ﬁ cryptography ﬁw\p\py

Article

Revocable Identity-Based Encryption and Server-Aided
Revocable IBE from the Computational
Diffie-Hellman Assumption *

Ziyuan Hu 1, Shengli Liu **, Kefei Chen 23 and Joseph K. Liu *

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;

huziyuan1989@sjtu.edu.cn

Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China; kfchen@hznu.edu.cn
Westone Cryptologic Research Center, Beijing 100070, China

Faculty of Information Technology, Monash University, Clayton VIC 3800, Australia; joseph.liu@monash.edu
Correspondence: slliu@sjtu.edu.cn

1t Part of this work was published in ACISP 2018. This is the full version.

= W N

check for

Received: 30 August 2018; Accepted: 18 October 2018; Published: 23 October 2018 updates

Abstract: An Identity-based encryption (IBE) simplifies key management by taking users’ identities
as public keys. However, how to dynamically revoke users in an IBE scheme is not a trivial problem.
To solve this problem, IBE scheme with revocation (namely revocable IBE scheme) has been proposed.
Apart from those lattice-based IBE, most of the existing schemes are based on decisional assumptions
over pairing-groups. In this paper, we propose a revocable IBE scheme based on a weaker assumption,
namely Computational Diffie-Hellman (CDH) assumption over non-pairing groups. Our revocable
IBE scheme is inspired by the IBE scheme proposed by Déttling and Garg in Crypto2017. Like Dottling
and Garg’s IBE scheme, the key authority maintains a complete binary tree where every user is
assigned to a leaf node. To adapt such an IBE scheme to a revocable IBE, we update the nodes along
the paths of the revoked users in each time slot. Upon this updating, all revoked users are forced
to be equipped with new encryption keys but without decryption keys, thus they are unable to
perform decryption any more. We prove that our revocable IBE is adaptive IND-ID-CPA secure in
the standard model. Our scheme serves as the first revocable IBE scheme from the CDH assumption.
Moreover, we extend our scheme to support Decryption Key Exposure Resistance (DKER) and also
propose a server-aided revocable IBE to decrease the decryption workload of the receiver. In our
schemes, the size of updating key in each time slot is only related to the number of newly revoked
users in the past time slot.

Keywords: revocable identity-based encryption; server-aided revocable identity-based encryption;
CDH assumption

1. Introduction

The concept of Identity-Based Encryption (IBE) was proposed by Shamir [1] in 1984. In an IBE
scheme, the public key of a user can simply be the identity id of the user, like name, email address,
etc. An IBE scheme considers three parties: key authority, sender and receiver. The key authority
is in charge of generating secret key sk;q for user id. A sender simply encrypts plaintexts under the
receiver’s identity id and the receiver uses his own secret key sk;q for decryption. With IBE, there is
no need for senders to ask for authenticated public keys from Public-Key Infrastructures, hence key
management is greatly simplified.

Over the years, there have been many IBE schemes proposed from various assumptions in
the standard model. Most of the assumptions are decisional ones, like the bilinear Diffie-Hellman

Cryptography 2018, 2, 33; d0i:10.3390/ cryptography2040033 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0002-8446-2231
http://dx.doi.org/10.3390/cryptography2040033
http://www.mdpi.com/journal/cryptography
http://www.mdpi.com/2410-387X/2/4/33?type=check_update&version=2

Cryptography 2018, 2, 33 2 of 35

assumption [2—4] over pairing-groups, or the decisional learning-with-errors (LWE) assumption from
lattices [5-7]. Most recently, a breakthrough work was done by Déttling and Garg [8], who proposed
the first IBE scheme based solely on the Computational Diffie-Hellman (CDH) assumption over groups
free of pairings.

Though IBE enjoys the advantage of easy key management, how to revoke users in an IBE system
is a non-trivial problem. It was Boneh and Franklin [9] who first proposed revocable IBE (RIBE) to
solve the problem. Later, Boldyreva et al. [10] formalized the definition of selective-ID security and
constructed a more efficient RIBE scheme based on a fuzzy IBE scheme [11]. Then Libert and Vergnaud
proposed the first adaptive-ID secure revocable IBE scheme [12]. In [13], Seo and Emura strengthened
the security model by introducing an additional important security notion, called Decryption Key
Exposure Resistance (DKER). They also constructed a revocable IBE scheme in the strengthened model,
and the security of this scheme is from the Decisional Bilinear Diffie-Hellman (DBDH) assumption.
Since then, most of the revocable IBE schemes constructed from pairing groups achieved DKER.
For example, in the strengthened security model, Lee et al. [14] constructed a revocable IBE scheme
via subset difference methods to reduce the size of key updating based on the DBDH assumption,
and Watanabe et al. [15] introduced a new revocable IBE with short public parameters based on both
the Decisional Diffie-Hellman (DDH) assumption and the Augmented Decisional Diffie-Hellman
(ADDH) assumption over pairing-friendly group. Furthermore, Park et al. [16] constructed a revocable
IBE whose key update cost is only O(1), but the scheme relied on multilinear maps. Without pairing,
it seems difficult to achieve DKER. In [17], Chen et al. proposed the first selective-ID secure revocable
IBE scheme from the LWE assumption over lattices in the traditional security model (without DKER).
Later, Takayasu and Watanabe [18] designed a lattice-based revocable IBE with bounded DKER.
Meanwhile, to improve the decryption efficiency for the receiver, Qin et al. [19] provided a new
model named Server-Aided Revocable Identity-Based Encryption (SR-IBE) which used a server as
an intermediary to help the receiver to decrypt part of the ciphertext. In fact, the revocable property
is so important that it is studied not only in IBE but also in Identity-Based Proxy Re-encryption [20],
Fine-Grained Encryption of Cloud Data [21,22] and Attribute-Based Encryption [23]. It should be
noted that bilinear pairings are essential techniques in these schemes [20-23].

Please Please note that all the existing RIBE schemes are based on assumptions over
pairing-friendly groups or the LWE assumption over lattices. On the other hand, Déttling and Garg’s
IBE scheme [8] is based on the CDH assumption over non-pairing group, but it does not consider user
revocation. In this paper, we aim to fill the gap by designing RIBE from the CDH assumption without
use of pairings.

1.1. Our Contributions

In this paper, we propose the first revocable IBE (RIBE) schemes and server-aided revocable IBE
(SR-IBE) based on the Computational Diffie-Hellman (CDH) assumption over groups free of pairings.
The corner stone of this scheme is the IBE scheme proposed by Doéttling and Garg [8]. Our RIBE
schemes enjoy the following features.

1. Weaker security assumption. The securities of our RIBE and SR-IBE schemes can be reduced
to the CDH assumption. Hence our schemes serve as the first RIBE/SR-IBE schemes from
the CDH assumption over non-pairing groups. More precisely, our first RIBE scheme can
achieve adaptive-IND-ID-CPA security but without the property of decryption key exposure
resistance(DKER). Our second RIBE scheme obtains decryption key exposure resistance but with
selective-IND-ID-CPA security. Our SR-IBE scheme is selective-SR-ID-CPA secure. The securities
of the three schemes can be reduced to the CDH assumption.

2. Smaller size of key updating. When a time slot begins, the key updating algorithm of our
RIBE/SR-IBE will issue updating keys whose size is only linear to the number of newly revoked
users in the past time slot. In comparison, most of the existing RIBE /SR-IBE schemes have to

Cryptography 2018, 2, 33 3 0f 35

update keys whose number is related to the number of all revoked users across all the previous
time slots.

In Table 1, we compare our RIBE scheme with some existing RIBE schemes.

Table 1. Comparison with RIBE schemes (in the standard model). Here N is the total number of users,
r is the number of all revoked users and Ar is the number of newly revoked users the past time slot.
DKER means decryption key exposure resistance.

IBE Security Assumption Pairing Free Security Model Key Updating Size DKER
[17] LWE v Selective-IND-ID-CPA O(rlog (N/r)) X
[18] LWE v Selective-IND-ID-CPA O(rlog (N/r)) Bounded
[10] DBDH X Selective-IND-ID-CPA O(rlog (N/r)) X
[12] DBDH X Adaptive-IND-ID-CPA O(rlog (N/r)) X
[13] DBDH X Adaptive-IND-ID-CPA O(rlog (N/r)) v
[14] DBDH X Adaptive-IND-ID-CPA O(r) v
[15] DDH and ADDH X Adaptive-IND-ID-CPA O(rlog (N/r)) v
[16] Multilinear X Selective-IND-ID-CPA 0o(1) v
Our RIBE 1 CDH v Adaptive-IND-ID-CPA O(Ar(log N —log(Ar))) X
Our RIBE 2 CDH v Selective-IND-ID-CPA O(Ar(log N — log(Ar))) v
Our SR-IBE CDH v Selective-IND-ID-CPA O(Ar(log N — log(Ar))) v

Remark 1. Dottling and Garg’s IBE makes use of garbled circuits to implement the underlying cryptographic
primitives. Hence it is prohibitive in terms of efficiency. Our RIBE inherits their idea, hence the efficiency of our
RIBE scheme is also incomparable to the RIBE schemes from bilinear maps. However, since no RIBE scheme is
available from the CDH assumption over non-pairing groups, our scheme serves as a theoretical exploration in
the field of RIBE.

1.2. Paper Organization

In Section 2, we collect notations and some basic definitions used in the paper and present the
framework. We illustrate our idea of RIBE in Section 3. In Section 4, we construct a revocable IBE
scheme (without DKER) based on the CDH assumption and present the correctness and security
analysis of the scheme. Then we show how to make our RIBE to obtain DKER in Section 5. In Section 6,
we provide a SR-IBE scheme from the CDH assumption. In Section 7, we illustrate the key updating
complexity analysis of our scheme.

2. Preliminaries

2.1. Notations

The security parameter is denoted by A. “probabilistic polynomial-time” is abbreviated by “PPT”.
Let 1,2 and b be integers. Denote by [n] the set {1,--- ,n}, by [a,b] the set {a,a+1,---,b}, by {0,1}*
the set of bit-strings of arbitrary length, and by {0, 1} = the set of bit-strings of length at most £. Let e
be an empty string. and |v| be the bit-length of string v. Obviously, |¢] = 0. Denote by x||y the

concatenation of two bit-strings x and y, by x; the i-th bit of x, by x & S the process of sampling the
element x from the set S uniformly at random, and by a < X the process of sampling the element
a over the distribution X. By a < f(-) we mean that a is the output of a function f. A function
negl : N — R is negligible if for any polynomial p(A) it holds that negl(A) < 1/p(A) for all sufficiently
large A € N.

2.2. Pseudorandom Functions

Let PRF: K x X — Y be an efficiently computable function. For an adversary .4, define its
advantage function as

AQVPRF(1M):=[Pr(b = 1 [k & Kb« APRF()]_Pr(b = 1 | b« ARFO]|,

Cryptography 2018, 2, 33 4 of 35

where RF : & — Y is a truly random function. PRF is a pseudorandom function (PRF) if the above
advantage function AdvFF(1%) is negligible for any PPT A.

2.3. Revocable Identity-Based Encryption

A revocable IBE (RIBE) consists of seven PPT algorithms RIBE = (RIBE.Setup, RIBE.KG, RIBE.KU,
RIBE.KU, RIBE.Enc, RIBE.Enc, RIBE.R). Let M denote the message space, ZD the identity space and 7
the space of time slots.

e Setup: The setup algorithm RIBE.Setup is run by the key authority. The input of the algorithm
is a security parameter A and 1, where the maximal number of users is 2". The output of this
algorithm consists of a pair of key (mpk, msk), an initial state st = (KL, PL, RL,KU), where KL is the
key list, PL is the list of public information, RL is the list of revoked users and KU is the update
key list. In formula, (mpk, msk, st) <— RIBE.Setup(1*,1").

e Private Key Generation: This algorithm RIBE.KG is run by the key authority which takes as input
the key pair (mpk, msk), an identity id and the state st. The output of this algorithm is a private
key skig and an updated state st’. In formula, (skiq,st’) <= RIBE.KG(mpk, msk, id, st).

o Key Update Generation: This algorithm RIBE.KU is run by the authority. Given the key pair
(mpk, msk), an update time t, and a state st, this algorithm updates the update key list KU and the
the list of public information PL. In formula, st’ +— RIBE.KU(mpk, msk, t, st).

e Decryption key generation: This algorithm RIBE.DK is run by the receiver. Given the master
public key mpk, a private key skjq, the update key list KU and the time slot t, this algorithm
outputs a decryption key ski(;) for time slot t. In formula, ski(;) < RIBE.DK(mpk, skig, KU, t).

e Encryption: This algorithm RIBE.Enc is run by the sender. Given the public key mpk, a public list
PL, an identity id, a time slot t and a message m, this algorithm outputs a ciphertext ct. In formula,
ct < RIBE.Enc(mpk, id, t, m, PL).

e Decryption: This algorithm RIBE.Enc is run by the receiver. The algorithm takes as input the

master public key mpk, the decryption key ski(;) and the ciphertext ct, and outputs a message m or

a failure symbol L. In formula, m/ L RIBE.Dec(mpk,ski(;), ct).

e Revocation: This algorithm RIBE.R is run by the key authority. Given a revoked identity id and
the time slot t during which id is revoked and a state st = (KL, PL, RL, KU), this algorithm updates
the revocation list RL with RL <— RL U {(id, t)}. It outputs a new state st’ = (KL, PL,RL, KU).

Correctness. For all (mpk, msk,st) < RIBE.Setup(1*,N), all m € M, all identity id € ZD, all time
slott € T, and revocation list RL, for all (skiy,st’) + RIBE.KG(msk,id,st), st” «+ RIBE.KU(msk, t, st),
and ski(;) < RIBE.DK(mpk, skiq, KU, t), we have RIBE.Dec(mpk,ski(;), RIBE.Enc(mpk,id, t,m,PL)) = m
if (id,t) ¢ RL(i.e., id is not revoked at time t) and PL € st”.

Now we explain how a revocable IBE system works. To setup the system, the key authority
invokes RIBE.Setup to generate master public key mpk, master secret key msk and the state st. Then it
publishes the public key mpk. When a user registers in the system with identity id, the key authority
invokes RIBE.KG(msk, id, st) to generate the private key sk;q for user id. If a user id needs to be revoked
during time slot t, the key authority invokes RIBE.R(id, t,st). Next it updates the state st. At the
beginning of each time slot t, the key authority might invoke RIBE.KU(msk, t, st) to update keys by
updating set KU. Then it publishes some information about the updated set KU. Meanwhile it may
also publish some public information PL. During time slot t, when a user wants to send a message m
to another user id, he/she invokes RIBE.Enc(mpk, id, t, m, PL) to encrypt m to obtain the ciphertext ct,
then sends (t, ct) to user id. To decrypt a ciphertext ct encrypted at time t, the receiver id first invokes

RIBE.DK(mpk, skiq, KU, t) to generate its own decryption key ski(;) of time t. The receiver id invokes

RIBE.Dec(mpk, ski(;), ct) to decrypt the ciphertext and recover the plaintext.

Cryptography 2018, 2, 33 5of 35

Remark. In the definition of our RIBE, KL is the key list which stores the essential information used
to generate the update key. PL is a public information list which is used in the encryption algorithm.
In the traditional definition of RIBE in other works, no PL is defined. However, in our construction,
PL will serve as an essential input to the encryption algorithm and that is the reason we define it.
Nevertheless, our definition can be regarded as a general one, while the traditional definition of RIBE
can be seen as a special case of PL = @.

Security. Now we formalize the security of a revocable IBE. We first consider four oracles: private
key generation oracle KG(-), key update oracle KU, decryption key generation oracle DK(-, -) and
revocation oracle RVK(-, -) which are shown in Table 2. The security of adaptive-IND-ID-CPA defines
as follows.

Table 2. Three oracles that the adversary can query.

KG(id) : KU :
(skig, st’) < RIBE.KG(msk, id, st) st’ < RIBE.KU(msk, t, st)
st :=st'.
Parse st = (KL, PL,RL,KU)
Output skiq. Output (KU, PL).
Rvk(id, t) : DK(id, t) :
st’ < RIBE.R(id, t, st) (skig,st’) « RIBE.KG(msk, id, st)
st := (KL, PL,RL, KU) sk!") « RIBE.DK(mpk, skig, KU, t)
Output RL. Output ski(j).

Definition 1. Let RIBE = (RIBE.Setup, RIBE.KG, RIBE.KU, RIBE.DK, RIBE.Enc, RIBE.Dec, RIBE.R) be a
revocable IBE scheme. Below describes an experiment played between a challenger C and a PPT adversary A.

EXPajaptive—IND—ID—CPA ()\) :
(mpk, msk, st) < RIBE.Setup(1*,1");
Parse st = (KL, PL, RL, KU);
(Mo, My, id*, t*,5t) < AKGOKURVK() (qpk),
o0& {0,1};
ct* < RIBE.Enc(mpk, id*, t*, My, PL)
9 AKG(-),KU,DK(A,-),RVK(-,-) (Ct*,ﬂ)
If 0 = 0'Return 1;If 0 # 6'Return 0.

The experiment has the following requirements for A.

e The two plaintexts submitted by A have the same length, i.e., |Mp| = | M.

e The time slot t submitted to KU and RVK(-, -) by A is in ascending order.

e Ifthe challenger has published KU at time t, then it is not allowed to query oracle RVK(-, t') with ¢’ < t.

o If Ahas queried id" to oracle KG(-), then there must be query (id*, t) to oracle RVK(-) satisfies t < t*,
i.e., id* must has been revoked before time t*.

e Ifid" is not revoked at time t*, DK(-, -) cannot be queried on (id", t*).

A revocable IBE scheme is adaptive-IND-ID-CPA secure (with DKER) if for all PPT adversary A,
the following advantage is negligible in the security parameter A, i.e.,

Advﬁ;i[ugg,vaND-ID—CPA(/\) _ ‘ Pr[EXPajaptive—IND—ID—CPA(A) _ 1] _ 1/2| _ neg/()t).

Remark 2. The security definition without DKER is similarly defined with changing the experiment so that an
adversary A is not allowed to make any decryption key reveal query, i.e., A cannot query for the oracle DK(-,).

Cryptography 2018, 2, 33 6 of 35

Next we define selective-IND-ID-CPA security for RIBE, where the adversary has to determine the target identity
id*, target time slot t* at the beginning of the experiment. Clearly, selective-IND-ID-CPA security is weaker
than adaptive-IND-ID-CPA security.

Definition 2. Let RIBE = (RIBE.Setup, RIBE.KG, RIBE.KU, RIBE.DK, RIBE.Enc, RIBE.Dec, RIBE.R) be
a revocable IBE scheme. Below describes an experiment played between a challenger C and a PPT adversary A.

EXstlec[ive—IND—ID—CPA (A) .
(id*,) « A
(mpk, msk, st) < RIBE.Setup(1*,1");
Parse st = (KL, PL, RL, KU);
(Mo, My, 5t5) ¢ AKGOKORYEC (mpk);
08 {0,1);
ct* < RIBE.Enc(mpk, id*, t*, My, PL)
o «— AKG(-),KU,DK(~,-),Rv1<(-,~)(Ct*’ﬂ)
If6 = 0'Return 1;1f 0 # 6'Return 0.

The requirements for A in this experiment are the same as the requirements in EXP“JZ“” toe-IND-ID-CPA (A).
A revocable IBE scheme is selective-IND-ID-CPA secure (with DKER) if for all PPT adversary A, the following
advantage is negligible in the security parameter A, i.e.,

Advi%eBCtEi,vaND_lD_CPA(/\) — ‘ Pr [EXPSJilective—IND—ID—CPA(/\) — 1] _ 1/2| — neg/(/\).

Selective-IND-ID-CPA security without DKER is defined can be similarly defined by changing
the experiment so that an adversary A is not allowed to query for the oracle DK(-, -).

2.4. Server-Aided Revocable Identity-Based Encryption

In a server-aided revocable identity-based encryption scheme [19], there are four parities and they
work as follows (as shown in Figure 1):

o Key Authority generates a public key and a secret key for every registered user and issues the
secret key to the user and the public key to the server. In each time slot, the key authority delivers
a update key list (to revoke users) to the server.

e Sender encrypts a message for an identity and a time slot and sends the ciphertext to the server.

e Sever combines the update key list and the stored users’ public keys to generate the transformation
keys in every time slot for all users. When receiving a ciphertext, the server transforms it to
a partially decrypted ciphertext using the transformation key corresponding to the receiver’s
identity and the corresponding time slot. Then it sends the partially decrypted ciphertext to
the receiver.

e Receiverrecovers the sender’s message from the partially decrypted ciphertext using a decryption
key which can be generated by his/her own secret key and the corresponding time slot.

Key Authority

(Public key

v Secret key
Update key

Ciphertext N .
& Partially decrypted ciphertext ~ 2> Plaintext

Receiver

Sender Server

Figure 1. System model of a server-aided revocable IBE.

Cryptography 2018, 2, 33 7 of 35

Now, we formally define Server-Aided Revocable Identity Based Encryption (SR-IBE) which was
first proposed by Qin et al. [19]. A SR-IBE scheme consists of ten PPT algorithms X = (Setup, PubKG,
KU, TranKG, PrivKG, DK, Enc, Transform, Dec, R). Let .M denote the message space, £.ZD the identity
space and 2.7 the space of time slots.

e Setup: The setup algorithm Setup is run by the key authority. The input of the algorithm is
a security parameter A and a parameter #, which indicates that the maximal number of users
is 2". The output of this algorithm consists of a pair of key (msk, mpk) and an initial state
st = (KL, PL,RL, KU), where KL is the key list, PL is the list of public information, RL is the list of
revoked users and KU is the update key list. In formula, (msk, mpk, st) + Setup(1*,1").

e Public Key Generation: The public key generation algorithm PubKG is run by the key authority.
It takes as input a master secret key msk, an identity id € {0,1}" and a state st. The output of this
algorithm is the public key pk;q on identity id. In formula, pkiy <= PubKG(msk, id, st).

e Key Update Generation: The key update generation algorithm KU is run by the key authority.
It takes as input a master secret key msk, an update time t and a state st. The output of this
algorithm is an update key list KU® and an updated state st’. In formula, (KUW® st’) «
KU (msk, t, st).

o Transformation Key Generation: The transformation key generation algorithm TranKG is run
by the server. It takes as input the master public key mpk, the public key pk;y and an update
key list KU®). The output of this algorithm is the transformation key tki(;). In formula, tki(? —
TranKG(mpk, pk;g, KUY).

e Private Key Generation: The private key generation algorithm PrivKG is run by the key authority.
It takes the master secret key msk and an identity id € {0,1}" as input. The output of this
algorithm is the private key sk;q on identity id. In formula, sk;q = PrivKG(msk, id).

o Decryption Key Generation: The decryption key generation algorithm DK is run by the receiver.
It takes the secret key skiy and a slot t as input. The output of this algorithm is the decryption key
Dki(j). In formula, Dki(;) + DK(skiq, t)-

e Encryption: The encryption algorithm Enc is run by the sender. It takes the master public key mpk,
an identity id, a time plot t, a plaintext message m and a public list PL as the input. The output of
this algorithm is the ciphertext ct. In formula, ct <— Enc(mpk, id, t, m, PL).

e Transformation: The transformation algorithm transform is run by the server. It takes the master

public key mpk, the transformation key tki(;) and the ciphertext ct as the input. The output of this

algorithm is the partially decrypted ciphertext ct’. In formula, ct’ < Transform(mpk, tki(dt) ,ct).

o Decryption: The decryption algorithm Dec is run by the receiver. The input of this algorithm
consists of the master public key mpk, the decryption key Dki(;) and the partially decrypted
ciphertext ct’. The output of this algorithm is the plaintext m. In formula, m < Dec(mpk, Dki(;), ct').

e Revocation: The revocation algorithm R is run by the key authority. The input of this algorithm
consists of an identity id, a time plot t and a state st. The output of this algorithm is the updated

state st’. In formula, st’ + R(id, t, st).

Correctness. The correctness requires that for all message m, if the receiver is not
revoked at time period t and all parties follow the algorithms above, then we have m <«
Dec(mpk, Dki(dt), Transform(mpk, tki(dt), ct)).

Security. Now we formalize the security of SR-IBE. We first consider five oracles: public key
generation oracle PUBKG(-), key update oracle KU, private key generation oracle PRIVKG(-),
decryption key generation oracle DK(-, -) and revocation oracle RVK(-, -) which are shown in Table 3.
The selective-SR-ID-CPA security is defined as follows.

Cryptography 2018, 2, 33 8 of 35

Table 3. Five oracles that the adversary of a SR-IBE scheme can query.

PuBKG(id) : KU :
pkig < PubKG(msk, id, st) st’ + KU(msk, t, st)
Output pkig. st ;= st’.
PRIVKG (id) : Parse st = (KL, PL, RL, KU)
skig < PrivKG(msk, id) .
Output skig. Output (KU, PL)
RvK(id, t) : DK(id, t) :
st’ + R(id, t, st) skig < PrivKG(msk, id)
st’ := (KL, PL, RL, KU) D" < DK (skig, t)
Output RL. Output Dki(s).

Definition 3. Let ¥ = (Setup, PubKG, KU, TranKG, PrivKG, DK, Enc, Transform, Dec, R) be a server-aided
revocable IBE scheme. Below describes an experiment played between a challenger C and a PPT adversary A.

EXI);jl@CHUf—SR—ID—CPA ()\) .
(id*, t*) < A;
(mpk, msk, st) + Setup(1*,1");
Parse st = (KL, PL, RL, KU);
(mo, my, sty) < APUBKG(~),KU,PRIVKG(~),DK(-,~),RVK(~,-)(mpk);
0 & {0,1);
ct* < Enc(mpk, id*, t*,m, PL));
0 «— APUBKG(«),KU,PRIVKG(»),DK(-,~),RV1<(~,-)(mpk, ct*,stA);
If0 = 0'Return 1;1f 6 # 0'Return 0.

The experiment has the following requirements for A.

The two plaintexts submitted by A have the same length, i.e., |mg| = |my|.

The time slot t submitted to KU and RVK(-, -) by A is in ascending order.

If the challenger has published KU at time t, then it is not allowed to query oracle RVK(-, ') with t' < t.
If A has queried id* to oracle PRIVKG(+), then there must exist a query (id", t) to oracle RVK(-) satisfying
t < t*, ie., id" must has been revoked before time t*.

If id" is not revoked at time t*, DK(-, -) cannot be queried on (id"*, t*).

A server-aided revocable IBE scheme is selective-SR-ID-CPA secure (with DKER) if for all PPT adversary

A, the following advantage is negligible in the security parameter A, i.e.,

Adv%e}s_c;ié)gi{{lefCPA(A) — | Pr[EXPfiIgCtive_SR_ID_CPA (/\) _ 1] _ 1/2| _ neg/(/\).

2.5. Garbled Circuits

A garbled circuits scheme consists of two PPT algorithms (GCircuit, Eval).

GCircuit(A, C) = (C, {labyp }weinp(C) pefo1}): The algorithm GCircuit takes a security parameter
A and a circuit C as input. This algorithm outputs a garbled circuit C and labels
{laby,p }wcinp(c)pefoy Where each laby,; € {0,1}*. Here inp(C) represents the set [¢] where
¢ is the bit-length of the input of the circuit C.

Eval(C, {laby,x, }weinp(c)) — y: The algorithm Eval takes as input a garbled circuit C and a set of
label {labuw,x, }yeinp(c), and it outputs y.

Correctness. In a garbled circuit scheme, for any circuit C and an input x € {0, 1}, it holds that

PI‘[C(X) = Eval(C, {Iabw,xw}weinp(C)H =1

Cryptography 2018, 2, 33 9 of 35

where (C, {labyb }wcinp(C)pefoy) < GCircuit(1%, C).

Security. In a garbled circuit scheme, the security means that there is a PPT simulator Sim such that
for any C, x and for any PPT adversary A, the following advantage of A is negligible in the security
parameter A:

Adv3©(A) = | PrLA(C, {labu,x, Jucinp(c) = 1] — PrlA(SIm(1%, C(x))) = 1]| = negl(A),
where (C, {laby,b bwcinp(C)pefony) < GCircuit(14, C).

2.6. Computational Diffie-Hellman Assumption

Let (G,g,p) < GGen(1") be a group generation algorithm which outputs a cyclic group G of
order p and a generator of G.

Definition 4. [CDH Assumption] The computational Diffie-Hellman (CDH) assumption holds w.r.t. GGen,
if for any PPT algorithm A its advantage € in solving computational Diffie-Hellman (CDH) assumption in G is

negligible. In formula, Pr [A(g,g“,gb) =g | (G,g,p) « GGen(1");a,b + ZP} = negl(A).

2.7. Chameleon Encryption
A chameleon encryption scheme has five PPT algorithms CE = (HGen, H, H 1 HEnc, H Dec).

e HGen: The algorithm HGen takes the security parameter A and a message-length n as input.
This algorithm outputs a key k and a trapdoor t.

e H: The algorithm H takes the key k, a message x € {0,1}" and a randomness r as input.
This algorithm outputs a hash value & and the length of /1 is A.

e H7L: The algorithm H™! takes a trapdoor t, a previously used message x € {0,1}", random coins
r and a message x’ € {0,1}" as input. It outputs r’.

e HEnc: The algorithm HEnc takes a key k, a hash value h, an index i € [n], abitb € {0,1}, and a
message m € {0,1}* as input. It outputs a ciphertext ct.

e HDec: The algorithm HDec takes a key k, a message x € {0,1}", a randomness r and a ciphertext
ct as input. It outputs a value m or L.

The chameleon encryption scheme enjoys the following properties:

e Uniformity. For all x,x’ € {0,1}",if both r and ' are chosen uniformly at random, the two
distribution H(k, x;7) and H(k, x’; ') are statistically indistinguishable.

e Trapdoor Collisions. For any x,x’ € {0,1}" and r, if (k,t) < HGen(1},n) and ' <«
H_l(t, (x,7),x"), then it holds that H(k, x;7) = H(k,x';7"). Moreover, if r is chosen uniformly
and randomly, ' is statistically close to uniform.

e Correctness. For all x € {0,1}", randomness r, index i € [n] and message m, if (k,t) «
HGen(l)‘,n), h < H(k, x;r) and ct < HEnc(k, (h,i,x;),m), then HDec(k, ct, (x, 7)) = m

e Security. For a PPT adversary A against a chameleon encryption, consider the following experiment:

EXPIYDCE())
(k,t) < HGen(1%,n).
(x,r,1,mp,my) < A(k).
b & {0,1}.
ct < HEnc(k, (H(k,x;7),i,1 — x;),mp).
b« A(k,ct, (x,1)).
Output 1if b = b’ and 0 otherwise.

The security of a chameleon encryption defines as follows: For any PPT adversary A,
the advantage of A in experiment EXPYD-CE () satisfies | Pr[Adv'y P (1) = 1] — 1/2| = negl.

Cryptography 2018, 2, 33 10 of 35

In [8], such a chameleon encryption was constructed from the CDH assumption.
3. Idea of Our Revocable IBE Scheme

3.1. Idea of the DG Scheme

In the IBE scheme [8] proposed by Dottling and Garg, say the DG scheme, each id is an n-bit
binary string. In other words, each user can be regarded as a leaf of a complete binary tree of depth n,
which is the length of a user’s identity id. For each level j € [n] in the tree, the key authority generates
a pair of chameleon encryption key and trapdoor (k;, td;). As shown in Figure 2, a leaf v is attached
with a key pair (eky, dky), which is the public/secret key of an IND-CPA secure public-key encryption
scheme PKE=(G, E, D), i.e., (eky, dky) G(l)‘). In addition, a non-leaf node v in the tree is attached
with four values: the hash value K, of this node, the hash value hv‘ o of the left child node, the hash
value h,|; of the right child node, a randomness r such that h, = H(ky|, ty((0||l5)1; 70)- epecially for
[0 = n =1, (hy|jo, hy|j1) = (eky)jo, eky|1)- The master public key of IBE is given by the hash keys
(ko, ..., ky—1) and the hash value h, of the root. The master secret key is the seed of a pseudorandom
function to generate r, and the trapdoors of the chameleon encryption.

Key Generation. Each user is assigned to a leaf in the tree according to id. The secret key is just all
the values attached to those nodes on the path from the root to the leaf. For example, in Figure 2,
if id = 010, then the secret key is skoio = ({/e, 1o, 11, ¢}, {ho, hoo, hor, 7o}, {hot, ekoio, ekor1, 701}, dkoto)-

Encryption. As for encryption, two kinds of circuits are defined.

(1) Q[m](ek) is a circuit with m hardwired and its input is ek. It computes and outputs the PKE
ciphertext of message m under the public-key ek.

(2) P[B € {0,1},klab](h) is a circuit which hardwires bit 8, key k and a serial of labels lab.
It computes and outputs {HEnc(k, (h,j+ B - A, b),1abjp) }jc(a] pefo,1}, Where lab is the short for

{1abjp } e peqo1}-

To encrypt a message m under id, the sender generates a series of garbled circuits from the bottom
to the top. Specifically, for level 7, it generates Q, the garbled circuit of Q[m], and the corresponding
label lab, i.e., (Q,lab) <+ GCircuit(1*, T[m]).

Then, idy, k,,_1 and lab are hardwired into circuit P"~! [id, k,,—1,1ab]. Next, invoke the garbled
circuit (P"~1,Tab’) - GCircuit(1*, P"~[id,, k,_1,Tab]).

Let lab := lab . Invoke (15”’2,@/) + GCircuit(1%, P*~2[id,_1,k,_2,lab]). Repeat this procedure
and we have (ISO,IeTbI) < GCircuit(1*, P°[idy, ko, lab]). Recall that lab = {1abj b }ic(apefo,1}- Choose A
labels from lab’ according to the A bits of he.

The final ciphertext is ct = ({lab;,; }je (], po,... P T).

0 Ckotdo) & (he ho hy,re)

1 Ckytdy) 0: (ho,hoo, hos, ro) 1: (hy,haghus, 1)

00: (hog,ekgdh, €koos, Foo) 11: (hay,ekio,ekinnra)

2 Ckytdy)

1: (hoy ekaso,ekor, o)

/ \ / \ /’ \ / \

SN SN N
S(id)d (@) d b @ b @ @

001: (ekoow, dKoo:) 011: (ekouy,dkon) 110: (ekyio,dkng) 111: (ekyyy,dkyy)
000: (ekooo,dkooo) 010: (ekozo dkoso)

Figure 2. The IBE tree of depth n = 3.

Decryption. The decryption goes from the top to bottom. It will invoke the evaluation algorithm Eval
of the garbled circuits to obtain chameleon encryption of labels, and uses the secret key of chameleon

Cryptography 2018, 2, 33 11 0f35

encryption scheme to recover the corresponding label. For the leaf, it will use the decryption algorithm
of PKE to recover the message .

3.2. Idea of Our Revoked IBE Scheme

Our revocable IBE is based on the original DG scheme. An important observation of the DG
scheme is that among all the elements in the secret key skiy = ({hv, y|o, Iy|1, v }oev, dkig) Of user
id, dkiq is the most critical element. Recall that V = {¢,id[1],id[12],...,id[12...n — 1]} and dk;q is the
decryption key of the underlying building block PKE. The sibling of leaf id knows everything about
skiq except dkiq. This gives us a hint for revocation. To revoke user id, we can change the decryption
key dkiq in skiq into a new one dk/y and this fresh decryption key will not issued to the revoked user id.
As long as the essential element dk!y is missing, user id will not be able to decrypt anything. Now we
outline how the revocable IBE works.

The tree is updated according to the revoked users.

o If a leaf vjq is revoked during time period t, then a new public/secret key pair will generated
with (ekly, dkly) + G(1%) for this leaf. As a result, hy,, = ekiq is replaced with a fresh value

hgz := ekly. This fresh value will not consistent to what the father node of v;4 has. Therefore,
we have to change the attachments of all nodes along the path from the revoked leaf v;q to root
bottom upward.

e Forifromn—1downto0

(1) 1) (1),
vHO’thl’)’

is not defined, where b € {0,1}.

Let v := vjg[12. ;- Choose random coins rz(,t); hz(,t) :=H(h

(t) (t)
Here th hy)p it h ol[b

In this way, a new tree is built with root attached with new value (hgt),h(()), (t), £)) Please

Please note that the hash keys (ko, ..., k,_1) remain unchanged.

When revocation happens, what a sender does is updating the new hash value hgt), then invoking
the encryption algorithm for encryption.

For decryption to go smoothly, the IBE system has to issue updating keys to users. The updating
key includes all the information of the nodes on the paths from revoked leaves to the root, but the
new dki(;) is not issued. In Figure 3, for example, two users, namely 000 and 010, are revoked
and determine two paths. Then all the nodes along the two paths are marked with cross.

All the nodes are updated with new attachments, but leaf 000 is only attached with a new ek(()g)0

(without dké?o) and leaf 010 is only attached with a new ek((]tl)0 (without dk(()tl)o) The updating
key are {e, (n", g, 1", ™), 0, (g,) 1G5 v, 00, () i, Mg r68), O, () i, iy, i),
000, (i, = ekiop, L), 010, (A5 = ekiy, 1)}

0 (ko tdg) e: (he" ho" hy,r)

1 Ckutdp) 0: (o oo™, s yro) 1 (hyhio i)

00: (oo ekoag', koo, roo'” : (hor" ekoso'”, ek rox™)

2 Ckatdy)

11: (hyy,ekiig ekiasra)

/ / / \ / \
// \ / \ / \ // \
wl ® ® © © ®© @ o
001: {ekooy,dkoas) 0112 (ekoyy,dkoss) 110: (ekyg,dkysg) 111 (ekyyy,dkysg)
000: {ekono™, deen'™) 010: (ekoro'”, dkose™)

Figure 3. The IBE tree of depth n = 3 when users “000” and “010” have been revoked.

Any legal user is able to update his secret key skiy with the new attachments of nodes
along the path from his leaf to the root. For example, the updated secret key sk(()g)1 of

user 001 is now {g, (hgt),hét),hgt),rgt)), 0, (hét),hég),h(()tl), ()) 00, (héo>,hég)0,h(()5)1,rég)), 001, (hgoy =

Cryptography 2018, 2, 33 12 0f 35

ekoo1, dkoo1) }- The updated secret key sk%)1 of user 111 is now {g, (hgt), h(()t), hg), ét)) 1, (h1, o, M1, 71),

11, (h11, 110, ha11, r11), 111, (hann = ekoon, dkinn) }-
In this way, any legal user is able to decrypt ciphertexts since he knows the secret key
corresponding to the new tree. Any revoked user id is unable to implement decryption anymore, since

the new dki(;) is missing.

4. Revocable IBE Scheme

In this section, we present our construction of revocable IBE scheme from chameleon encryption
(without DKER). Let PRF: {0,1}* x {0,1}=" U {¢} — {0,1}* be a pseudorandom function.
Let CE = (HGen, H, H~! HEnc, HDec) be a chameleon encryption scheme and PKE = (G, E,D) be
an IND-CPA secure public-key encryption scheme. We denote by id([i] the i-th bit of id and by id[1 - - -]
the first i bits of id. Define id[1---0] := &. We first introduce five subroutines which will be used
repeatedly in our scheme (as shown in Table 4). All of these five subroutines are run by the key
authority. The subroutines NodeGen and LeafGen are invoked by the key authority in setup algorithm,
where NodeGen is used to generate non-leaf nodes and LeafGen to generate leaves and their parents.
Just like [8], given all chameleon keys, trapdoors, a randomness s, a node v and a length parameter ¢,
the NodeGen subroutine generates four values stored in node v: the hash value of the node &, the hash
value of it left-child node |, the hash value of it right-child node %, and the randomness of this
node ,. Given all chameleon keys k,,_1 and trapdoors td,_; of the n — 1-th level, a randomness s,
anode v in the n — 1-th level and a length parameter /, the LeafGen subroutine generates two pairs
of public/secret keys (eky|o, dkyj0), (€ky)j1, k1) Of the PKE scheme, and generates the hash value
hy and the randomness r, of the node v. The children of v are two leaves associated by ek, and
ek, |1- Each user can be uniquely represented by a leaf node. The subroutine FindNodes, subroutine
NodeChange and subroutine LeafChange are invoked by the key authority in key update algorithm.
Given a revocation list RL, a time t and the global key list KL, subroutine FindNodes(RL, t, KL) outputs
all leaves which are revoked at time t and all their ancestor nodes. Given a chameleon key, a chameleon
trapdoor, a node v, two hash values (1,9, /1(o) of the two children of node v and a randomness s,
subroutine NodeChange outputs a new hash value and a new randomness for node v. Given a leaf
node v, a time t, a randomness s, subroutine LeafChange outputs a fresh public key by invoking the key
generation algorithm G of PKE.

Table 4. Five subroutines run by the key authority.

NodeGen((ko, - - - ,ku), (tdo, - - - , tdy,s),v € {0,1}=""1U {e},¢): FindNodes(RL,t,KL):

Leti:= o] Y+ @
hy < H(k;, 0%}; PRF(s,0%|[0)), v(id,t;) € RL
hypo < H(k;1,0%"; PRF(s,0¢||0]|0)), If t;=t, thenadd id to Y.
o < H(k;1,0%; PRF(s,0¢||0]|1)). Fori=n—1to0: \\ find the ancestors of id € Y.
ro = H™1(td;, (0%, PRF(s, 0] [0)), Iy o] | oy 1)- Y(v,-,-) € KL with |o| = i
If (][0 €Y)V(v]]l€Y),addvto.
Output (ho, hy(jo, y|1, 70)- Output Y.
LeafGen(k,_1, (tdy—1,5),v € {0,1}"~1, 0): NodeChange(k, td, v € {0, 1} <"1 U {e}, htyj0, hiy 1, 1, 5):
1Y H(k,02}; PRF (s, t||v)),
Iy < H(ky, 02, PRF(s,0¢||0)), () H- 1(td (0%}, PRF(s, t/[0)); 1ty ol o) 1)-
(ko dkojjo) < G(1, PRF(s,0°][o]10)), Output (1, o, 74,
(eky)j1,dky 1) <= G(1%, PRF(s,0¢[[0]|1)), LeafChange(v € {0,1}",t,5):
ro = H71(td, 1, (0%, PRF(s,0°][0)), eky o leko1)- (eki?, k) < G(1%, PRF(s,t/[0)).
Output ((ho, eky| o, ek 11, 7o), iy o, ke 1)- Out‘put (ek), 1).

Construction of RIBE. Now we describe our revocable IBE scheme (RIBE.Setup, RIBE.KG, RIBE.KU,
RIBE.DK, RIBE.Enc, RIBE.Dec, RIBE.R).

Cryptography 2018, 2, 33 13 of 35

e Setup RIBE.Setup(1*,1"): given a security parameter A, an integer n where 2" is the maximal
number of users that the scheme supports. Define identity space as ZD = {0,1}" and time space

as T = {0,1}¢, and do the following.

1. Samples & {0,1}7.
2. Foreachi € [n], invoke (k;, td;) & HGen(1%,2A).

3. Initialize key list KL := @, public list PL = @, key update list KU = @ and revocation list

RL:= @.
4. mpk:= (ko, -+ ,ky_1,0); st :== {KL,PL,RL, KU}; msk := (mpk, tdg, - - - , td,,_1,).
5. Output (mpk, msk, st).

Private Key Generation RIBE.KG(msk, id € {0,1}",st) : See Figure 4 for illustrations.

0 (ko,tdo)) & (hehohyre)

/ \ b < Hll, 0% PREG.OI1)
hyo € H(k,, 02 PRF(s,04|10,

1 G tdy) ,: 0 (ho oo))2 (g) P e
r € Hi(td,, (0%, PRF(s,0|1))hyllhy)

00: (hoo ekodt.ekoonToo) 1 (hoyekoto ekors lor) / \11 (huvekuuo ki)

2 (kytdy) hy; € Hik,, 024 PRF(s,01]11))
/ (ekya0, dkyyo)4 G(11,PRF(S,01|110))
(ekyyy, dkyyy) € G(1),PRF(5,04]111))
£, < Hi{td,, (0%, PRF(S ,01111)),ekyollekas)
3 (id) [|

110: lskun dkizo)

Figure 4. The illustration of Private Key Generation for user “110”. The private key skq;g of user “110”
collects all the node values along the path from “110” to “¢” in the tree.

1. Parse msk = (mpk, tdy,--- ,td,_1,s) and mpk = (ko, -+ ,k,,_1,¢).
. W:={gid[1],---,id[1---n — 1]}, where ¢ is the empty string.

3. Forallv e W\ {id[1---n—1]}:
(hU/hUHO' thl,T’y) — NodeGen((kg, s ,kn,1>, (tdo,- . ,i’dnfl,S),U, 6),
KL := KLU {(”0, hy, hz;||01thl/rv)}/
|kv = (hy,thO, thl,T’y).

4. Forv=id[l---n—1]
(hU/hUHO = ekaO,thl = ekalfrU/dkaO/dkal) “— LeafGen(kn,l, (i’dnfl,S),U, 5),
KL := KLU {(”0, hv, ekZIHOI ekal,rv), ('0| |O, ekaO, J_), (U| \l,ekal, J_)},
|kv = (hvrekUHO/ ekal, T’U).

5. st = {KL,PL,RL,KU} and skig := (t = 0,id, {lky } yew, dkiq)-

6. Output (skig, st).

Key Update Generation RIBE.KU(msk, t,st): See Figure 5 for illustrations.

0 (ktdo) j&qm“‘.no“’,m"’)

1 (kytdy) 0 (e s) 1 (hyhsghusrs) KU®:
o 0] (&, he®, hottl, hy® = hy, r,0)
00: (hoo e : hor", ekoio" ko for") 11: (hyy.eksso ks, f) (0. hyfh, hog, b9, 1)
2 (kytdy) (00, hog®, €kag, €kags“= eKoo1, Too)
o A (01, iy, ek, k= ki r,0)

(000, ekyog®, 1)
(010, ekysg®, 1)

[\
’/‘ \ \
w0 K O O 0 O O
001: (ekoos,dkoo:) 011: (ekoss, dkoss) 110: (ekyso,dkysg) 111 (ekyyy, dkyyy)
000: (ekoor" k) 010: (ekera™ dhare®)

Figure 5. The illustration of KU® when users “000” and “010” have been revoked at time slot t.

Cryptography 2018, 2, 33 14 of 35

Parse msk = (mpk, tdg, - - -, td,_1,s) , st = {KL,PL,RL, KU} and mpk = (ko,- - -, k;,—1,¢).
Y < FindNodes(RL,t,KL). // Y stores all revoked leaves and their ancestors

If Y = @, Output(KU, PL) //stay unchanged.

Set key update list KU(t) := @,

For all node v € Y such that |v| = n: // deal with all leaves in Y

(ek(t), 1) < LeafChange(v,t,s),

(Y

KU® = KU® U {(v,ek", 1)}. // new attachments for all leaves in Y
hz(]t) = ekz(,t).
6. Fori=mn—1to0: // generate new attachments for all non-leaf nodes in Y
Forallnode v € Y and |v| =i
Set j :=t, KU®) := KL.
While(j > 0)
If 30| |b s.t. (0][b, gy,) € KUY,

SNSRI

t ._
hv||b = hvllb'
Break;
j=j—L
(s, 15, hff‘fl, M) NodeChange(k tdi, 0, 1, 1 5).
_ () 1) (1)
KU® .= KU® U { (0, hY) oo g)}
7. KU:=KUU{(t, KU} and PL := PLU {(t,hi{")}.
8. st:={KL,PL RL KU}
9. Output st.

Decryption Key Generation RIBE.DK(mpk, skiy, KU, t): See Figure 6 for illustrations.

€(0, g, hy0=hy, 1)

0 (katdo) () elhohohur)

\\
) 0:(he, hogt, ng.p&/‘—’ 0)
1 (kytdy) 5 0: (ho,hoo,hox,Fo) 0 + Po | o1t Ton
01:(hg, ekysg, kg = ekgsy, To:) \ %‘l J
/ \1 (hoyekosoekoss 1) /)((Kut1):
= S —
/ \ / \ / \\ / \ .
(‘ KU

3 ud>>< [><)) O @) ’
011: (ekgy,dkons) »7/

Figure 6. The illustration of the Decryption Key Generation for user “011” when users “000” and “010”
have been revoked at time slot t. For i from 1 to t, the node values along the path from “011” to “¢”

to “g” in

the tree will be replaced by the corresponding node values in KU®, The decryption key sk[(n)1

“011” collects all the updated node values along the path from “011” to “£” in the tree.

of user

W := {¢,id[1],--- ,id[1---n — 1]}, where ¢ is the empty string.
Parse mpk= (ko, -+, kn—1,¢) and skig = (0,id, {ho, |0, ty|1, 7o Loew, dkiq)-
From KU retrieve a set Q) := {(£, KUD) | (£, KUD) e KU,0 < E < t}.
For each (f, KU®)) € Q with tin ascending order, does the following:
Fori=0ton —1:
=id[1-- -] (Recall id[0] =e).
If e, hé”,h(t'fo, o) e - kU

k= (), B).

L

Cryptography 2018, 2, 33 15 of 35

5. If3(E,KUD) e KU st. (id,ekz(,i), 1) e Ku®: \\id is revoked at t
Output sk' := (t,id, {Ik” },ew, L) -
6. Output skt := (t,id, {Ik\" },ew, dkig)
e Encryption RIBE.Enc(mpk, id, t,m, PL)):

We describe two circuits that will be garbled during the encryption procedure.

- Q[m](ek) : Compute and output E(ek, m).
- P[B € {0,1},k lab](h): Compute and output {HEnc(k, (h,j+ B - A,b), lab;s)}ic(a)pefo}s
where lab is the short for {1abjp } e pefo1}-

Encryption proceeds as follows:

Retrieve the last item (%, hg)) from PL. If t < T, output L; otherwise hét) = hg).
Parse mpk= (ko,- -+ ,ky_1,).
(Q,Tab) & GCircuit(1*, Q[m]).
Fori=n—1to0,
(P',1ab’) & GCircuit(1%, P[id[i + 1], k;, Tab]) and set Tab := Iab .

- »onN =

5. Outputct := <{ Iab,h<t) } AP°,... P, Q}) , where hitj) is the j™ bit of hgt).
jelA] '

e j

e Decryption RIBE.Dec(mpk, ski(;), ct)

1. W:={gid[1l],---,id[1---n — 1]}, where ¢ is the empty string.
2. Parse mpk= (ko,--- Ky 1,¢) and skl = (id, {I{”},cw, dkig), where kY =
WD n0 g0 L0y

v||07 Fo||17 7Y

3. Parsect:= ({Iabjh(t)} APY,..., Pl Q}>
"ej) jelA]

4. Sety:= hgt).

5. Fori=0ton—1:
Setv :=id[l---i] (Recallid[1---0] = ¢);
{cin}jempeqoy + Eval(P', {labjy }icpn));
Ifi#n—1,setv':=id[1---i+1]andy:= hz(;), and for each j € [A],

{labjy, }ie < HDec(ki, ¢y, (|1), 7).
Ifi = n—1, sety := ekq and for each j € [A], compute
{1abjy, }je) < HDec(ki, ¢y, (ehoyol[ekoyyn) = (S 1SH,), 7EY).

6. Compute f < Eval(Q, {labjy }iepn)-
7. Output m < D(dkig, f).

e Revocation RIBE.R(id, t, st):

Parse st := {KL, PL,RL, KU}.

Update the revocation list by RL := RLU {(id, t) }.
st := {KL, PL,RL, KU}.

Output st.

L

Cryptography 2018, 2, 33 16 of 35

Remark. It is possible for us to reduce the cost of users’ key updating in our construction. Now we
provide a more efficient variant of decryption key generatlon algorithm RIBE.DK'. With this variant

(t)

algorithm, if a user has already generated a key sk;

use ski(d) as the input instead of sk;qy and generates the decryption key with lower computational cost.

The algorithm proceeds as follows:
Decryption Key Generation RIBE.DK'(mpk, ski(;), KU, t):

at time period t’ where t' < t, he or she can

1. W:={gid[1],---,id[1---n — 1]}, where ¢ is the empty string.
2. Parse mpk: (kOr e rki’l—lr Z) and Skf;/) = (t// |dr {hvl hUHO/ thll rU}UGW/ dkid)'
3. Ift’ >t Output L.
4. Ift' =t Output ski(:).
5. From KU retrieve a set O := {(£, KU®) | (£, KU®) e KUt/ <t < t}.
6. Foreach (%, KUG)) € Q) with t in ascending order, does the following:
Fori=0ton —1:
=id[1---1] (Recall id[] = 8).
(t) ®
If 3(v, hy ’thO’ z;||1'

) €K
®© ._ 5, O 6 ®
k) = (g, o, i).
7. H3EKUD) e KUs.t (id, ekz()), 1) e KU®: \\idis revoked at T
Output sk := (t,id, {Ik” }oew, 1)

8. Output skl := (t,id, {Ik{” },ew, dkia)-

4.1. Correctness

We first show that our revocable IBE is correct. During the time slot t, the key updating algorithm
RIBE.KU (together with the key generation algorithm RIBE.KG) uniquely determines a fresh tree of time
t. The root of the fresh tree has attachment (hgt),h(()),hg),rét)) Set W := {¢,id[1],--- ,id[1---n—1]},
where ¢ is the empty string. Please Please note that each id uniquely determines a path (from the root
of the tree to the leaf of id). W records all non-leaf nodes on the path. For all nodes v € W, we have

H(Kjop, ol 1) = B, and (o, 1SS) = (ekopjo, k) i [0] =1 — 1.

S

Consider the ciphertext ct = <{Iab . h(t } {150,~ .- ,IS"IQN}>, which is the output of
le[A]

RIBE.Enc(mpk, id, t,m, PL). Consider the secret key ski(d) = (id, {Ikz(]t)}vew, dkiq), which is the output
RIBE.DK. Obviously, ski(? is exactly the the secret key of id in the tree (of time t). As long as the hét)
used in RIBE.Enc to generate ct is identical to the hgt) in Ikgt) (h(t) (()), hgt), rg)), the decryption
RIBE.Dec can always recover the plaintext due to the correctness of the DG scheme.

Below we show the details of the correctness (this analysis is similar to that in [8]). For all nodes

v € W, we have the following facts.

L Aejptiepefory := Eval (Plv {Iab]’hv’}jem> = Pid[|v] + 1], kpy|,

{labj, e, p(n)) = {HEnc(ky,, (h ny,j+id[Jo] +1] “A,b),1ab}) }ie A pe o)~ Recall ﬂi@ =
{Iab]-,b}]E[)L |be{o,1} and (lab lab’, PU?1+1)Y are the output of GCircuit(1*, P[id[|v| + 2], kpy| 41, lab”]).

Cryptography 2018, 2, 33 17 of 35

h(t) h(t) (t)

2. Due to the correctness of the chameleon encryption, we know that given (ry) one can

v][0” o][1”
recover {Iab' ® } by decrypting
7ollid[|v]|+1],¢ ée[)\]
{c..® }iep- And < la b; ® is the label for the next garbled circuit P(?I+1).
T ol ilol +1) Mollidllol+1,¢ } pea]

3. When |v| = n — 1, we obtain the set of labels {labj,ekdj} — Recall that {lab;; } ic [z} e (0,1} and
id, je / / /

Q are the output of GCircuit(1*, Q[m]). And {Iabjrekid,j}je[/\] is the result of {labj }ic(zpef01}
selected by ek;q. Thus,

f := Eval (Q, {Iabjlekid,j}je[)\]) = Q[m](ekiyq) = E(ekiq,m).

Due to the correctness of PKE = (G, E, D), given decryption key dk;y, one can always recover the
original message m correctly with m < D(dkq,).

4.2. Security

In this subsection, we prove that our revocable IBE scheme is IND-ID-CPA secure. Assume
g is a polynomial upper bound for the running-time of an adversary A, and it is also an upper
bound for the number of A’s queries (which contains private key queries, key update queries, and
revocation queries).

Theorem 1. Assume that tyay is the size of the time space and 2" be the maximal number of users. If PRF is
a pseudorandomn function, the garbled circuit scheme is secure, the chameleon encryption scheme CE is secure
and PKE = (G, E, D) is IND-CPA secure, the above proposed revocable IBE scheme is adaptive-IND-ID-CPA
secure (without decryption key exposure resistance) More specificly, for any PPT adversary A issuing at most q
queries, there exist PPT adversaries By, By, B3 and By such that

AdoPIDCPA(y - < Advng (A)+ (n+1) .Advgf(/\) +n-A .Advgf(A)
+(29+1) -AdvgffE (A). 1)

Proof. The full proof of Theorem 1 is in Appendix B.1. [

5. Revocable IBE Scheme with DKER

In this section, we present the construction of revocable IBE scheme with decryption key exposure
resistance from the CDH assumption. In [24], Katsumata et al. provided a generic construction of RIBE
scheme with DKER from a hierarchal IBE (HIBE) scheme (the formal definition of HIBE is provided
in Appendix A) and a RIBE scheme without DKER. Following this idea, based on the previous RIBE
scheme RIBE = (RIBE.Setup, RIBE.KG, RIBE.KU, RIBE.DK, RIBE.Enc, RIBE.Dec, RIBE.R) in Section 4
and a HIBE scheme HIBE = (HIBE.Setup, RIBE.KG, HIBE.Enc, HIBE.Dec) in [8], both of which are
based on the CDH assumption, we can construct a revocable IBE scheme IT with DKER from the
CDH assumption.

Let ZD, T and M denote identity space, time period space and plaintext space respectively.
We assume I1.ZD = RIBE.ZD and I1.7 = RIBE.7. Vid € RIBEZD and V t € RIBE.T, (id||t) €
HIBE.ZD. In addition, we assume IT.M = RIBE.M = HIBE. M.

Construction of RIBE with DKER. Now we describe our revocable IBE scheme IT = (Setup, KG, KU,
DK, Enc, Dec, R) with DKER following [24].

Cryptography 2018, 2, 33 18 of 35

e Setup(1*,1"): given a security parameter A, an integer n where 2" is the maximal number of users
that the scheme supports, i.e., TL.ZD = {0, 1}". Define the time space as I1.7 = {0,1}".

Run (RIBE.mpk, RIBE.msk, RIBE.st) ¢ RIBE.Setup(1%,1").

Parse RIBE.st := {KL, PL,RL,KU}.

Run (HIBE.mpk, HIBE.msk) < HIBE.Setup(1%).

Output (mpk := (RIBE.mpk, HIBE.mpk), msk := (RIBE.msk, HIBE.msk), st := RIBE.st).

e KG(msk,id € {0,1}",st):

e N

Parse msk := (RIBE.msk, HIBE.msk) and st := RIBE.st.

Run (RIBE.skig, RIBE.st) < RIBE.KG(RIBE.msk, id € {0,1}", RIBE.st).
Run HIBE.skiy < HIBE.KG(HIBE.msk, id € {0,1}").

Output (skiq := (RIBE.skiy, HIBE.skiq), st := RIBE.st).

e KU(msk,t,st):

= LN

1. Parse msk := (RIBE.msk, HIBE.msk) and st := RIBE.st.
2. RunRIBE.st < RIBE.KU(RIBE.msk, t, RIBE st).
3. Output (st := RIBE.st).

e DK(mpk,skiq, KU, t):

Parse mpk := (RIBE.mpk, HIBE.mpk) and skiq := (RIBE.sk;q, HIBE.skiq).

Run RIBE sk « RIBE.DK(RIBE.mpk, RIBE.skig, KU, t).
Run HIBE.skig ¢ HIBE.KG(HIBE.skig, t € {0,1}/).

Output sk'; := (RIBE.sk'}, HIBE.skig¢)-

L

e Enc(mpk,id,t,m, PL)):

Parse mpk := (RIBE.mpk, HIBE.mpk).

Sample a pair (RIBE.m, HIBE.m) € M? uniformly at random, subject to RIBE.m + HIBE.m = m.
Run RIBE.ct < RIBE.Enc(RIBE.mpk, id, t, RIBE.m, PL).

Run HIBE.ct < HIBE.Enc(HIBE.mpk, (id||t), HIBE.m).

Output ct := (RIBE.ct, HIBE.ct).

. Dec(mpk,ski(;),ct):

AR .

Parse mpk := (RIBE.mpk, HIBE.mpk) and sk{;' := (RIBE.sk(;, HIBE.skig1)-

Run RIBE.m « RIBE.Dec(RIBE.mpk, RIBE.sk(!), RIBE ct).
Run HIBE.m < HIBE.Dec(HIBE.mpk, HIBE.skig ., HIBE.ct,).

Output m := RIBE.m 4 HIBE.m.
e R(id,t,st):

L

1. RunRIBE.st < RIBE.R(id, t,st).
2. Output st := RIBE.st.

Obviously, the correctness of scheme I1 follows from the correctness of the underlying RIBE
scheme and HIBE scheme. The security of scheme I1 is guaranteed by the following theorem.

Theorem 2. (Theorem 1 in [24]) If the underlying RIBE scheme in the above RIBE scheme 11 is
selective-IND-ID-CPA secure but without decryption key exposure resistance (DKER), and the underlying

Cryptography 2018, 2, 33 19 of 35

HIBE scheme in 11 is selective-IND-ID-CPA secure, then the resulting RIBE scheme 11 is selective-IND-ID-CPA
secure with DKER.

Please note that our RIBE scheme RIBE in Section 4 is adaptive-IND-ID-CPA secure without
DKER and the hierarchal IBE HIBE constructed in [8] is selective-IND-ID-CPA secure. Both of RIBE
and HIBE are based on the CDH assumption. Following Theorem 2, the constructed RIBE scheme I1
will be selective-IND-ID-CPA secure with DKER based on the CDH assumption.

Corollary 1. When instantiating the building blocks with our RIBE scheme RIBE in Section 4 and the hierarchal
IBE HIBE in [8], the RIBE scheme 11 is selective-IND-1D-CPA secure with DKER based on the CDH assumption.

6. Server-Aided Revocable IBE Scheme

In this section, we present a server-aided version of our revocable IBE scheme. Following the
ideas in Sections 4 and 5, we use a standard HIBE scheme HIBE = (HIBE.Setup, HIBE.KG, HIBE.Enc,
HIBE.Dec) in [8] as a building block to construct such a SR-IBE £, so that £ can obtain DKER. To describe
our server-aided revocable IBE scheme X, we make use of these five subroutines (NodeGen, LeafGen,
FindNodes, NodeChange, LeafChange) as defined in Section 4.

Let ©.2D, .7 and .M denote the identity space, the time period space and the plaintext space
of scheme X respectively. Let HIBE.ZD and HIBE.M denote the identity space and the plaintext
space of scheme HIBE respectively. For all id € £.ZD and all t € .7, we assume (id||t) € HIBE.ZD.
In addition, we assume ~.M = HIBE. M.

Idea. To convert the RIBE scheme IT with DKER in Section 5 to the SR-IBE scheme %, the problem is
how to divide the decryption ability between the server and the users.

e Key Generation: Recall that in RIBE IT the secret key of a user is (IL.sk;q := (RIBE.skig, HIBE.skiq).
Moreover, as shown in Figure 2, the RIBE private key RIBE.skiy can be treated as a path from the
root to the leaf corresponding to id in a tree. Now for SR-IBE %, we divide the RIBE private key
RIBE.sk;q into two parts, the non-leaf part and the leaf part. The non-leaf part (we name it pk;q) is
assigned to the server and the leaf part (ek;q, dk;q) (in fact dk;q is enough) to user id. Besides, user
id is also assigned with the HIBE private key HIBE.sk;q. This is shown in Figure 7.

/Server knows:

) & (hehghyre)

0 (ko,tdo)

Public key of user 111: pk;;}

1 (kytdy) (5 0:(hohoohoyro)

00: (hm,e@no)\%: (hos,eKoz0, €Koz1,Fo1)

§ \315(h1/hmrhmr1)
2 (ky,tdy) ()] (

\111 (hay,ekaio,ekiia,r11)

A R S W R ga

3 (id) @ @ @ () 111 (ks dkyss)

User 111 knows:

Sk = (ekyy, dkyy) + HIBE Skyy,

Figure 7. Separation of I'l.skqq; to the server and the user “111” in SR-IBE £, where pkjq; is the public
key and skjq; is the private key of user “111”.

o Key Update: If a user has been revoked in RIBE I1, the updating information in the leaf node
corresponding to the user will not be issued. In other words, all the key updating information
only occurs in the upper part of the tree excluding the leaves. Therefore, in SR-IBE X the key

Cryptography 2018, 2, 33 20 of 35

authority can issue the key updating list to the server and the server is in charge of updating keys
for users.

Decryption: Recall that in the RIBE scheme IT with DKER in Section 5, the ciphertext consists
of two parts: the ciphertext of the RIBE scheme RIBE.ct and the ciphertext of the HIBE scheme
HIBE.ct. To decrypt RIBE.ct in SR-IBE %, the decryption is implemented from the top to the
bottom along the path in the tree. The server will decrypt the upper non-leaf part while the user
will decrypt the leaf part. Meanwhile, the user is alway able to use HIBE.sk;y and time slot t to
compute HIBE.sky | and decrypt HIBE.ct with it. The process is shown in Figure 8.

RIBE.m RIBE.ct RIBE.ct' RIBE.m
Part | —k Part Il
-
- RIBE.Enc decrypt _ | —— VEcrypti N -_
- - N o [
-— (id, t) J — JRIBEdkid -—
7| pkig
Divide 3 . N
=1 randomly 15;(“ Combmg
= (t)| HIBE.KG)
Plaintext m v / Plaintext m
- (id| 1) . JHIBE.Sk‘dW‘ -
- HIBE.Enc HIBE.Dec -
HIBE.m HIBE.ct HIBE.m

Figure 8. The process of the SR-IBE scheme.

Construction of SR-IBE. Now we describe our server-aided revocable IBE scheme Y =
(Setup, PubKG, KU, TranKG, PrivKG, DK, Enc, Transform, Dec, R).

Setup(1*,1"): given a security parameter A, an integer n where 2" is the maximal number of
users that the scheme supports. Define identity space as £.ZD = {0,1}" and time space as
.7 = {0,1}%, and do the following.

1. Samples & {0,1}7.

2. Foreachi € [n], invoke (k;, td;) & HGen(1%,2A).
3. Initialize key list KL := @, public list PL = @, key update list KU = @ and revocation list

RL:= @.
4. Run (HIBE.mpk, HIBE.msk) < HIBE.Setup(1%).
5. mpk := (ko,- - ,ky_1,¢ HIBE.mpk); st := {KL,PL RL KU}, msk := (mpk,tdy,---,

td,_1,s, HIBE.msk).
6. Output (mpk, msk, st).

PubKG(msk,id € {0,1}",st)

1. Parse msk = (mpk, tdy,- - - ,td,_1,s,HIBE.msk), st = {KL,PL,RL, KU} and mpk = (ko,-- -,
ku_1, £, HIBE.mpk).
2. W:={gid[1],---,id[1---n — 1]}, where ¢ is the empty string.
3. Forallve W\ {id[1---n—1]}:
(hvrthO/ thl,TU) — NodeGen((ko, ce ,knfl), (tdo,' .- ,tdn,l,s),v, é),
KL:= KLU {(U, hy, hv||07th1/ 1’2;)},
|kv = (hU/hUHO/thl/rU)'
4. Forv=id[l---n—1]:
(hvrthO = ekaO,thl = ekal,T’U,dkao,dkal) — LeafGen(kn,l, (tdn,l,s),v, é),

Cryptography 2018, 2, 33 21 of 35

1.
2.
3.

KL := KLU {(v, ho, eky|jo, eko|1,70), (][0, eky(o, L), (0][1, eky 1, L)},
lkU = (hv,ekyHO/ Eka]Ir‘U)‘

5. st = {KL,PL,RL KU} and pkiq := (t = 0,id, {lky } yew)-
6. Output (pkig, st).
// This algorithm is almost the same as the Private Key Generation algorithm in Section 4
except that there is no dk;q in pkq.
e KU(msk,t,st):
1. Parse msk = (mpk, tdy, - - - ,td,_1,s,HIBE.msk), st = {KL,PL,RL,KU} and mpk = (ko,- -,
ky_1,¢,HIBE.mpk).
2. Y <« FindNodes(RL,t, KL). // Y stores all revoked leaves and their ancestors
3. IfY =@, Output(KU, PL)
4. Setkey update list KU(t) := @
5. For allnode v € Y such that || =mn: (ekz(,t), 1) < LeafChange(v,t,s),
KU® = KU® U {(v, ek, 1)}, 1Y = eklV).
6. Fori=n—1to0: Forallnodev € Yand |o| =i
Set j:=t, KU® := KL.
While(j > 0)
If 30| |b s.t. (0][b, gy,) € KUY,
t ._
hv||b = hvllb'
Break;
ji=j-L
(hz(,), z(zH)O’ hgth)l’ (t)) < NodeChange(k;, td;, v, hz(zt\\)o' z(;tH)l’t s).
KU = KU U {(o, 1, 10l)
7. KU:=KUU{(t,KU®)}and PL := PLU {(t,h{")}.
8. st:={KL,PL RL KU}
9. Output (st).
// This algorithm is identical to the Key Update Generation algorithm in Section 4.
e TranKG(mpk, pk;q, KU):
1. W:={gid[1],---,id[1---n — 1]}, where ¢ is the empty string.
2. Parse mpk = (ko, -+, ky—1,¢,HIBE.mpk) and pkig = (0,id, {ho, hy|0, ho|1, To toew)-
3. From KU retrieve a set O := {(£, KU®) | (£, KU®) € KU,0 < t < t}.
4. Foreach (£, KUY) € Q withtin ascending order, does the following:
Fori=0ton —1:
v:=id[l---i] (Recall id[} = e).
(®) 5 (®
el b e
Iy = (b, h ||0’h Hl 2)
5. Output tk" := (t,id, {I{” },ew)

// This algorithm is almost the same as the Decryption Key Generation algorithm in Section 4
except that all update operations do not involve leaf nodes, i.e., dkiq.

PrivKG(msk, id € {0,1}")

Parse msk = (mpk, tdy, - - - , td,_1,s, HIBE.msk) and mpk = (ko, - - - , k;—1, ¢, HIBE.mpk).
(ekig, dkig) < G(1*, PRF(s,0°]id))
Run HIBE.skjy < HIBE.KG(HIBE.msk, id).

Cryptography 2018, 2, 33 22 of 35

4. Skid = (dkid,H|BE.Skid).
5. Output skiq.
. DK(skid,t)
1. Parse skig = (dkjq, HIBE.skiq).
2. Run HIBE.skig); ¢ HIBE.KG(HIBE.skig, t).
3. dkl%) := (dkig, HIBE.skig¢).
4. Output dki(ct]).
e Enc(mpk,id,t,m,PL)):

Same to the encryption algorithm in Section 4, we use these two circuits that will be garbled
during the encryption procedure.

- Q[m](ek) : Compute and output E(ek, m).
- P[B € {0,1},k,lab](h): Compute and output {HEnc(k, (h,j+ B - A,b), labj,b)}je[/\],be{o,l}/
where lab is the short for {lab;, b}ieA]pef01}-

Encryption proceeds as follows:

1. Retrieve the last item (g, hg)) from PL. If t < T, output L; otherwise hgt) = hg) .
2. Parse mpk = (ko,- - ,ky_1,¢, HIBE.mpk).
3. Sample a pair (RIBE.m, HIBE.m) € M? uniformly at random, subject to RIBE.m + HIBE.m = m.
4. Run HIBE.ct < HIBE.Enc(HIBE.mpk, (id||t), HIBE.m).
5 (0Q,Tab) & GCircuit(1*, Q[RIBE.m)).
6. Fori=n—1to0,
(P',Tab’) & GCircuit(1%, P[id[i + 1], k;, Tab]) and set Tab := Tab .
7. Output RIBE.ct := ({Iab,h(t) } AP, -) where h(is the j bit of h,
mel) je(A]

8. Output ct := (RIBE.ct, HIBE.ct).

o Transform(mpk,tki(?,Ct)

1. W:={gid[1],---,id[1---n — 1]}, where ¢ is the empty string.
2. Parse mpk = (ko, - ,k,_1,¢ HIBE.mpk), ct = (RIBE.ct, HIBE.ct) and Ski(;) = (t, idr{|kz(;t)}yew),
where k' = (1Y, n® 5 ® 30y,

RO | (V]| A

3. Parse RIBE.ct := {Iab‘h(t)} APY,--., P 1,0}
el) jei

4. Sety:= hgt).

5. Fori=0ton—1:
Setv :=id[1---i] (Recall id[0] =¢);
{C]h}]e Albe{01} < Eval(P {lab]y }]e);
Ifi#n—1,setv/:=id[1---i+1]andy := hz(;), and for each j € [A],

{lab]y }]6[)\ $— HDeC(kUC]y r(vHlole) (t))

Ifi =n—1,sety := ekjq and for each j € [A], compute

{labjy. }jepr) < HDec(ki, cjy, (eky|jol lekyy 1) = (hz(]t||0||hvm) r).

Cryptography 2018, 2, 33 23 of 35

Compute f < Eval(Q, {1abj . }ica))-

Output ct’ := (f, HIBE.ct)

// This algorithm is almost the same as the Decryption algorithm in Section 4 except that
this algorithm omits the last step, i.e., it does not recover RIBE.m from f.

° Dec(mpk,dki(;),ct’)

1. Parse mpk = (ko,- - ,k,_1, ¢, HIBE.mpk), dki(;) = (dkig, HIBE skig|c) and ct’ = (f, HIBE.ct).
2. RunHIBE.m ¢ HIBE.Dec(HIBE.mpk, HIBE skig, HIBE.ct,).
3. RunRIBE.m « D(dkig, f).
4. Output m := RIBE.m + HIBE.m
e R(id,t,st):
1. Parsest:= {KL,PL,RL,KU}.
2. Update the revocation list by RL := RLU {(id, t) }.
3. st:= {KL PL,RL KU}
4. Output st.

Obviously, the correctness of this scheme X follows from the correctness of the RIBE scheme
described in Section 4 and the HIBE scheme used as the building block. The security of scheme X is
guaranteed by the following theorem.

Theorem 3. If HIBE is the hierarchal IBE constructed in [8], the above server-aided revocable IBE scheme % is
selective-SR-ID-CPA secure (with decryption key exposure resistance) based on the CDH assumption.

Proof. The full proof of Theorem 3 is in Appendix B.2. O

7. Analysis of Key Updating Size

In this section, we analyze the key updating efficiency of our revocable IBE scheme. Different from
an IBE scheme, a revocable IBE scheme has enormous cost on the publishing updating keys at each time
slot. In our RIBE, the number of updating keys is linear to the number of updated nodes. Therefore,
we focus on the number of updated nodes for the performance. The advantage of our RIBE lies in the
fact that the nodes that needs to updated is only related to the number Ar of newly revoked users in
the past time slot. More precisely, in all the three schemes proposed in this paper, the number of nodes
needs to be updated in each time plot is at most Ar(log N — log(Ar)). Thus the key updating size of
our scheme is at most O(Ar(log N — log(Ar))). If there is no new users revoked in the previous time
slot, then key updating is not necessary at all.

Recall that in the most of RIBE schemes, the size of updating keys is closely related to the total
number r of all the revoked users across all the past slots. For example, in [10] the size of updated key
during each time slot is of order O(rlog (N/r)), where N is the number of users. In addition, in [14],
the size of updated key during each time slot is of order O(r).

For simulation, we use Poisson distribution to simulate the number of revoked users at each
time period, where & denotes the expected number of revoked users in each time slot. At a time slot
t, we sample a random number Ar; following the Poisson distribution parameterized by «, and Ar¢
denotes the number of revoked users at time slot t. The total number ry of the revoked users up to
time slot t’ is given by ZE,:O Ary. We evaluate the key updating sizes in our RIBE, the RIBE in [10] and
the RIBE in [14]. Since all the our three schemes share the same updating complexity in each time
plot, we only simulate our RIBE scheme without DKER and compare the results with the RIBE scheme
in [10] and the RIBE scheme in [14]. The simulation results for N = 220 and N = 2% are shown in
Figures 9 and 10 respectively.

Cryptography 2018, 2, 33 24 of 35

The key updating size

Time slot

Figure 9. N = 20.

The key updating size

Time slot

Figure 10. N = 25.

Author Contributions: Conceptualization, Z.H.; Methodology, Z.H. and S.L.; Simulation, K.C. and Z.H,;
Validation, J.K.L.; Formal Analysis, Z.H. and S.L.; Investigation, K.C.and J.K.L.; Writing—Original Draft
Preparation, Z.H. and S.L.; Writing—Review & Editing, K.C.and] K.L.; Visualization, K.C.; Supervision,].K.L.;
Project Administration, S.L.; Funding Acquisition, S.L. and K.C.

Funding: Ziyuan Hu and Shengli Liu were supported by the National Natural Science Foundation of China
(NSFC Grant No. 61672346). Kefei Chen was supported by National Key R&D Program of China (Grant No.
2017YFB0802000), NSFC (Grant No. U1705264) and (Grant No. 61472114).

Acknowledgments: The authors thank the anonymous reviewers for their helpful comments. Special thanks go
to Atsushi Takayasu who helped us to give a better presentation of this paper and told us their work of converting
a RIBE scheme without DKER to a RIBE scheme with DKER.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Hierarchical Identity Based Encryption

We formally define Hierarchical Identity Based Encryption (HIBE). A HIBE scheme consists of
four PPT algorithms HIBE = (HIBE.Setup, HIBE.KG, HIBE.Enc, HIBE.Dec). Let HIBE.M denote the

message space and HIBE.ZD the identity space.

e Setup: The setup algorithm HIBE.Setup is run by the key authority. The input of the
algorithm is a security parameter A. The output of this algorithm consists of a pair of key
(HIBE.mpk, HIBE.msk). In formula, (HIBE.mpk, HIBE.msk) < HIBE.Setup(1*).

o Key Generation: The key generation algorithm HIBE.KG is run by the key authority. It takes
a secret key HIBE.sk;q (HIBE.msk for €) and an identity id" as the input. The output of this algorithm
is HIBE.skig. In formula, HIBE sk;y ;y < HIBE.KG(HIBE.sk;g, id").

o Encryption: The encryption algorithm HIBE.Enc is run by the sender. It takes the master public
key HIBE.mpk, an identity id and a plaintext message m as the input. The output of this algorithm
is the ciphertext HIBE.ct. In formula, HIBE.ct <— HIBE.Enc(HIBE.mpk, id, m).

o Decryption: The decryption algorithm HIBE.Dec is run by the receiver. The input of this
algorithm consists of the master public key HIBE.mpk, the secret key HIBE.sk;y and the
ciphertext HIBE.ct. The output of this algorithm is the plaintext m. In formula, m <
HIBE.Dec(HIBE.mpk, HIBE.sk;q, HIBE.ct).

Cryptography 2018, 2, 33 25 of 35

Correctness. For all (HIBE.mpk, HIBE.msk) <~ HIBE.Setup(1%), all (id,id") € (HIBE.ZD)?, HIBE.skig <
HIBE.KG(HIBE.msk, id), HIBE.skiy . ¢ HIBE.KG(HIBE.skig,id'), all m € HIBE.M and HIBE.ct <

HIBE.Enc(HIBE.mpk, id||id’, m), it holds that m < HIBE.Dec(HIBE.mpk, HIBE'SkidHid’/ HIBE.ct).

Security. Now we formalize the security of a revocable IBE. We first consider a oracle key
generation oracle HIBE.KG(-). This oracle takes an identity id as the input and outputs HIBE.sk;yq <
HIBE.KG(HIBE.msk, id).

Definition 5. Let HIBE = (HIBE.Setup, HIBE.KG, HIBE.Enc, HIBE.Dec) be a hierarchical IBE scheme.
Below describes an experiment between a challenger C and a PPT adversary A.

EXPiiIcEtxvc—IND-ID-CPA (/\) .
(mo, my, id*) +— A;

(HIBE.mpk, HIBE.msk) < HIBE.Setup(1*);
0& {01}

HIBE.ct* < HIBE.Enc(HIBE.mpk, id*, mq)
¢« AHIBEKG() (HIBE mpk, HIBE.ct*);
If6 = 0'Return 1;If 0 # 6'Return 0.

The experiment has the following requirements for A.

o The two plaintexts submitted by A have the same length, i.e., |mg| = |my|.
o If A has queried id to oracle HIBE.KG(-), then id cannot be the a prefix of id"*.

A hierarchical IBE scheme is selective-IND-ID-CPA secure if for all PPT adversary A, the following advantage
is negligible in the security parameter A, i.e.,

Advs,flll%thIND_ID_CPA(A) — |Pr[EXPZe‘Iective—IND—ID-CPA ()\) _ 1] _ 1/2| _ neg/(/\).
Appendix B. Proofs of Theorems

Appendix B.1. Proof of Theorem 1

Proof. The proof consists of 5n + 4 hybrids, H_1, {Ho, Ho1, Hopz, Hos, Hoal, -+, {Hu-1, Hn-11,
Hn-12Hn-13 Hu-14}, Hn, Hyt1, Hnt2, and we will show that adjacent hybrids are computational
indistinguishable. Compared with H;, hybrid #;., has small changes in how the oracle queries are
answered and/or the challenge ciphertext is generated. Denote by H; = 1 the event that the hybrid
outputs 1.

e 7 _1: This hybrid is just the original experiment EXPY'PTP-CPA (1) (without oracle DK(, -)) as
shown in Definition 1. Thus

AdvINDID-CPA(X) — | pr3_; = 1] — 1/2]]. (A1)

Specifically, in this hybrid, the challenger C will first invoke RIBE.Setup(1*,1") to obtain
(mpk, msk, st) where st = (KL,PL,RL). C sends mpk to the adversary A and answers oracle
queries as follows.

1. Private key generation oracle KG(id). Upon receiving A’s query id, the challenger invokes
(skig,st’) < RIBE.KG(msk, id, KL, st) and returns skiq to A.
2. Key update oracle KU(t). Upon receiving A’s query t, C does as follows:
For t; from 1 to t:
st’ < RIBE.KU(msk, t;, st)
st :=st'.
Parse st = (KL, PL,RL,KU)
Returns (KU, PL) to A.

Cryptography 2018, 2, 33 26 of 35

3. Revocation oracle RvK(id, t). Upon receiving A’s query an id and a t, C invokes st’ «
RIBE.R(id, t,st) and parses st' = (KL, PL, RL, KU). It returns RL to A.

e Hp: In this hybrid, we change how the challenger C answers oracle KG(id) and oracle KU(t).
Recall that in H _1, the subroutines NodeGen and LeafGen are involved in RIBE.KG when answering
queries to the oracle KG, and the subroutines NodeChange and LeafChange are involved in RIBE.KU
when answering queries to the oracle KU. A pseudo-random subroutine PRF(s, -) is invoked in
all the four subroutines. Now in Hy, this PRF(s, -) will be replaces by a truly subroutine RF(-).
Note that C can efficiently implement the truly subroutine RF(-): Given a fresh input x, C chooses
a random element R in {0,1}" as the output of RF(-). C records (x, R) locally. If x is not fresh, C
retrieves R from its records.

Any difference between H_; and #H(will lead to a distinguisher B;, who can distinguish PRF
from RF. Hence
PRF
|Pr[H 1 = 1] = Pr[Ho = 1]| < Advp, (A). (A2)
e H,forvy e {0,1,---,n}: In this hybrid, challenger C changes the generation of the challenge
e j

ciphertext. Recall that the challenge ciphertext ct := {Iab‘ hm} APY, ., P, Q}>
jelM

In hybrid H,, C invokes the simulator Sim provided by the garbled circuit scheme to generate the
first v garbled circuits { P, - - - , PY~1}. Meanwhile, for i € [0, — 1], the input of the Sim is the 21
chameleon encryption ciphertexts

{HEnc(k;, (hi(;:%luﬂ,j, b), Iab], L))}iepefo1}- We stress that the 2A labels satisfy lab;g =
Mhid* [1--i41),f
labj; = Iabj L) . Please note that Sim needs the hash value hi(;*fl---i] with i € [0, y]. Therefore
Mhd* [1.i41),

the challenger C has to determine nE) first with i € [0,9]. Then C invokes sim to generate

id*[1-+1]
{PY,..., P71}, and invokes GCircuit to generate the rest circuits. Below is the detailed description
of the generation of the challenge ciphertext by C.

Assume A’s challenge query as (id*, t*, Mo, My). C first chooses a random bit 6, and encrypts Mj

under id* in t* as follows:

1. Define W* := {e,id*[1],--- ,id*[1---n — 1]}, where ¢ is the empty string. Determine the
values (he, hig=1), * + + , hig*[1...n—1], €kiq*) Which are the values attached to all nodes on the
path from the root to id*.

- skigr < RIBE.KG(msk,id").
- st < RIBE.KU(msk, t*, st).
st :=st’ = (KL, PL, RL, KU)
Retrieve (t*,hgt*)) from PL.
~ sk « RIBE.DK(mpk, skig:, KU, t*).
Parse ski(;:) = (id*, {(hz(,t*),hétﬁo),hgﬂl), i”z(;t*))}vew*, dk;q+), where
t* t*
(hi(d*ﬁ--nqmo' h;(d*fl...n,lml) = (ekig*[1...n—1))0- €Kid*[1...n-1)j|1)- Please note that dkiy- =
1 if id* has been revoked before t*.

(Q,1ab) & GCircuit(1", Q[My]), where lab = {labj,b}ie[?\]/bE{o'l}'
Fori=n—-1tov,

(P, TaB') & GCircuit(1", Plid*[i + 1], k;, Tab]). (B3)
Set lab := E/-

Cryptography 2018, 2, 33 27 of 35

4. Fori=vy—1t00,setv =id*[1---i], wherev =¢if i = 0.

< g .) .
(P {12 o yegyy) & Sim(1, {HEnc(ks, (157, b) laby,e) icpipeion) (A
7o,j i

e . / /
and set lab := {lab] h(t*), |ab] h(t*> }]E[)\]
u,j 7o)

5. Output ct* := ({Iabﬁht* }g [A],{PO,--- ,ﬁ”_l,Q}>,where hg/t;) is the ¢/t bit ofhgt*).
S

Please note that the randomnesses in RIBE.KG and RIBE.KU are generated by random subroutines

instead of the PRF.

e H,qfory € {0,1,---,n—1}: This hybrid is the same as #, except that the challenger C
changes the way of generating /i, and r, when answering private key queries and the way of
generating hz(,t) and rz(,t) when answering key update queries for v € {0,1}7. For v = n — 1, set
(hojjos ojp1) = (ekyjo, ekyj1)- In addition, set

O {ekah if v is not revoked,

ollb ek;Hh if v is revoked,

where (ekl,dk,) < G(1") and b € {0,1}. Specifically, C changes the generation process of
(hy, 1y) from

hy = H(ky,0%;RF(v))
ry = Hfl(tdvr(omfRF(U))/hv\IOHthl)
to
Ty é Zp
ho = H(ky, Itg)jolllo)1;70)

C uses the same way to generate (hz(,t) ,rz(,t)), ie., ;’z(,t> is chosen randomly, and hz(,t) =

(1)
H(ky, B 11,

Due to uniformity properties of the chameleon hash, hybrids H, and H, are statistical
indistinguishable. So
|Pr{H, = 1] — Pr[H, 1 = 1]| = negl. (A5)

e H,ofory € {0,1,---,n—1}: This hybrid is the same as H., 1 except step 3 (as shown in H,
in detail). Specifically, set v := id[0- - - 7]. C changes the generation process of garbled circuits
D7 from
(P7,7ab) & GCircuit(1%, P[id*[y + 1], k,, Tab])

and setting lab := lab to
~ $. *)
(P, {1ab!) }jen) € Sim(17, {HEne(ky, (", j,b), 1abjs)}eppaeony)
’Z/,j

and setting lab —{Iab L) Iab) e

o o

Since {HEnc(k, (hé),], b), Iab]-,)}iea,pefo1y is exactly the output of P[id™[y + 1], k., lab] (hz(,t*>),
the indistinguishability of H, 1 and H, > directly follows from the security of the garbled circuit
scheme. If there is a PPT adversary A who can distinguish #.; and H., > with advantage ¢,

Cryptography 2018, 2, 33 28 of 35

then we can construct a PPT algorithm B, who can break the security of the garbled circuit scheme
with same advantage €. Please note that 3, can generate msk itself and simulate all the oracles
for A perfectly. B, embeds its own challenge to (P7,lab). If (P7,1ab) is generated by GCircuit, B,
perfectly simulates ., ;. If (P7, lab) is generated by Sim, B, perfectly simulates H. ,. Hence

| Pr[Hq1 = 1] — Pr[H, 0 = 1]| < Advg,f (A). (A6)

e H,3for v € [0,n—1]: This hybrid is the same as H,, except step 4 (as shown in H.).
Challenger C changes

(P, {Iab t* }]e) <—S|m(1)‘ {HEnc(k,, (hy nit),], ,lab;)}]e ALbe{01})

to

5 $ o) .
(Pwl{bb;.h(t*)}je[)r]) A S'm(lA/{HE”C(k% (hz(;t),],b),lab hd —)}]e Al be{0, 1}
"o F[1ey+1]

Please note that td, is not used any more, the indistinguishability between H., » and H,, 3 can be
reduced to the security of the chameleon encryption scheme defined in Section 2.7. We need A
hybrids, {7—[7 9 7 2" ’Hég}, to prove this, where Hiy,zfi € [0, A] is the same as H. 2 except the
generation of P7. Set

[HEnc(ky, (hz(,ti),j,b) lab;) if j>i
b= HEnc(k,, (b,],b), Jab, e) if j<i
7d* 1y 1],
In H’ﬂ’
~ [
(P?, {lab;h(t*)}je[)i]) & Sim(1%, {ctip}jep pefor})- (A7)
o,i

Obviously, H? , is the same as H.» and H?, is the same as 7. 3. Please note that the onl
Yo Tio o 7, o) 42 y

difference between ’H; and H! nolsct,) , Where
2 i1- id* [Ty +1),i
(t) ;1 _pt) ; (i-1)
HEnc(ky, (hy 7,1, 1 — hyy. 1ogt1]), lab, i1 h.a*[l .) in Hy
Ctil—h.(t*) T HEnc(k. (K¢ i1 —) [b ; HU)
A 1), nc(ky, (hy 7,1, d*[l —y), la) -) in Hy
r+

If there is a PPT adversary A who can distinguish ’Hf&l and ’Hiﬂ with a advantage € fori € [A], we
can construct a PPT distinguisher B3 can use this adversary to break the security of the chameleon
encryption scheme with the same advantage €. B3 simulates ’H (’H) for A as follows:

1. Bs; receives a hash key k* from it own challenger C™NP-CE of the chameleon
encryption scheme.

2. B generates (mpk, msk,st) < RIBE.Setup(1*,1)}. Bj resets k, := k*. Now B3 does not
know the corresponding chameleon hash trapdoor td.. Then B3 sends mpk to \A.

3. Bz can perfectly simulates all oracles for A since these oracles do not need the trapdoor
td, anymore.

4. When receiving the challenge query (id*,t*, My, M7), B3 sets

x* = h|(d T HO‘ ‘hld* Al r* = ri(jifl__ﬂ (Please note that ri(jifl__ﬂ is chosen randomly).

- Bjgenerates {Q,P"1,. .., P71} according to (A3), just like 7—[:21 (7-[;,2).

- To generate P7, B; does the following. It computes {ci.‘]b}]e Abefo1) but leaves

ct. undefined. Set m := lab, and mj] := lab, , where
=Ry 1), hld*[l 1) i1 hnd*[l 1l

Cryptography 2018, 2, 33 29 of 35

(P, {labjp}icpnypeqony) & GCircuit(1h, P [id[y + 2}, kys1,ab"]). By sets its own
challenge query as (x*,r*,i,mj,m}). Then the challenger of B3 generates a challenge
ciphertext ct* and sends it to BB3. B3 sets ct.

l'lfhi(;i%rwﬂ],i
as (A7).
- Bz generates {P71, ... PV} according to (A4), just like ’Hi;zl (7—[;/2).
— Bz sends A the challenge ciphertext

ct:= ({Iabw(t*)} AP0, - ,pn1/Q}>.
Mee) pela)

5. If Areturns a guessing bit 6’ to B3, B3 returns ¢’ to its own challenger.

:= ct*. In addition, it computes pr

If ct* is the chameleon encryption of m, B3 simulates ngz perfectly for A. If ct* is the chameleon

encryption of mj, B3 simulates ’Hiyjzl perfectly for A. If A can distinguish these two hybrids
with advantage €, B3 can break the security of the multi-bit chameleon encryption with the same
advantage €. Therefore,

| Pr[#!)} = 1] = Pr[H}, = 1]| < Adv§! ()) and
| Pr[H), = 1] = Pr[H), = 1]| < A- Adv: (A).
Recall that 7—[9/’2 is the same as H. > and 7—[?2 is the same as H., 3. We have
| Pr[Hy2 = 1] = Pr[Hy 5 = 1]| < A- AdvE(A). (A8)

o Hysforye {0,1,---,n —1}: In this hybrid, challenger C undoes the changes made from H,,
and H., 1. It is obvious that the computational indistinguishability between H., 3 and H., 4 also
follows from uniformity properties of the chameleon hash. Please note that . 4 is the same as
Hy11. We have

|Pr[H,3 = 1] — Pr[H, 4 = 1]| = negl. (A9)

Therefore, from Equations (A5), (A6), (A8) and (A9) and the fact that H., 4 is the same to H., 1, it holds

| Pr[H, = 1] — Pr[H, 11 = 1]| = negl + Advgzc(/\) +A- Adv%f()\). (A10)
| Pr[Ho = 1] — Pr[H, = 1]| = negl + n- Adv-(A) +n- A - AdvgE(A). (A11)

e H,1: This hybrid is the same as H; except that the challenger C changes the way of generating
Q. More Formally, C changes the generation process of garbled circuits Q from

(Q,1ab) + GCircuit(1*, Q[My])

to
(Q{lab_) }) Sim(1},E o) (My)
I g id*
This indistinguishability between #,, and H,1 follows by the security of the garble circuit
scheme. The proof is similar to the indistinguishability between #., 1 and H,, ».Hence,

| Pr[Hy = 1] = Pr[H,qq = 1]] < AdvgS(A). (A12)

o H,4o: This hybrid is the same as H,; except that the challenger C replaces the ciphertext
E,) (Mjp) hard-coded in the circuit Q with E L) (0).
id*][0 id*|lo
If there is a PPT adversary .A who can distinguish between #,, 1 and H,.4, with advantage €,

Cryptography 2018, 2, 33 30 of 35

there is a PPT distinguisher B4 who can break the IND-CPA security of PKE = (G, E, D) with
advantage €/(2q + 1). First of all, We consider two kinds of adversaries:

Type-I : Ajnever queries id” to key generation oracle KG(-) for sk;y:.
Type-II : Ay queries id* to KG(+) and obtains sk;y+. In this case id* should be revoked before t*.

| Pr[Hp1 = 1] = Pr[Hyi2 = 1]
| Pr[Hy g = 1A = Af] — Pr[Hs = 1A = Af]| - Pr[A = A]]
I Pr[Hoe1 = 1A = Af] = Pr[Ha 12 = 1A = Ap]| - PrlA = Ay
< Pt Hpsr = 1A = Aj] = Pr[Hoia = 1)A = Ay
+|Pr[Hyi1 = 1A = Ap] = Pr[Hy 0 = 1| A = Ay (A13)

Claim 1 | Pr[Hy41 = 1| A = Af] = Pr[Hupe = 1| A = Af]| < (+1) - Advg " (A).

Proof. Suppose that A; issues gi queries to oracle KG(-), and let id) be A;’s j-th query to
KG(-). For each PPT A; such that |Pr[H,+1 = 1|A = Aj] —=Pr[H,42 = 1|4 = Aj]| = ¢,
we build a PPT algorithm By breaking the IND-CPA security of PKE with the advantage gx - €.
By simulates H,, 11 (Hy42) to A as follows:

B, generates (mpk, msk, st) < RIBE.Setup(1%, 7). By sends mpk to A;.
By receives encryption key ek™ from its own challenger.

B4 chooses j & [0, gk]-
If j # 0, since B, has msk, B, can perfectly simulate all oracles for Aj; as in H,, 11 (Hu+2)-

Ll

By embeds ek” in the private key generation of identity id) (the output of KG(id(j))).
More specifically, B4 invokes RIBE.KG(msk, id), st) with a little change (framed parts are
added) in the fourth step of the algorithm as follows:

- Foro=idD[1--.n—1]:
hy < H(ky, 0%};w,), where w, <+ RF.
A
(ekaidU)[n]’dkaid(”[n]) < G(1%),
(l’lv, ekUHO, ekal, T’U,dkaO,dkal) “— LeafGen(kn,l, (tdn,l,s),v, 6)
k*.

ek, 1@ id)y = ©

Ty < H_1 (tdnfl, (OzA,wZ,),eka0||eka1).
KL := KLU {(Z), hv, ekaO,ekal,rv), (Z)| |0, ekaO, J_), ('0| |1, ekal, J_)},
|kv = (hv, ekaO, ekal, 1’0).

Recall that ek is generated by

ol|(1—id " [n])
(eka(l_id(j) [n])’dkvu(l—id(f) [n])) + G(1") in LeafGen algorithm, hence ekv”(l—id(f)) has
identical distribution with ek®. As a result, B, perfectly simulates the oracle KG on for

Arpjust like Hy 1 (Hp42)-
5. By receives the challenge query (id*,t*, My, M;) from A;.

If j # 0 and id* # id)[1---n —1]]|(1 —id"[n]), By aborts the game.
If j = 0 and there exists i € [gk] such thatid* = idD[1---n—1]]|(1 —idD[n]), By aborts the
game.
Otherwise:

B, chooses 6 & {0,1}.

By sets its own challenge query as m := 0 and m] = Mp.

After receiving the challenge ciphertext ct* from its own challenger, B4 computes

Cryptography 2018, 2, 33 31 0f 35

(Q, {Iab-,ek,d,*j}) + Sim(1%,ct*), and continues to generate {P"~1,. .., P’} according to
(A4), just like Hy 1 (Hu2)-

B4 sends the challenge ciphertext ct := <{Iabf) } , {150, oo b Q}) to Aj.
el

le[A]
6. Finally, By outputs what A; outputs.

As long as B, does not abort the game, it simulates H,, .1 when ct* is the encryption of My~ and
B, simulates H,,2 when ct* is the encryption of 0. Therefore, we have

Advng(/\) = | Pr[-abort A H,11 = 1| A = Aj] — Pr[-abort A Hy0 = 1| A = Aj]]
= |Pr[H,41 = 1|A = Af] — Pr[H, 12 = 1] A = A{]| - Pr[-abort] (A14)
= /gt 1) [Pe{Hyn = 1A = Af) — PrlHs = 1] A= A
> 1/(q+1) - |Pr[Hpq = 1A= Ay] = Pr[Hy 0 = 1] A = Ap]]. (A15)

(A14) holds due to the fact that j < [0, gk] is independently chosen while (A15) holds due to
gk <gq. O

Claim 2| Pr[H, 41 = 1|A = Ay] — Pr[H, 0 = 1A = Ajf]| < q- AdvgF(A).

Proof. Suppose that Aj; issues g queries to oracle RVK(-), and let (id"), t0)) be A;’s j-th query
to RVK(-). For each PPT Aj; such that | Pr[H, 11 = 1|A = A] —Pr[Hu0 = 1| A = Ajf]] =€,
we build a PPT algorithm B, breaking the IND-CPA security of PKE with the advantage g - €.
By simulates H,,11 (H,12) to Aj as follows:

B, generates (mpk, msk, st) < RIBE.Setup(1,71)}. By sends mpk to Ajj.
By receives encryption key ek™ from its own challenger.

B chooses j & [qR]-
Since B4 has msk, B, can perfectly simulate all oracles for Ajj as in H,, 11 (Hy+2). By embeds

= » =

ek* in the key update generation (the output of KU) of time t//). More specifically, B, invokes
RIBE.KU(msk,t1), st) with a little change (a framed part is added) in the fifth step of the
algorithm as follows:

- Forallnode v € Y such that |v| = n: (ek’z‘fﬁ, 1) « LeafChange(v,t1),s),
Ifo=id?, ekt := ek,
KUt = KU U {(o,ekt”, 1)}
nt = ekgm. ' ' '
Recall that ekz(,]) is generated by (ekg]),dkz(,])) + G(1") in LeafChange algorithm, hence
ekY(,]) has an identical distribution with ek*. As a result, By perfectly simulates the oracle
KU for Ajj just like H; 11 (Hut2)-
5. By receives the challenge query parsed as (id*,t*, My, M;) from Ajj.

If id* # id"), B aborts the game.
Else:
B, chooses 6 & {0,1}.
B, sets its own challenge query as m := 0 and m] = Mp.
After receiving the challenge ciphertext ct* from its own challenger, B4 computes
(Q, {lab'ﬁkid'*,;}) + Sim(1%,ct*), and continues to generate {P"~!,... P} according to
(A4),just like Hyp 11 (Hpt2)-

B4 sends the challenge ciphertext ct := <{Iabﬁ () } , {150, e, pn1) Q}) to Aj.
el

le[A]

Cryptography 2018, 2, 33 32 0f 35

6. Finally, By outputs what Aj; outputs.

Given that id* = id"/, By simulates H, 11 when ct* is the encryption of My~ and B, simulates
‘Hu+2 when ct* is the encryption of 0. Therefore, we have

AdvERE() = | Prfid® = idD) A H, 0 = 1A = Ap] = Prlid® = idD) A Hypp = 1] A = Ay
= |Pr[Huq1 = 1| A = Ap] — Pr[H,i2 = 1|4 = Ayf]| - Prfid* = id)] (A16)
= 1/qr-|Pr[Hy1 = 1|A = Ap] — Pr[Hyi2 = 1| A = Ajpf]]
> 1/q-|Pr[Hyp1 = 1A = A = Pr[Hpi0 = 1A = Ay]|. (A17)

(A16) holds due to the fact that j < [gg] is independently chosen while (A17) holds due to
gr <¢q. O

According to (A13), Claim 1 and Claim 2, we have
| Pr[Hpi1 = 1] = Pr[Huge = 1] < (29 + 1) - Advg F(A). (A18)

Please note that in 1,45, the challenge ciphertext is information theoretically independent of the
plaintexts submitted by A. So we have

Pr[Hyi2 = 1] =1/2. (A19)
Combining (A1), (A2), (Al1), (A12), (A18) and (A19), we have

AdvIPTOCPA Q) < AdvERE(A) + (n+ 1) - AdvgE(A) + 1+ A~ AdvEE(A) + (29 + 1) - AdvgFE(A).

Appendix B.2. Proof of Theorem 3

Proof. This theorem can be derived from Corollary 1. For any PPT adversary A in the
selective-SR-ID-CPA security game of SR-IBE X, we can construct a PPT algorithm B breaking the
selective-IND-ID-CPA security of RIBE I such that

A dVSZe}thive_SR_ID_CPA ()L) = A dvﬁ’lgctive—IND—ID-CPA ()\))

B simulates EXPleeCﬁ"e'SR'ID'CPA(A) as follows:

1.

A generates the challenge identity id* and time slot t* to B. Then B sends the same challenge
pair (id*,t*) to its own challenger.

B receives IT.mpk from its own challenger and sets £.mpk := IT.mpk. Then B sends X.mpk to A.
When A queries for the oracle PUBKG with an identity id, B queries for his oracle KG with
the same identity id to its own challenger. Set W := {¢,id[1],-- - ,id[1---n — 1]}, where ¢ is the
empty string. Upon receiving the I'L.sk;q, B parses I Lsk;q := (X.pkiqg, Z.skiq), where X.pkiq := (t =
0,id, {lky }yew) and X.skig := (dkjq, HIBE.skjq). B sends X.pkiq to A.

When A queries for the oracle PRIVKG with an identity id, 3 queries for his oracle KG with
the same identity id to its own challenger. Set W := {¢,id[1],-- - ,id[1---n — 1]}, where ¢ is the
empty string. Upon receiving the ILsk;y, B parses ILsk;y := (X.pkiq, .skig), where X.pkiq := (t =
0,id, {lky }yew) and Z.skiy := (dkig, HIBE.skiq). B sends X.skiq to A.

When A queries for the oracle KU, B queries for the oracle KU to its own challenger. Upon
receiving the (KU, PL), B sends (KU, PL) to A.

When A queries for the oracle DK with an identity id and a time slot t, B queries for his oracle DK
with the same pair (id, t) to its own challenger. Set W := {¢,id[1],-- - ,id[1---n — 1]}, where e s the

Cryptography 2018, 2, 33 33 of 35

empty string. Upon receiving the H.ski(cti), B parses H.skicti) := (tid, {lko }oew, dkig, HIBE.skig)|¢)-
B sends Z.dk} := (dkiq, HIBE.skig)e) to A.

7. When A queries for the oracle RVK with an identity id and a time slot t, B queries for his oracle
RVK with the same pair (id, t) to its own challenger.

8. When A submits the challenge query (mg, my), B sends the same challenge query (mg, m;) to its
own challenger. Upon receiving the challenge ciphertext Il.ct;, B sends X.cty := Il.ct; to A.

9. Finally, B outputs what A outputs.

Since EXPglective-IND-ID-CPA ()) hag the same requirements as EXPffleCtive'SR'ID'CPA (1), B simulates
EXPsslective-SRID-CPA ()) 16 A perfectly. Therefore, we have

A dvsziﬁctive-SR-ID-CPA (/\) — A dv%e[l%ctive-IND-ID-CPA ()\) (A20)
According to Corollary 1, we have that for PPT adversary B, the advantage is negligible:
A dvf_il%ctive—IND—ID-CPA ()\) = negl ()\) (A21)

Combining (A20) and (A21), for any PPT adversary A, we have

A dV%ﬁﬁCtive-SR-ID-CPA ()L) = negl (A) .

Thus we finish the proof. [

References

1. Shamir, A. Identity-Based Cryptosystems and Signature Schemes. In Proceedings of the CRYPTO 1984, Advances
in Cryptology, Santa Barbara, CA, USA, 19-22 August 1984; pp. 47-53.10.1007 /3-540-39568-7_5. [CrossRef]

2. Waters, B. Efficient Identity-Based Encryption Without Random Oracles. In Proceedings of the 24th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Advances
in Cryptology (EUROCRYPT 2005), Aarhus, Denmark, 22-26 May 2005; pp. 114-127.10.1007 /11426639_7.
[CrossRef]

3. Gentry, C. Practical Identity-Based Encryption Without Random Oracles. In Proceedings of the
25th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Advances in Cryptology (EUROCRYPT 2006), St. Petersburg, Russia, 28 May-1 June 2006; pp. 445—464.
11761679_27. [CrossRef]

4. Okamoto, T.; Takashima, K. Fully Secure Functional Encryption with General Relations from
the Decisional Linear Assumption. In Proceedings of the 30th Annual Cryptology Conference,
Advances in Cryptology (CRYPTO 2010), Santa Barbara, CA, USA, 15-19 August 2010; pp. 191-208.
978-3-642-14623-7_11. [CrossRef]

5. Gentry, C.; Peikert, C.; Vaikuntanathan, V. Trapdoors for hard lattices and new cryptographic constructions.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, BC, Canada,
17-20 May 2008; pp. 197-206.10.1145/1374376.1374407. [CrossRef]

6. Agrawal, S.; Boneh, D.; Boyen, X. Efficient Lattice (H)IBE in the Standard Model. In Proceedings of
the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques:
Advances in Cryptology: (EUROCRYPT 2010), Monaco/Nice, France, 30 May-3 June 2010; pp.
553-572.10.1007 /978-3-642-13190-5_28. [CrossRef]

7. Cash, D.; Hofheinz, D.; Kiltz, E.; Peikert, C. Bonsai Trees, or How to Delegate a Lattice Basis. In
Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Advances in Cryptology (EUROCRYPT 2010), Monaco/Nice, France, 30 May-3 June 2010; pp.
523-552.10.1007 /978-3-642-13190-5_27. [CrossRef]

http://dx.doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/ 11761679_27
http://dx.doi.org/10.1007/ 978-3-642-14623-7_11
https://doi.org/10.1145/1374376.1374407
http://dx.doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/978-3-642-13190-5_27

Cryptography 2018, 2, 33 34 of 35

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Déttling, N.; Garg, S. Identity-Based Encryption from the Diffie-Hellman Assumption. In Proceedings
of the 37th Annual International Cryptology Conference, Advances in Cryptology (CRYPTO 2017),
Santa Barbara, CA, USA, 20-24 August 2017; pp. 537-569.10.1007 /978-3-319-63688-7_18. [CrossRef]
Boneh, D.; Franklin, M.K. Identity-Based Encryption from the Weil Pairing. SIAM]. Comput. 2003,
32, 586-615.10.1137 /50097539701398521. [CrossRef]

Boldyreva, A.; Goyal, V.; Kumar, V. Identity-based encryption with efficient revocation. In Proceedings of
the 2008 ACM Conference on Computer and Communications Security (CCS 2008), Alexandria, VA, USA,
27-31 October 2008; pp. 417—426.10.1145/1455770.1455823. [CrossRef]

Sahai, A.; Waters, B. Fuzzy Identity-Based Encryption. In Proceedings of the 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Advances in Cryptology
(EUROCRYPT 2005), Aarhus, Denmark, 22-26 May 2005; pp. 457-473.10.1007 /11426639_27. [CrossRef]
Libert, B.; Vergnaud, D. Adaptive-ID Secure Revocable Identity-Based Encryption. In Proceedings of the
Cryptographers’ Track at the RSA Conference on Topics in Cryptology (CT-RSA 2009), San Francisco, CA, USA,
20-24 April 2009; pp. 1-15.10.1007 /978-3-642-00862-7_1. [CrossRef]

Seo,].H.; Emura, K. Revocable Identity-Based Encryption Revisited: Security Model and Construction.
In Proceedings of the 16th International Conference on Practice and Theory in Public-Key Cryptography:
Public-Key Cryptography (PKC 2013), Nara, Japan, 26 February-1 March 2013; pp. 216-234.
978-3-642-36362-7_14. [CrossRef]

Lee, K.; Lee, D.H.; Park,].H. Efficient revocable identity-based encryption via subset difference methods.
Des. Codes Cryptogr. 2017, 85, 39-76.10.1007 /s10623-016-0287-3. [CrossRef]

Watanabe, Y.; Emura, K.; Seo,]. H. New Revocable IBE in Prime-Order Groups: Adaptively Secure, Decryption
Key Exposure Resistant, and with Short Public Parameters. In Proceedings of the Cryptographers” Track at
the RSA Conference on Topics in Cryptology (CT-RSA 2017), San Francisco, CA, USA, 14-17 February 2017;
Pp. 432-449.10.1007 /978-3-319-52153-4_25. [CrossRef]

Park, S.; Lee, K.; Lee, D.H. New Constructions of Revocable Identity-Based Encryption from Multilinear
Maps. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1564-1577.10.1109 / TIFS.2015.2419180. [CrossRef]

Chen, J.; Lim, HW.,; Ling, S.; Wang, H.; Nguyen, K. Revocable Identity-Based Encryption from Lattices.
In Proceedings of the 17th Australasian Conference on Information Security and Privacy (ACISP 2012),
Wollongong, NSW, Australia, 9-11 July 2012; pp. 390-403.10.1007 /978-3-642-31448-3_29. [CrossRef]
Takayasu, A.; Watanabe, Y. Lattice-Based Revocable Identity-Based Encryption with Bounded
Decryption Key Exposure Resistance. In Proceedings of the 22nd Australasian Conference on
Information Security and Privacy (ACISP 2017), Auckland, New Zealand, 3-5 July 2017; pp. 184-204.
60055-0_10. [CrossRef]

Qin, B.; Deng, RH.; Li, Y,; Liu, S. Server-Aided Revocable Identity-Based Encryption. In Proceedings
of the 20th European Symposium on Research in Computer Security (ESORICS 2015), Vienna, Austria,
21-25 September 2015; pp. 286-304.10.1007 /978-3-319-24174-6_15. [CrossRef]

Liang, K.; Liu, JK; Wong, D.S.; Susilo, W. An Efficient Cloud-Based Revocable Identity-Based
Proxy Re-encryption Scheme for Public Clouds Data Sharing. In Proceedings of the 19th European
Symposium on Research in Computer Security (ESORICS 2014), Wroclaw, Poland, 7-11 September 2014; pp.
257-272.10.1007 /978-3-319-11203-9_15. [CrossRef]

Yang, Y,; Liu,] K,; Liang, K.; Choo, K.R.; Zhou,]. Extended Proxy-Assisted Approach: Achieving Revocable
Fine-Grained Encryption of Cloud Data. In Proceedings of the 20th European Symposium on
Research in Computer Security (ESORICS 2015), Vienna, Austria, 21-25 September 2015; pp. 146-166.
978-3-319-24177-7_8. [CrossRef]

Yang, Y.; Liu,].K.; Wei, Z.; Huang, X. Towards Revocable Fine-Grained Encryption of Cloud Data: Reducing
Trust upon Cloud. In Proceedings of the 22nd Australasian Conference on Information Security and Privacy
(ACISP 2017), Auckland, New Zealand, 3-5 July 2017; pp. 127-144.10.1007 /978-3-319-60055-0_7. [CrossRef]
Liu, JKK; Yuen, TH. Zhang, P; Liang, K. Time-Based Direct Revocable Ciphertext-Policy
Attribute-Based Encryption with Short Revocation List. In Proceedings of the 16th International
Conference on Applied Cryptography and Network Security (ACNS 2018), Leuven, Belgium, 2—4 July
2018; pp. 516-534.10.1007 /978-3-319-93387-0_27. [CrossRef]

https://doi.org/10.1007/978-3-319-63688-7_18
http://dx.doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1137/S0097539701398521
http://dx.doi.org/10.1137/S0097539701398521
https://doi.org/10.1145/1455770.1455823
http://dx.doi.org/10.1145/1455770.1455823
https://doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-00862-7_1
http://dx.doi.org/10.1007/978-3-642-00862-7_1
http://dx.doi.org/10.1007/ 978-3-642-36362-7_14
https://doi.org/10.1007/s10623-016-0287-3
http://dx.doi.org/10.1007/s10623-016-0287-3
https://doi.org/10.1007/978-3-319-52153-4_25
http://dx.doi.org/10.1007/978-3-319-52153-4_25
https://doi.org/10.1109/TIFS.2015.2419180
http://dx.doi.org/10.1109/TIFS.2015.2419180
https://doi.org/10.1007/978-3-642-31448-3_29
http://dx.doi.org/10.1007/978-3-642-31448-3_29
http://dx.doi.org/10.1007/978-3-319- 60055-0_10
https://doi.org/10.1007/978-3-319-24174-6_15
http://dx.doi.org/10.1007/978-3-319-24174-6_15
https://doi.org/10.1007/978-3-319-11203-9_15
http://dx.doi.org/10.1007/978-3-319-11203-9_15
http://dx.doi.org/10.1007/ 978-3-319-24177-7_8
https://doi.org/10.1007/978-3-319-60055-0_7
http://dx.doi.org/10.1007/978-3-319-60055-0_7
https://doi.org/10.1007/978-3-319-93387-0_27
http://dx.doi.org/10.1007/978-3-319-93387-0_27

Cryptography 2018, 2, 33 35 of 35

24. Katsumata, S.; Matsuda, T.; Takayasu, A. Lattice-based Revocable (Hierarchical) IBE with Decryption Key
Exposure Resistance. IACR Cryptol. ePrint Arch. 2018, 2018, 420.

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Contributions
	Paper Organization

	Preliminaries
	Notations
	Pseudorandom Functions
	Revocable Identity-Based Encryption
	Server-Aided Revocable Identity-Based Encryption
	Garbled Circuits
	Computational Diffie-Hellman Assumption
	Chameleon Encryption

	Idea of Our Revocable IBE Scheme
	Idea of the DG Scheme
	Idea of Our Revoked IBE Scheme

	Revocable IBE Scheme
	Correctness
	Security

	Revocable IBE Scheme with DKER
	Server-Aided Revocable IBE Scheme
	Analysis of Key Updating Size
	Hierarchical Identity Based Encryption
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 3

	References

