collectively quantify the
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difference between the actual power output and the predicted power output by the ANN.
By minimizing MSE and MAE, and maximizing R?, we aim to achieve better predictive
performance and a more accurate model.

The optimization problem is mathematically formulated by Equation (19).

min Objective(h) = w; - MSE(h) + w; - MAE(h) — w; R?(h) (19)

where:

e  h=(hy,hy,..., h) represents the vector of hyperparameters, specifically, the sizes of
the hidden layers in the neural network.

e MSE (h) = 1¥7 ,(y; — 9:(h))? is the Mean Squared Error, which penalizes large
prediction errors

e MAE() = ' 1 lyi — 9i(h)| is the MAE, which provides a more robust measure
of error.
e R’h)=1- M is the coefficient of determination, which measures the

proportion of Vazrlar(me explained by the model.

*  wj, wy, and w3 are weights assigned to MSE, MAE, and R?, respectively, which control
the relative importance of each term in the optimization objective.

*  y; is the actual power output for the ith sample in the test set.

e 7(h) is the predicted power output by the ANN for the ith sample, given the hyper-
parameters h.

* 1 isthe total number of samples in the test set.

* 7 is the mean of the actual outputs in the test set.

The optimization algorithm determines the best-hidden layer sizes (number of neurons
in each hidden layer) through an iterative process that seeks to minimize MSE and MAE,
while maximizing R2. The steps are as follows:

1. Initialization:
¢  The algorithm generates an initial set of candidate solutions, each representing a
different configuration of hidden layer sizes h.
2. Evaluation:
¢ For each candidate solution h, the ANN is trained using the training dataset.
*  The performance of the network is evaluated on the test dataset by calculating
the combined objective function that includes MSE, MAE, and R2.
3.  Selection:
¢ The algorithm compares the objective function values for all candidate solu-

tions. The candidate configuration h that results in the lowest objective value is
identified as the best-performing configuration in the current iteration.

4. Update:
*  Based on the performance of the current candidates, the algorithm generates a
new set of candidate solutions by modifying the hidden layer sizes h.
5. Iteration:
*  Steps 2 through 4 are repeated for a predefined number of iterations or until a
stopping criterion is met (e.g., no significant improvement).
6. Convergence:

e After several iterations, the algorithm converges on a configuration h* that
consistently produces the lowest combined error and highest R? score.

At the maximum power point (MPP), the voltage and current values are derived by
analyzing the photovoltaic (PV) system’s performance curve. The ANN model is trained
to predict these values based on the input dataset, which includes parameters such as
irradiance and temperature. The model, after optimization, is able to determine the voltage
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and current values that correspond to the MPP, ensuring that the system operates at its
optimal efficiency.

3.3.1. Particle Swarm Optimization

The PSO algorithm is employed to find the optimal hyperparameters for the ANN,
specifically, the sizes of the hidden layers.

e Initialize PSO with 25 particles.

*  Define the lower and upper bounds for the hyperparameters as [10, 10] and [100, 100],
respectively.

*  Set the maximum number of iterations to 100.

Optimization Process
The optimization process using PSO involves the following steps:

¢ Initialization: Randomly initialize the positions of the particles within the defined
bounds and set their initial velocities to zero.

*  Fitness Evaluation: Evaluate the fitness of each particle using the Mean Squared Error
(MSE) of the ANN predictions. The evaluation function trains the ANN with the
hidden layer sizes specified by each particle and calculates the MSE on the test set.

e  Updating Positions and Velocities: Update the velocities and positions of the particles
based on the personal best positions (pbest) and the global best position (gbest) found
so far:

—  Update the velocity of each particle using a combination of inertia, cognitive, and
social components.
- Update each particle’s position by adding the updated velocity.

e Exploration and Exploitation: Balance exploration and exploitation by adjusting the
inertia weight and using cognitive and social coefficients that guide the search towards
personal and global best positions.

e Convergence Tracking: Track the convergence of the MSE, MAE, and R? score over
the iterations to monitor the optimization progress.

Evaluation of the Best Model
After optimization, the ANN model with the best hyperparameters found by PSO is
trained and evaluated.

e Train the ANN with the optimal hidden layer sizes on the training dataset.
*  Generate predictions on the test dataset.
*  Evaluate the performance using MSE, MAE, and R? score.

The hyperparameters used in this process, including the number of particles, bounds,
and activation function, provide a clear overview of the settings optimized by PSO.

3.3.2. Grey Wolf Optimizer

The GWO is employed to find the optimal hyperparameters for the ANN, specifically,
the sizes of the hidden layers.

e Inijtialize GWO with 25 wolves.

*  Define the lower and upper bounds for the hyperparameters as [10, 10] and [100, 100],
respectively.

*  Set the maximum number of iterations to 100.

Optimization Process
The optimization process using GWO involves the following steps:

¢ Initialization: Randomly initialize the positions of the wolves within the defined
bounds.

e  Fitness Evaluation: Evaluate the fitness of each wolf using the Mean Squared Error
(MSE) of the ANN predictions. The evaluation function trains the ANN with the
hidden layer sizes specified by each wolf and calculates the MSE on the test set.
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Updating Positions: Update the positions of the wolves based on the positions of the
alpha, beta, and delta wolves. The updates are influenced by the best solutions found
so far:

—  Calculate the distances from the alpha, beta, and delta wolves.

—  Update each wolf’s position using a combination of these distances.
Exploration and Exploitation: Balance exploration and exploitation using a linearly
decreasing parameter a, which influences the update equations.

Convergence Tracking: Track the convergence of the MSE, MAE, and R? score over
the iterations to monitor the optimization progress.

Evaluation of the Best Model
After optimization, the ANN model with the best hyperparameters found by GWO is

trained and evaluated.

Train the ANN with the optimal hidden layer sizes on the training dataset.
Generate predictions on the test dataset.
Evaluate the performance using MSE, MAE, and R? score.

3.3.3. Squirrel Search Algorithm

The SSA is employed to find the optimal hyperparameters for the ANN, specifically,

the sizes of the hidden layers.

Initialize SSA with 25 squirrels.

Define the lower and upper bounds for the hyperparameters as [10, 10] and [100, 100],
respectively.

Set the maximum number of iterations to 100.

Set the flying probability (p_fly) to 0.1 and the forgetting probability (p_forget) to 0.05.

Optimization Process
The optimization process using SSA involves the following steps:

Initialization: Randomly initialize the positions of the squirrels within the defined bounds.
Fitness Evaluation: Evaluate the fitness of each squirrel using the Mean Squared Error
(MSE) of the ANN predictions. The evaluation function trains the ANN with the
hidden layer sizes specified by each squirrel and calculates the MSE on the test set.
Updating Positions: Update the positions of the squirrels based on their relative fitness:

- Ifasquirrel has better fitness than the current best, update the best position and
fitness.

- Squirrels have a probability (p_fly) to fly towards the best position.

—  Squirrels that do not fly update their position based on a random combination of
their current position and a new random position within the bounds.

-  With a probability (p_forget), some squirrels forget their position and move to a
new random position within the bounds.

Convergence Tracking: Track the convergence of the MSE, MAE, and R? score over
the iterations to monitor the optimization progress.

Evaluation of the Best Model
After optimization, the ANN model with the best hyperparameters found by SSA is

trained and evaluated.

Train the ANN with the optimal hidden layer sizes on the training dataset.
Generate predictions on the test dataset.
Evaluate the performance using MSE, MAE, and R? score.

3.3.4. Cuckoo Search

The CS is employed to find the optimal hyperparameters for the ANN, specifically,

the sizes of the hidden layers.
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Initialize CS with 25 nests.

Define the lower and upper bounds for the hyperparameters as [10, 10] and [100, 100],
respectively.

Set the maximum number of iterations to 100.

Set the probability of abandoning a nest (pa) to 0.25.

Set the step-size parameters (alpha) to 0.01 and (beta) to 1.5.

Optimization Process
The optimization process using CS involves the following steps:

Initialization: Randomly initialize the positions of the nests within the defined bounds.

Fitness Evaluation: Evaluate the fitness of each nest using the MSE of the ANN

predictions. The evaluation function trains the ANN with the hidden layer sizes

specified by each nest and calculates the MSE on the test set.

Levy Flight: Perform Levy flights to simulate the cuckoo’s random walk, providing a

step size for updating the nests.

Updating Positions: Update the positions of the nests:

—  Compare the fitness of each new nest with the current nest and replace it if the
new fitness is better.

- Abandon a fraction of the worst nests with a probability (pa) and generate
new nests.

Convergence Tracking: Track the convergence of the MSE, MAE, and R? score over

the iterations to monitor the optimization progress.

Evaluation of the Best Model
After optimization, the ANN model with the best hyperparameters (hidden layer

sizes) found by CS is trained and evaluated.

Train the ANN with the optimal hidden layer sizes on the training dataset.
Generate predictions on the test dataset.
Evaluate the performance using MSE, MAE, and R? score.

The optimization and model evaluation results are visualized to demonstrate the

effectiveness of the CS in optimizing the ANN.

Plot the MSE, MAE, and R? score convergence over the iterations.

Plot the actual versus predicted power output to visualize the performance of the
optimized ANN.

Plot the error between the actual and predicted power to highlight any discrepancies.

4. Results

The experimental setup can be observed in Table 2. It is observed that the neural

network was configured as an experimental base, and subsequently, the optimization
models were configured to identify the appropriate number of neurons for the network.

Figure 6 presents a comparative analysis of the actual and predicted power using

different algorithms. Figure 6a shows the prediction made by the ANN, while Figure 6b
illustrates the prediction using the GWO. Figure 6¢ displays the results obtained by the
SSA, and Figure 6d shows the prediction made by the CS algorithm. Finally, Figure 6e
represents the prediction results obtained using the PSO algorithm.
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Table 2. Hyperparameters setup in the model optimization with PSO, GWO, SSA, and CS.
Hyperparameter ANN PSO GWO SSA CS
n - 25 25 25 25
Ib - [10, 10] [10, 10] [10, 10] [10, 10]
ub - [100, 100] [100, 100] [100, 100] [100, 100]
max_iter - 50 50 50 50
p_fly - - - 0.1 -
p_forget - - - 0.05 -
pa - - - - 0.25
alpha - - - - 0.01
beta - - - - 15
hls (64, 32) Variable Variable Variable Variable
activation ReLU ReLU ReLU ReLU ReLU
Solver adam adam adam adam adam
epochs 200 200 200 200 200
Random state 42 42 42 42 42

n = number of agents, Ib = lower bond, ub = upper bond, max_iter = maximum iterations, p_fly = 0.1,
p_forget = Forgetting probability, pa = abandonment rate, alpha = step size, beta = flight distribution, hls = hiden

layer size, activation = activation function.
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Figure 6. Comparative analysis of actual and predicted power using the ANN and the optimization
algorithms: (a) ANN, (b) GWO, (c) SSA, (d) CS, and (e) PSO.

In the graphs corresponding to the optimization algorithms, the red line, representing
the predicted power, follows the blue line, representing the actual power, more closely. This
demonstrates the superiority of these algorithms over the ANN in terms of prediction accuracy.

The following figures provide a detailed comparison of the performance metrics for the
algorithms evaluated. Figure 7 displays the Mean Absolute Error (MAE) convergence for
all algorithms, while Figure 8 illustrates the Mean Squared Error (MSE) convergence across
iterations. The R? score for prediction accuracy is shown in Figure 9, which highlights how
well the models fit the data. Lastly, Figure 10 presents the relationship between computational
time and the number of iterations for each algorithm, demonstrating their efficiency.

Figure 11 compares hidden layer neuron configurations across optimization algo-
rithms. In Figure 11a, the results for PSO are presented, highlighting the stability of neuron
configurations over iterations. Figure 11b illustrates the behavior of the GWO, showing
a relatively stable configuration after the initial iterations. Figure 11c corresponds to the
Squirrel SSA, where more fluctuation in neuron numbers can be observed, especially in
the first layer. Lastly, Figure 11d displays the CS algorithm, which exhibits high variability
in neuron configurations across both layers throughout the iterations. This comparison
provides insights into the adaptability and stability of each algorithm in determining the
optimal number of neurons for the hidden layers.
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Figure 7. MAE convergence across iterations for all evaluated algorithms. This figure shows the
reduction of error as shown by their parameters.
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Figure 8. MSE convergence over iterations for all algorithms. This plot demonstrates the rate at
which each algorithm minimizes squared errors during training.
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Figure 9. R? score convergence over iterations, indicating the accuracy of the predictions made by
each algorithm relative to the actual data. A higher R? score implies a better fit to the data.
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Figure 10. Comparison of computational time vs. iterations for the different algorithms. This figure
highlights the efficiency of each algorithm in terms of how quickly they converge to a solution.
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Figure 11. Comparative of hidden layer neuron configurations proposed by the optimization algorithms.
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5. Discussion

Table 3 presents a comparison of various algorithms—ANN, PSO, GWO, SSA, and
CS—across different performance metrics, such as MSE, MAE, R2, execution time, and the
number of neurons in each layer of the neural network.

Table 3. Performance metrics between the optimization algorithms.

Performance PSO GWO SSA cs
etrics
MSE 13.6064 11.9487 12.1500 33.7767
MAE 2.1679 2.4552 2.7003 3.8547
R? 0.99597 0.9964 0.99598 0.9921
No. of neurons
(Layer 1) 98 66 66 84
No. of neurons
(Layer 2) 100 100 100 74
Execution Time 1417.80 s 1198.99 s 987.45 s 1904.01 s

The test performed with a conventional neural network showed prediction evaluation
metrics R? of 12.6468, an MSE of 159.9437, and an MAE of 8.0781. This neural network was
configured with 64 and 32 neurons for the hidden layers. These values are high compared
to the network optimized by PSO, GWO, SSA and CS.

Regarding MSE, GWO achieves the best performance with the lowest MSE value
of 11.9487, indicating it has the highest prediction accuracy among the algorithms. SSA
and PSO follow, with MSE values of 12.1500 and 13.6064, respectively, showing good
accuracy but not as strong as GWO. ANN and CS, with MSE values of 159.9437 and 33.7767,
respectively, perform significantly worse, indicating they are less effective in minimizing
prediction errors.

For MAE, PSO stands out with the lowest value of 2.1679, suggesting it is the most
effective in minimizing the average absolute prediction error. GWO and SSA have slightly
higher MAE values of 2.4552 and 2.7003, respectively, indicating good but not the best
performance. CS and ANN exhibit higher MAE values of 3.8547 and 8.0781, respectively,
implying that their predictions have greater deviations from the actual values.

When considering execution time, SSA is the fastest, completing its tasks in 987.45 s.
GWO follows closely with a time of 1198.99 s, while PSO takes 1417.80 s. CS is the slowest,
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with an execution time of 1904.01 s. ANN does not have a recorded execution time in
this table.

Regarding the neural network structure, the number of neurons in each layer appears
to influence the performance of the algorithms. For Layer 1, PSO uses 98 neurons, GWO
and SSA use 66 neurons, CS uses 84 neurons, and ANN uses 64 neurons. In Layer 2, PSO,
GWO, and SSA use 100 neurons, while CS uses 74 neurons and ANN uses 32.

The number of neurons in the hidden layers is critical for determining the model’s
capacity to learn complex patterns. PSO, with the most significant number of neurons
in both layers (98 in Layer 1 and 100 in Layer 2), demonstrates superior performance in
minimizing MAE. This suggests that the more extensive network capacity of PSO allows it
to better capture nuances in the data, particularly for reducing the average prediction error.
However, this increase in neurons may also contribute to the slightly higher execution time
when compared to SSA and GWO.

GWO and SSA, which use 66 neurons in Layer 1 and 100 neurons in Layer 2, show
similar performance regarding MSE and execution time. The relatively minor number of
neurons in Layer 1 compared to PSO may make these algorithms slightly less accurate
regarding MAE, but their performance is still strong overall. The shared architecture of
these algorithms highlights that balancing the number of neurons across layers can lead to
competitive performance in speed and accuracy.

CS, which uses 84 neurons in Layer 1 and 74 neurons in Layer 2, performs worse
than the others in MSE and MAE. This could indicate that the architecture of CS, with
fewer neurons in the second layer, may limit its ability to fully capture the complexity
of the dataset, leading to higher errors. Similarly, with the fewest neurons in both layers
(64 and 32 neurons, respectively), ANN performs worst in both MSE and MAE, likely due
to insufficient network capacity.

In summary, GWO emerges as the most balanced algorithm, offering the best perfor-
mance in terms of MSE and competitive execution time, while using a relatively modest
number of neurons in each layer. PSO excels in minimizing MAE, potentially due to its
larger network architecture, though this comes at the cost of a slightly longer execution
time. SSA, while the fastest algorithm, still provides good accuracy, making it an attractive
option for time-sensitive scenarios. ANN and CS, with higher errors and fewer neurons,
appear less suited for tasks requiring high precision and speed. This analysis highlights
the importance of tuning the number of neurons and the network architecture to optimize
performance for specific tasks.

6. Conclusions

The comparative analysis of the algorithms—ANN, PSO, GWO, SSA, and CS—under
partial shade conditions reveals that GWO remains the most balanced algorithm, excelling
in accuracy and computational efficiency. GWO achieves the lowest MSE, indicating
superior prediction accuracy, while maintaining a competitive execution time, making it
particularly effective in scenarios where the partial shade condition affects the performance
of photovoltaic systems. This algorithm strikes an excellent balance, maintaining high
accuracy while processing efficiently, which is crucial under fluctuating conditions like
partial shading.

Although not as fast as GWO or SSA, PSO shows the best performance in minimizing
the MAE, making it a strong contender in environments where reducing absolute errors
is crucial, even under partial shade conditions. Its larger neural network structure likely
contributes to its ability to minimize prediction errors, though this comes at the cost of
longer execution times than GWO and SSA.

While SSA is the fastest algorithm in terms of execution time, it offers a competitive
level of accuracy, making it well-suited for time-sensitive applications. Its ability to balance
speed with accuracy under partial shade conditions makes it an attractive choice for
scenarios where execution time is critical, even though it does not outperform GWO in
terms of accuracy.
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ANN and CS, on the other hand, exhibit higher errors and slower execution times,
making them less suitable for tasks where precision and speed are paramount. This
performance gap is particularly noticeable under partial shade conditions, where their
ability to maintain accuracy diminishes. Their neural network architectures, with fewer
neurons, likely limit their ability to model the complex behavior associated with partial
shading in photovoltaic systems.

Overall, GWO stands out as the top-performing algorithm in this comparison, pro-
viding an optimal balance between accuracy and execution time, even in the challenging
scenario of partial shading. However, the choice of the best algorithm ultimately depends
on the specific requirements of the application—whether it prioritizes accuracy, execution
time, or a combination of both—especially in the context of partial shade conditions, where
performance demands can vary significantly.

In the context of a power prediction model, reducing the error improves the accuracy
of predictions, leading to more efficient power forecasting. With the MAE initially at
8.0781 watts, the model’s average predictions were off by that amount. After optimization,
the reduced MAE of 2.4552 watts obtained by the GWO reflects a substantial improvement
in precision, enhancing power management and minimizing energy waste.

The relevance of a 6-watt difference depends on the application. A 6-watt error can
represent a significant percentage of total power output in small systems, such as low-
power devices. Although the difference may seem small in larger systems, it can accumulate
across multiple units or over time, leading to inefficiencies. In precision-sensitive areas
like renewable energy forecasting, even minor improvements can optimize energy usage,
reduce costs, and improve overall system efficiency.

In conclusion, the observed relationship between higher power levels and increased
error in predictions highlights the inherent non-linearity and complexity of the photovoltaic
system, particularly under partial shading conditions. As power levels rise, more signif-
icant variations in the input-output relationship make it more difficult for the model to
maintain accuracy. This challenge is amplified in fluctuating conditions like partial shad-
ing, where prediction errors become more pronounced. By refining the methodology and
optimizing the model structure and the number of neurons used, we have demonstrated
that algorithms like GWO provide the best balance between accuracy and computational
efficiency, particularly in these challenging environments.

Future applications of this methodology could extend to other renewable energy sys-
tems, such as wind and hydropower, where similar complexities and fluctuating conditions
affect system performance. Integrating hybrid energy systems—combining solar, wind, or
other energy sources—could provide further insights into optimizing power generation
under varying environmental conditions. Moreover, future research should enhance the
optimization algorithms to handle more complex, large-scale datasets and adapt to real-
time predictive requirements. These advancements would not only improve the scalability
and precision of the models, but also contribute to more efficient energy management and
system optimization across a broader range of renewable energy applications, supporting
the transition to more sustainable energy systems globally.
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Abbreviations

ANN Artificial neural network

CS Cuckoo search

GP Global peak

GMMP  Global maximum power point [W]
GWO Grey wolf optimization

1C Incremental conductance

LMMP  Local maximum power point [W]
MAE Mean absolute error

MPPT  Maximum power point tracking [W]
MSE Mean square error [W]

P-v Power-Voltage [W-V]

P&O Perturb and Observe

1Y% Photovoltaic

SSA Squirrel search algorithm
PSO Particle swarm optimization

FOCV  Fractional Open Circuit Voltage
FSCC Fractional Short Circuit Current
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