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Abstract: A technique of authenticated encryption for memory constrained devices called sp-AELM
was proposed by Agrawal et al. at ACISP 2015. The sp-ALEM construction utilizes a sponge-based
primitive to support online encryption and decryption functionalities. Online encryption in the
construction is achieved in the standard manner by processing plaintext blocks as they arrive to
produce ciphertext blocks. However, decryption is achieved by storing only one intermediate state
and releasing it to the user upon correct verification. This intermediate state allows a legitimate user
to generate the plaintext herself. However, the scheme is nonce-respecting, i.e., the scheme is insecure
if the nonce is repeated. Implementation of a nonce is non-trivial in practice, and reuse of a nonce in
an AE scheme is often devastating. In this paper, we propose a new AE scheme called dAELM, which
stands for deterministic authenticated encryption (DAE) scheme for low memory devices. DAE is
used in domains such as the key wrap, where the available message entropy omits the overhead of a
nonce. For limiting memory usage, our idea is to use a session key to encrypt a message and share
the session key with the user depending upon the verification of a tag. We provide the security proof
of the proposed construction in the ideal cipher model.

Keywords: authenticated encryption; nonce-misuse resistance; memory constrained devices

1. Introduction

Authenticated Encryption (AE) is a symmetric encryption scheme that aims to provide
authenticity as well as confidentiality using a single construction. The ongoing CAESAR( Competition
for Authenticated Encryption: Security, Applicability, and Robustness) competition [1] has led to a
spur in research and analysis of AE schemes. The idea of AE was first introduced by Bellare and
Namprempre in 2000 [2]. Thereafter, several notions of authenticated encryption have emerged
over a series of works [3–7], which include misuse-resistant AE [8] and AE for memory constrained
devices [9,10].

Due to the ongoing Internet of Things (IoT) revolution, the area of designing lightweight AE
schemes has gained momentum. Various lightweight schemes have been proposed in recent past.
Some of them include Hummingbird-2 [11], ALE [12], ASCON [13], NORX [14], Ketje [15], PFX [16],
IAR-CTR, and IAR-CFB [17]. Due to the limited storage capabilities of these IoT devices, it has become
necessary to design a AE scheme which can process long messages even with these memory constraints.
Encryption of the message on the fly (i.e., as they arrive) is not an issue in most of the block-cipher-based
AE schemes. However, decrypting the ciphertext with limited memory poses a challenge. This is
because the sender cannot return decrypted data without first verifying its authenticity, and verifying
the authenticity requires the data to be seen in a first pass followed by the actual decryption in the
second pass. To avoid the user supplying different data during the authentication and the decryption
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passes, the device needs to store the data, which may not be feasible for the devices with restricted
memory space.

2. Related Work

A few methods for supporting authenticated encryption in a memory constrained scenario have
been proposed. However, all of them have restrictions. The first method to support online decryption
was proposed by Fouque et al. [9], who designed a generic construction called “decrypt-then-mask”
(DTM). In this method, a pseudorandom number generator is used to mask the plaintext blocks
during decryption, and this masked data is released to the receiver. Once the tag gets verified, the
cryptographic module returns the PRNG seed used for masking plaintext block to the receiver who can
run the same PRNG at her end and unmask the received data. A drawback of this construction is that
the decryption device using DTM must implement a pseudorandom number generator, which may not
fit on a constrained device. To overcome this problem, a sponge-based construction called sp-AELM
was proposed in [10]. The main idea behind this construction is to store an intermediate state while
performing decryption, instead of storing the complete plaintext. Depending on the ciphertext-tag pair
passing the validation test, either the saved intermediate state or an invalid symbol is returned to the
user. If the verification was correct, then the receiver can recover the plaintext from this intermediate
state along with the already available ciphertext. A schematic representation of sp-AELM is shown
in Figure 1. The intermediate state (a0, b0) as shown in Figure 1 is stored and released upon correct
verification. For more details of the construction, one can refer to [10]. However, the main drawback of
this scheme is that it is nonce-respecting, and no security guarantees are available in the case of nonce
being repeated.
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Figure 1. sp-AELM construction [10].

In [18], Hoang et al. introduced a new notion called OAE2, which supports both online encryption
and online decryption. It processes plaintext and ciphertext by partitioning them into a sequence of
segments. The size of these segment is decided by the user, and different segments can have different
lengths. On an input message M that gets segmented by a user to (M1, M2, ..., Mn), OAE2 encrypts
each segment as soon as it arrives, carrying forward only a constant size state. Thus, input message M
produces a segmented ciphertext (C1, C2, ..., Cn), where |Ci| ≥ |Mi| (1 ≤ i ≤ n) to support expedient
verification of what has come so far. Each Ci must result in an immediate recovery of Mi without
waiting for the availability of Ci+1. However, OAE2 is not secure when the nonce repeats. In practice,
it is difficult to ensure that nonce never repeats during the operation of a device. Even when it is
feasible to generate a unique nonce for each encryption, it is usually through an expensive operation.
In other words, implementation of a nonce is non-trivial in practice. Moreover, repeating a nonce in an
AE scheme is often devastating [18].

With the increasing usage of low-cost RFID devices, sensors, and trusted platform modules
(TPMs), the need for an AE scheme which can support both the encryption and the decryption functions
in a resource-constrained environment is increasing day by day. As already mentioned, existing AE
schemes which are suitable for low memory devices are vulnerable to attacks in nonce-repeating
scenarios. To overcome this limitation, we propose a new deterministic authenticated encryption
(DAE) scheme, which we call dAELM.
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The concept of the DAE scheme was introduced by Rogaway and Shrimpton in [8]. In a DAE
scheme, the encryption algorithm deterministically produces a ciphertext for a given key, associated
data, and a message. The DAE construction in [8] was termed “SIV,” which stands for synthetic IV.
This construction combines a conventional IV-based encryption scheme and a pseudorandom function
that takes a vector of strings as input. The scheme [8] first applies a PRF to associated data and a
message to produce an IV and uses the resultant IV for the encryption scheme. The SIV construction
is proven to be secure, assuming all of its components are secure. However, the SIV construction
is not designed for resource-constrained environments; in particular, it may not be suitable for a
scenario where the cryptomodule does not have enough space to store the complete message M during
decryption. This memory requirement is because the decryption procedure cannot return the plaintext
before successful verification of the tag. In this work, we design an efficient and provably secure DAE
scheme that is suitable for memory-constrained cryptomodules.

Our scheme resembles the SIV construction and exploits the existing entropy in messages to omit
the overhead for nonces. It also saves bandwidth by eliminating the need to send nonces or random
values over the communication channel.

The important feature that makes our construction differ from SIV is the use of the cryptographic
module. In dAELM, we assume encryption and decryption takes place inside a cryptographic module
which has a secret key embedded on it and has a very limited memory space. The reason behind
using the cryptographic module is to increase the security of the key. We don’t want the key to being
accessible outside the cryptographic module.

The remainder of the paper is organized as follows. Section 3 provides definitions that we use
in defining the security of the proposed scheme. Section 4 provides a specification of the proposed
scheme dAELM. Section 5 presents the security proof of the scheme. Section 6 compares dAELM with
other existing schemes. Section 7 shows the software implementation results of our scheme, followed
by a discussion in Section 8. Finally, we conclude in Section 9.

3. Preliminaries

Definition 1 (DAE). A deterministic AE scheme [8] is a tuple Π = (K, E ,D), where K is a non-empty set of
strings and the encryption algorithm E and decryption algorithm D are deterministic. E : K×A×M→ C
and D : K × A × C → M ∪ ⊥ with associated non-empty key space K, associated-data space A, and
message/ciphertext spaceM, C ⊆ {0, 1}∗. For each K ∈ K, A ∈ A and M ∈ M, EA

K (M) or EK(A, M) maps
(A, M) to an output C such that |C| = |M|+ τ for a fixed τ. DA

K (C) or DK(A, C) outputs corresponding
message M iff C is valid, and ⊥ otherwise. We assume correctness; i.e., for all (K, A, M) ∈ K ×A×M,
it holds that DA

K (EA
K (M)) = M.

Definition 2 (Deterministic Privacy (detPriv)). We adapt the same notion of privacy as in [8], namely in
terms of indistinguishability of the output from a random string. Let Π = (K, E ,D) be a DAE scheme with a
fixed associated data space A and message spaceM. Let A be an computationally bounded adversary having
access to encryption oracle E and an ideal primitive π and its inverse π−1. We then define detPriv advantage of
adversary A in attacking Π as

AdvdetPriv
Π (A) =

∣∣∣Pr[K $←− K : AEK(·,·),π,π−1
= 1]− Pr[A$(·,·),π,π−1

= 1]
∣∣∣

where $ is an oracle which on input (A, M) ∈ A×M outputs a random string of length |EK(·, ·)|. We assume
that adversary A does not allow repeated queries on the same inputs.

Definition 3 (Deterministic Authenticity (detAuth)). Let Π = (K, E ,D) be a DAE scheme with message
spaceM and associated data spaceA. Consider an adversary A with access to encryption and decryption oracles
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EK and DK respectively, and an ideal primitive π and its inverse π−1. We then define A’s detAuth advantage in
attacking Π as

AdvdetAuth
Π (A) = Pr[K $←− K : AEK(·,·),DK(·,·),π,π−1

suceeds in forgery].

Definition 4 (PRF Advantage). Let f : K ×X → Y be a function with a non-empty key space K and A

a computationally bounded adversary with access to an oracle, where K $←− K and g $←− Func(X ,Y). Thus,
the PRF advantage of an adversary A on f is defined as

Advpr f
f (A) =

∣∣∣Pr[K $←− K : AF(K,·) = 1]
∣∣∣− ∣∣∣Pr[g $←− Func(X ,Y) : Ag(·) = 1]

∣∣∣ .

Definition 5 (rka-ind-advantage). Let Φ be a set of mappings from {0, 1}n to {0, 1}n. Let A be an adversary
whose queries have the form (φ, X), where X ∈ {0, 1}n, φ ∈ Φ and Φ ∈ {φident, φconst}. The rka-ind-advantage
of A in a Φ-restricted-related key attack on π : {0, 1}n × {0, 1}n → {0, 1}n is given by

Advrka−ind
π(RK(·,K),·),Φ(A) =

∣∣∣Pr[K $←− {0, 1}n, Aπ(RK(·,K),·),π,π−1
= 1]−

Pr[g $←− Maps({0, 1}2n, {0, 1}n), K $←− {0, 1}n,

Ag(RK(·,K),·),π,π−1
= 1]

∣∣∣
where, on query (φ, X), the oracle O(RK(·, K), ·) returns the value of O(φ(K), X) to adversary A.

4. Specifications of dAELM

In this work, we propose a new deterministic authenticated encryption scheme dAELM for
memory constrained devices. In the next subsection, we will explain the operational environment for
our scheme followed by the description of dEALM in Section 4.2.

4.1. An Operational Scenario for the Proposed Scheme

Our scenario assumes three entities—namely the sender, the receiver, and the cryptographic
module—are interacting in the protocol. We assume that the encryption and decryption functionality
is carried out inside the cryptographic module, which has limited storage capability and a built-in
secret key. The purpose of using the cryptographic module is to provide a secure practical setup to
prevent the leakage of the secret key from the device. The sender encrypts a message M, generates the
ciphertext and tag pair (C, T), and sends the pair to the receiver. The receiver, having access to a
similar cryptographic module, passes this (C, T) pair to the module for decryption. This cryptographic
module decrypts ciphertext C to produce M, and without storing this M, he passes it directly to the
MAC function for the calculation of tag T′ (MAC computation is done in parallel with decryption
operation). If at the end computed tag T′ gets verified with the received tag, (i.e., T = T′) then
cryptographic module reveals the session key K′ to the receiver. After that, the receiver can decrypt
C using K′ to obtain the original M. The flow diagram for encryption and decryption are shown in
Figure 2.
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Crypto Module CM

(K)

C = C1||C2 · · · ||Ct

M = M1||M2 · · · ||Mt

C1

C2

Ct

T

where s = K∗ or ⊥

If s = ⊥, return INVALID.

For i = 1 to t
else

Mi = EK∗(T + i− 1)⊕ Ci

return M

Figure 2. Flow diagram For encryption and decryption.

4.2. Description

This section defines the generic construction. The schematic structure of the proposed scheme
is shown in Figure 3. Let K be a non-empty key space, and let A ⊆ {0, 1}∗ denote the associated
data space.

⊕ ⊕ ⊕

MAC

K A M

K

T T + 1 T + t− 1

EK∗ EK∗ EK∗EK+const

K∗

K∗

T

T

M1 M2 Mt

CtC2C1

Figure 3. dAELM construction.

Encryption of dAELM takes three inputs key K ∈ K, associated data A ∈ A, and plaintext M,
where associated data is optional and produces ciphertext tag pair (C, T) as output. Encryption works
by first calculating MAC T over associated data A and plaintext M using key K. Further, T is encrypted
using key K + const to produce session key K∗. and plaintext M is then encrypted as C in a counter
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mode using T as a counter and K∗ as key. Finally, (C, T) pair is produced as an output. For the
decryption, first the session key K∗ is generated using K and T, and ciphertext is then decrypted using
the K∗ to obtain plaintext M. Afterward, a tag is generated and compared with the received tag. If both
tags are matched, then K∗ is returned, otherwise invalid. Now using K∗, T, and C, original message M
can be easily produced. Algorithms for encryption and decryption of dAELM constructions are shown
in Algorithms 1 and 2 respectively, and the block diagrams representing encryption and decryption
are shown in Figures 4 and 5, respectively.

Algorithm 1: Encryption EK(A, M)

M = M1‖ . . . ‖Mt, where |Mi| = n for 1 ≤ i < t and |Mt| ≤ n
T = MAC(K, A, M)

K∗ = EK+const(T)
for i = 1→ t− 1 do

yi = EK∗(T + i− 1)
Ci = yi ⊕Mi

end
yi = EK∗(T + t− 1) [First |Mt| bits]
Cn = yi ⊕Mt

C = C1||C2 . . . ||Ct

Return (C||T)

Algorithm 2: Decryption DK (A, C, T)
K∗ = EK+const(T)
C = C1||C2 . . . ||Ct where |Ci| = n for 1 < i < t and |Ct| ≤ n
for i = 1→ t− 1 do

yi = EK∗(T + i− 1)
Mi = yi ⊕ Ci

end
yi = EK∗(T + t− 1) [First |Ct| bits]
Mn = yi ⊕ Ct

M = M1||M2 . . . ||Mt

T′ = MAC(K, A, M)

if T = T′ then
Return K∗

else
Return ⊥

end

The underlying assumption for the dAELM construction is that it works for the block-cipher-based
MAC only and works sequentially. In other words, we will consider only those MAC who processes
message block-wise instead of processing as a whole.
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Figure 4. dAELM Encryption.
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Figure 5. dEALM Decryption.

5. Security Results for the New Construction dAELM

In this section, we provide the security bounds for the privacy and authenticity of the dAELM
construction. We gave the security proof in the ideal cipher model. For writing this proof, we have
made an assumption that the underlying MAC in the proposed scheme works in a sequential manner,
i.e., as soon as it receives a message block, MAC computation starts. We used a code-based game
playing framework introduced by Bellare and Rogaway in [19] to write the proof. Theorem 1 states the
privacy, and Theorem 2 states the authenticity of the proposed construction in the following sections.

5.1. Privacy

Theorem 1. Let Π = (K, E ,D) be the proposed DAE scheme with an ideal primitive π, that operates on n
bits. The adversary A is given access to π and π−1. Then the privacy advantage of adversary A is given by

AdvdetPriv
Π (A) = Pr[K $←− K : AEK ,π,π−1

= 1]− Pr[K $←− K : A$(),π,π−1
= 1]

AdvdetPriv
Π (A) ≤ Advrka−ind

π(RK(·,K),·),Φ,π(BA) +
σ(σ− 1)

2n+1 + Advpr f (DA)

where $ is defined in Definition 2 in Section 3, and σ is the maximum number of block calls to π and π−1 by
encryption E and decryption D. Advpr f (DA) is the prf advantage and Advrka−ind

π(RK(·,K),·),Φ,π(BA) is the related
key advantage defined in Definitions 4 and 5 respectively in Section 3.
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Proof. For the proof of privacy, we use code-based game-playing framework introduced by Bellare and
Rogaway in [19]. We present a set of games from G0 to G5 (shown in the appendix in Figures A1–A5).
Starting from Game G0 and modifying it one step at a time, we construct a chain of games G0 −→
G1 −→ . . . −→ G5. Here, Game G0 represents the actual construction, and Game G5 represents a
completely random output. A description of each game is given the following:

G0: In this game, the encryption oracle perfectly simulates the proposed algorithm, and
π, π−1 oracle simulates the ideal permutation and its inverse. As we will consider block-cipher-based
MAC only, here we represent it by MACπ(K,·)(M), where π(K, ·) represents internal block-cipher calls
on an input message M.

Pr[AEk ,π,π−1
= 1] = Pr[AG0 = 1].

G1: Game G1 is the same as G0 except in G1 the block cipher calls during MAC computation and
session key generation has been replaced by subroutine g, which generates a random output for a
given input. Adversary A cannot make a direct call to the subroutine g.

Let us assume that an adversary A distinguishes these two games. We build an adversary B
against the subroutine g who uses adversary A. The process is as shown in appendix in Figure A6.

Adversary BA: In this game, the challenger chooses the key K, and the adversary BA is provided
with the oracles O(RK(∗, K), ·), which are simply a related key oracle and π oracle. For each (A, M),
query adversary B internally calls oracle O and replies to adversary A with answer (C, T).

Finally, A receives the (C, T) pair for his queries either with the related key oracle or a random
oracle. This game perfectly simulates the game G0 if B uses the related key oracle. Therefore, we have

Pr[G0] = Pr[Bπ(RK(∗,K),·),π
A = 1].

If adversary B uses a random oracle, then this game perfectly simulates game G1.

Pr[G1] = Pr[Bg(·,·),π
A = 1].

Lemma 1. For any rka− ind adversary A with q queries, there exists an adversary BA such that

|Pr[AG1 = 1]− Pr[AG0 = 1]| ≤ Advrka−ind
π(RK(·,K),·),Φ,π(BA)

where G0 and G1 are shown in Figure A1, and BA is defined in Figure A6. BA can make only two
queries: (φident, ·) and (φconst, ·). Φ = {φident, φconst}, where φident(x) = x and φconst(x) = x⊕ const.

G1’: Game G1′ and G1 are exactly the same. Therefore,

Pr[AG1′ = 1]= Pr[AG1 = 1].

G2: Game G1′ and G2 differ only when a bad event occurs, otherwise, in absence of a bad event,
both games are the same.

| Pr[AG1′ = 1]-Pr[AG2 = 1] | ≤ Pr[bad].

A bad event occurs when an input to π and π−1 collide with the elements in set Iπ . Therefore,
the probability of a bad event will be equal to the probability of collision in π and π−1. Hence, the
probability difference between G1 and G2 is

| Pr[AG1′ = 1]-Pr[AG2 = 1] | ≤ σ(σ− 1)
2n+1 .

G2’: Games G2′ and G2 are exactly the same. Therefore,

Pr[AG2′ = 1]= Pr[AG2 = 1].
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G3: Game G2′ and G3 are identical. In Game G3, the E oracle itself simulates the behavior of π,
so it becomes independent of π. Hence, Games G2 and G3 are the same from an adversarial point
of view.

Pr[AG3 = 1]= Pr[AG2′ = 1].

G4: Games G3 and G4 are the same except on Line 3.
Let us assume that an adversary A distinguishes these two games. We build an adversary D

against the MAC oracle who uses adversary A. The process is as shown in appendix in Figure A7.

Adversary DA: In this game, the challenger chooses the key K, and the adversary DA is provided
with the oracles O(·), which is either a MACg(K,·)(·) or $(·) oracle. For each (A, M), query adversary
D internally calls oracle O and replies to adversary A with answer (C, T).

Finally, A receives the (C, T) pair for his queries either with MAC oracle or random oracle.
This game perfectly simulates Game G3 if D uses the MAC oracle. Therefore, we have

Pr[G3] = Pr[DMACg(K,·)(·),π,π−1

A = 1].

If adversary D uses a random oracle, then this game perfectly simulates Game G4.

Pr[G4] = Pr[D$(·),π,π−1

A = 1].

Lemma 2. For any pr f adversary A, there exists an adversary DA such that

|Pr[AG3 = 1]− Pr[AG4 = 1]| ≤ Advpr f (DA).

G5: In Game G4, each ciphertext block is generated randomly and the concatenated ciphertext
is returned to an adversary. Similarly, a tag is also generated randomly. However, in Game G5,
ciphertext and tag of the desired length is selected as a random string and returned to an adversary.
This move from G4 to G5 does not make any difference, as in both games output is generated as a
completely random value. Therefore,

Pr[AG5 = 1] = Pr[AG4 = 1].

Finally, by using the fundamental lemma of the game-based framework,

AdvdetPriv
Π (A) = Pr[K $←− K : AEK ,π,π−1

= 1]− Pr[K $←− K : A$pad(),π,π−1
= 1]

= |Pr[AG0 = 1]− Pr[AG5 = 1]|
= | (Pr[AG0 = 1]− Pr[AG1 = 1]) | + | (Pr[AG1 = 1]− Pr[AG1′ = 1]) |

+ | (Pr[AG1′ = 1]− Pr[AG2 = 1]) | + | (Pr[AG2 = 1]− Pr[AG2′ = 1]) |
+ | (Pr[AG2′ = 1]− Pr[AG3 = 1]) | + | (Pr[AG3 = 1]− Pr[AG4 = 1]) |
+ | (Pr[AG4 = 1]− Pr[AG5 = 1]) |

≤ Advrka−ind
π(RK(·,K),·),Φ,π(BA) + 0 +

σ(σ− 1)
2n+1 + 0 + 0 + Advpr f (DA) + 0.

5.2. Authenticity

In this section, we analyze the security of the authenticity of the tag produced in our scheme.
The forgery of an AE scheme is defined as the ability of an adversary A to generate a valid (A, M, C, T)
tuple, without directly querying it to the encryption oracle. The adversary is allowed to make a limited
number of queries to encryption, decryption, and the π and π−1 oracles. For an AE scheme, we say the
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adversary A is successful in forging if it outputs an (A, C, T) tuple, where DK(A, C, T) 6= INVALID
and adversary A has not asked fora query EK(A, M) that resulted in response (C, T).

Let ExpAuth
Π (A) be the forging experiment for a given AE scheme Π = (K, E ,D). Then the forging

experiment is defined as follows:

1. Adversary A can query encryption oracle E and decryption oracle D at most
qencand qdec times, respectively.

2. All the query responses of encryption oracle E are stored in a set, say, R. This set contains an
(A, C, T) tuple, which has been returned by an encryption query.

3. If adversary A is able to generate a new (A, C, T) pair /∈ R that produces valid message M, then he
wins and output is 1; otherwise, output is 0, after trying qdec number of queries.

We say the adversary wins, i.e., he succeeds in creating a forgery if ExpAuth
Π (A) = 1. Therefore,

the advantage of an adversary in forging the scheme is defined as

AdvdetAuth
AE (A) = Pr[ExpAuth

Π (A) = 1].

Suppose an adversary makes a qenc number of encryption queries and stores a result in set R
that consists of tuple (Ai, Ci, Ti), where 1 ≤ i ≤ qenc. Now his goal is to generate a new tuple
(A′, C′, T′) /∈ R, which generates a valid M′ on verification.

Theorem 2. Let Π = (K, E ,D) be the proposed authenticated encryption scheme with an ideal primitive (π)
that operate on n bits. The adversary A is given access to encryption oracle E , decryption oracle D, and the π

and π−1 oracles. Then Π = (K, E ,D) is forgeable with the probability

Pr[ExpdetAuth
Π (A) = 1] ≤ Advrka−ind

π(RK(·,K),·),Φ,π(BA) +
σ(σ− 1)

2n+1 + Advpr f (DA)

+
q2

dec
2n +

2
2n .

where σ is a maximum number of blocks to π, π−1 by encryption oracle E , and decryption oracle D and qdec
is the number of queries to the decryption oracle. Advrka−ind

π(RK(·,K),·),Φ,π(BA) is the related key advantage, and

Advpr f (DA) is the prf advantage.

Proof. To give authenticity proof, we first use the same sequence of games (G0–G4) as in privacy
proof with an additional decryption oracle. This sequence of games transforms the MAC into a
pseudorandom function, and the block cipher calls into ideal permutation by considering their
respective advantages. Here, we are directly using the advantages of games from the above privacy
proof. After these transformations, we do further analysis.

There are two possible cases to consider:

1. An adversary generates a forgery pair (A′, C′, T′) which produces a valid M′ such that (∗, ∗, T′) ∈
R; i.e., he chooses a new (A, C) pair, which corresponds to the same tag Ti (= T′) that has been
previously used for some other (Ai, Ci), where 1 ≤ i ≤ qenc. T and T′ will correspond to the same
session key K∗ for a given key K. This same K∗ will result in the same output for further block
cipher calls. This can be divided into cases.

(a) C′ = Ci: In this case, necessarily A′ 6= Ai. As all block cipher outputs are the same,
XORing them with C(= Ci) will produce the same M(= Mi). For a successful forgery,
we need at least one parameter to be different in the (A′, C′, T′) tuple. Since C′ = Ci and
T′ = Ti, A′ should be different from Ai. Therefore, the probability of happening this case
will be same as the birthday bound on the MAC output.
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(b) C′ 6= Ci: In this case, for Ti (= T′), C′ 6= Ci will result in M′ 6= Mi. Therefore,
the probability of this case will again become the same as the birthday bound on the
MAC output.

Therefore, the overall probability of this case will be given by
q2

dec
2n .

2. An adversary generates a forgery pair (A′, C′, T′), where T′ is new, i.e. (∗, ∗, T′) /∈ R. This case is
further possible in two scenarios:

(a) An adversary is able to guess the key K correctly; i.e. he has access to the system and can
generate any number of valid queries. The probability of this case will be equivalent to

guessing the key, which is
1
2n .

(b) Suppose adversary guesses the tag T′ correctly for a given key K and (A′, M′) pair.
Then, for further calculations of ciphertext, he also needs to guess the session key K′.
Then only he can generate the forgery. Therefore, the probability of happening this case
will be the product of the probability of guessing the tag T′ and session key K′ that is

equal to
1

22n .

Therefore, the overall probability of this case will be
1
2n .

Hence, the overall advantage of authenticity is given as

AdvdetAuth
Π (A) = |Pr[AG0 = 1]− Pr[AG4 = 1]|+ q2

dec
2n +

2
2n

= | (Pr[AG0 = 1]− Pr[AG1 = 1]) | + | (Pr[AG1 = 1]− Pr[AG1′ = 1]) |
+ | (Pr[AG1′ = 1]− Pr[AG2 = 1]) | + | (Pr[AG2 = 1]− Pr[AG2′ = 1]) |
+ | (Pr[AG2′ = 1]− Pr[AG3 = 1]) | + | (Pr[AG3 = 1]− Pr[AG4 = 1]) |

+
q2

dec
2n +

2
2n .

AdvdetAuth
Π (A) ≤ Advrka−ind

π(RK(·,K),·),Φ,π(BA) + 0 +
σ(σ− 1)

2n+1 + 0 + 0 + Advpr f (DA)

+
q2

dec
2n +

2
2n .

6. Comparison

In Table 1, we present a comparison of the newly proposed scheme dAELM with existing
schemes sp-AELM [10], OAE2 [18], and SIV [8]. Among these four schemes, sp-AELM and OAE2 are
randomized schemes requiring nonces to produce the randomness. The remaining two schemes, the
SIV and the dAELM are deterministic. They use the available message entropy to omit the overhead
of a nonce. Schemes sp-AELM and OAE2 support online encryption, whereas SIV and dAELM do
not provide online encryption features due to their misuse-resistant behavior. As mentioned in [18],
misuse-resistant AE schemes cannot be online since every bit of the ciphertext must depend on every
bit of plaintext in a misuse-resistant scheme. This ensures that one cannot output the first bit of a
ciphertext before reading the last bit of the plaintext. Among the four schemes, only OAE2 supports
online decryption at the cost of generating a tag for every individual segment of the plaintext. All
these schemes provide low memory support, except SIV. Further, sp-AELM and OAE2 are vulnerable
to a nonce-repeating attack, while this is not the case with SIV and dAELM.
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Table 1. Results of a comparison of dEALM with sp-AELM, OAE2, and SIV, where τ represents the
tag length.

Parameters sp-AELM [10] OAE2 [18] SIV [8] dAELM [This Paper]

Type of AE Randomized Randomized Deterministic Deterministic
Online Encryption Yes Yes No No
Online Decryption No Yes No No
Low memory support Yes Yes No Yes
Misuse-resistant No No Yes yes
Segmentation Fixed size block Variable size segment Fixed size block Fixed size block
Ciphertext expansion τ bits τ bits per segment τ bits τ bits

OAE2 operates by dividing the plaintext into variable size segments of user-determined lengths,
whereas sp-AELM, SIV, and dAELM process the plaintext into fixed size blocks of fixed lengths.
In sp-AELM, SIV, and dAELM, the ciphertext length is a sum of plaintext and tag length (τbits),
whereas in the OAE2 scheme the tag is generated for each segment.

7. Software Implementation

We implemented the proposed scheme dAELM in ATmega128 microcontroller and compared the
performance against an existing SIV scheme. ATmega128 microcontroller is an 8-bit AVR RISC-based
microcontroller, which combines 128 KB of programmable flash memory, 4 KB SRAM, and a 4 KB
EEPROM. The device supports throughput of 16 MIPS at 16 MHz and operates at 4.5–5.5 volts. We
used the C language for programming ATmega 128. For the implementation of dAELM and SIV, we
used the AES-128 as an underlying block cipher and HMACSHA1 as an underlying MAC function.
We executed the experiments for the messages of various length and analyzed how much memory is
taken by the program performing encryption and decryption.

Pseudocode of decryption is shown in Algorithms 3 and 4. Three additional functions are used
for computing the HMACSHA1 tag without describing the details due to its wide compatibility.
HMACSHA1.INIT() initializes an HMACSHA1 structure to use the hash function and the key.
HMACSHA1.UPDATE() is repeatedly called with chunks of the messages to be authenticated.
HMACSHA1.FINAL() completes the HMACSHA1 operation after the last message is processed
and returns the message authentication code. For the decryption process, instead of storing the entire
decrypted message after decrypting the entire ciphertext, it decrypts the four blocks (each of 128 bit),
and HMACSHA1.UPDATE() takes them as an input repeatedly.

Figure 6 shows the memory usage during the decryption process for the various messages lengths.
For the messages of length less than 512 bits, memory required by the decryption process for dAELM
is a bit more than SIV due to one extra AES call for session key generation. This difference in memory
usage of only 512 bits is because of the consideration of HMAC-SHA1 in our implementation, which
process a message in 512 bit blocks. After 512 bits, memory usage becomes constant for dAELM,
regardless of message length, whereas in SIV, the memory usage depends on the length of a message.



Cryptography 2018, 2, 37 13 of 22

Algorithm 3: Decryption DK(A, C, T)
C = C1||C2 . . . ||Ct where |Ci| = 512 for 1 ≤ i < t and |Ct| ≤ 512
K∗ = AESK⊕const(T)
CTR = T
HMACSHA1.INIT(K)
for i = 1→ t− 1 do

Mi = AES_CTR_DEC_4BLOCKS(K∗, Ci, CTR + 4(i− 1))
HMACSHA1.UPDATE(Mi)

end
Mt = AES_CTR_DEC_4BLOCKS(K∗, Ct, CTR + 4(i− 1)) [First |Ct| bits]
HMACSHA1.UPDATE(Mt)

T′ = HMACSHA1.FINAL()
if T = T′ then

Return K∗

else
Return ⊥

end

Algorithm 4: AES_CTR_DEC_4BLOCKS(K, C, CTR)
C = C1||C2||C3||C4 where |Ci| = 128 for i = 1, 2, 3, 4
M1 = C1 ⊕ AESK(CTR)
M2 = C2 ⊕ AESK(CTR + 1)
M3 = C3 ⊕ AESK(CTR + 2)
M4 = C4 ⊕ AESK(CTR + 3)
M = M1||M2||M3||M4

Return M

|M|0 128 256 512 1024 2048

Memory

dEALM

SIV

Figure 6. A graph showing memory usage by the cryptomodule during the decryption process, where
the x-axis represents the length of message and the y-axis represents the memory usage in bytes.
This is the case when we used HMAC-SHA1 as a MAC function, which processes the message in
512 bit blocks.
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In general, the memory required by dAELM is |K|+ |K∗|+ |A|+ |B|, where |K| and |K∗| is a
length of a key and a session key, respectively, |A| is the length of an associated data, and |B| is the block
size of the message processed in the MAC. For example, |B| is 512 bits in the case of HMAC-SHA1.
However, the memory required by SIV is |K|+ |A|+ |M|, where |K|, |A|, and |M| represent the length
of a key, associated data, and a message, respectively. In other words, memory usage for dAELM
depends on the block size of MAC, which is constant, whereas, for SIV, it depends on the message
length. If we consider a MAC with a small block size, then dAELM will perform better than SIV, even
for short messages.

8. Discussion

In this work, our proposed AE scheme targets the devices, which have a limited amount of
memory and are incapable of processing the large message. These memory-constrained devices
include, in tiny IoT devices, cryptomodules such as TPMs (trusted platform modules), which are used
in laptops, tablets, smartphones, set-top-boxs, ATM machines, etc. A cryptomodule is basically a
secure cryptoprocessor used for carrying out the specific cryptographic operations and storing secret
keys. These cryptomodules usually have a storage capacity of only a few bytes, which may not be
sufficient to process long messages. For example, ATMELAT97SC3204 is a TPM that has only 1732
bytes of storage for the user-defined data. Similarly, these small IoT devices also have a limited amount
of storage. Under these memory constraints, it becomes impossible to process a large data in one go.
Hence, our proposed scheme provides a solution for all those memory-constrained devices to process
a long message.

9. Conclusions

In this work, we presented a new DAE scheme (dAELM) that is suitable for memory-constrained
scenarios. Our proposed construction is based on the SIV mode and does not require nonce as an input.
We also provide the security bounds for both the privacy and the authenticity of the construction.

Author Contributions: Methodology, M.A.; Supervision, D.C.; Writing–original draft, M. A.; Writing–review &
editing, J.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Games for Security Proof

Here, we provide the games used in the privacy and authenticity proofs of dAELM.

Appendix A.1. Games for Privacy and Authenticity Proofs for dAELM

Here, we make a sequence of games used in the security proofs of Theorems 1 and 2. We mention
priv and Auth in each game to include or not to include particular queries while writing the proofs.
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Game G0 and G1 :Initialize K $←− {0, 1}n, Iπ = φ, IT = φ

priv Auth
On Encryption-Query (A, M, f lag)

1. Parse M = M1||M2 . . . ||Mt where |Mi | = n for
1 ≤ i ≤ t− 1 and |Mt| ≤ n

2. M′ ← Padout(A, M)

3. T ← MACπ(K,·)(M′), IT = IT ∪ {(T, K, M′)}

T ← MACg(K,·)(M′)

if ∃ T s.t. (T, ∗, ∗) ∈ IT then bad→ true

4. K∗ ← π(K⊕ const, T)

K∗ ← g(K⊕ const, T)

5. for i = 1→ t− 1 do
yi ← π(K∗, T + i− 1)
Ci ← yi ⊕Mi

end
6. yt ← π((K∗, T + t− 1)) [First |Mt| bits]
7. Ct ← yt ⊕Mt
8. C = C1||C2 . . . ||Ct
9. Return (A, C, T)

on Padout(A, M)

1. M′ = bin64(|A|)||A||M
2. return M′

priv Auth
On π query (K′, m)

1. if ∃ v s.t. (K′, m, v) ∈ Iπ then return v
2. v $←− {0, 1}n

3. if ∃ ∗ s.t. (K′, ∗, v)∈ Iπ , then
v $←− {0, 1}n \ {v : (K′, ∗, v) ∈ Iπ}, where ∗ ∈ {0, 1}n

4. Iπ = Iπ
⋃{(K′, m, v)}

5. return v;

Auth
On Decryption-Query (A, C, T)

1. Parse C = C1||C2 . . . ||Ct where |Ci | = n for
1 ≤ i ≤ t− 1 and |Ct| ≤ n

2. K∗ ← π(K⊕ const, T)

K∗ ← g(K⊕ const, T)

3. for i = 1→ t− 1 do
yi ← π(K∗, T + i− 1)
Mi ← yi ⊕ Ci

end
4. yt ← π(K∗, T + t− 1) [First |Mt| bits]
5. Mt ← yt ⊕ Ct
6. M = M1||M2 . . . ||Mt
7. M′ ← Padout(A, M)

8. T′ ← MACπ(K,·)(M′), IT = IT ∪ {(T, K, M′)}

T′ ← MACg(K,·)(M′)

if ∃ T′ s.t. (T′, ∗, ∗) ∈ IT then bad→ true

9. if (T == T′) then
Return K∗

else
Return ⊥

end

priv Auth
On π−1 query (K′, v)

1. if ∃ m s.t. (K′, m, v) ∈ Iπ then return m
2. m $←− {0, 1}n

3. if ∃ ∗ s.t. (K′, m, ∗)∈ Iπ , then
M $←− {0, 1}n \ {M : (K′, m, ∗) ∈ Iπ}, where
∗ ∈ {0, 1}n

4. Iπ = Iπ
⋃{(K′, m, v)}

5. return m;

Subroutine g(K′, x)

1. if ∃ y s.t. (K′, x, y) ∈ Ig then return y
2. y← {0, 1}n

3. Ig = Ig
⋃{(K′, x, y)}

4. return y;

Figure A1. Games G0 and G1.
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Games G1′ and G2: Initialize K $←− {0, 1}n, Iπ = φ,

priv Auth
On Encryption-Query (A, M, f lag)

1. Parse M = M1||M2 . . . ||Mt where |Mi | = n for
1 ≤ i ≤ t− 1 and |Mt| ≤ n

2. M′ ← Padout(A, M)

3. T ← MACg(K,·)(M′)
4. K∗ ← g(K⊕ const, T)
5. for i = 1→ t− 1 do

yi ← π(K∗, T + i− 1)
Ci ← yi ⊕Mi

end
6. yt ← π(K∗, T + t− 1) [First |Mt| bits]
7. Ct ← yt ⊕Mt
8. C = C1||C2 . . . ||Ct
9. Return (A, C, T)

on Padout(A, M)

1. M′ = bin64(|A|)||A||M
2. return M′

priv Auth
On π query (K′, m)

1. if ∃ v s.t. (K′, m, v) ∈ Iπ then return v
2. v $←− {0, 1}n

3. if ∃ ∗ s.t. (K′, ∗, v)∈ Iπ , then bad← true and

v $←− {0, 1}n \ {v : (K′, ∗, v) ∈ Iπ}, where

∗ ∈ {0, 1}n

4. Iπ = Iπ
⋃{(K′, m, v)}

5. return v;

Auth
On Decryption-Query (A, C, T)

1. Parse C = C1||C2 . . . ||Ct where |Ci | = n for
1 ≤ i ≤ t− 1 and |Ct| ≤ n

2. K∗ ← g(K⊕ const, T)
3. for i = 1→ t− 1 do

yi ← π(K∗, T + i− 1)
Mi = yi ⊕ Ci

end
4. yt ← π(K∗, T + t− 1) [First |Mt| bits]
5. Mt ← yt ⊕ Ct
6. M = M1||M2 . . . ||Mt
7. M′ ← Padout(A, M)

8. T′ ← MACg(K,·)(M′)
9. if (T == T′) then

Return K∗

else
Return ⊥

end

priv Auth
On π−1 query (K′, v)

1. if ∃ m s.t. (K′, m, v) ∈ Iπ then return m
2. m $←− {0, 1}n

3. if ∃ ∗ s.t.(K′, m, ∗)∈ Iπ , then bad← true and

m $←− {0, 1}n \ {m : (K′, m, ∗) ∈ Iπ}, where

∗ ∈ {0, 1}n

4. Iπ = Iπ
⋃{(K′, m, v)}

5. return m;

Subroutine g(K′, x)

1. if ∃ y s.t. (K′, x, y) ∈ Ig then return y
2. y← {0, 1}n

3. Ig = Ig
⋃{(K′, x, y)}

4. return y;

Figure A2. Games G1’ and G2.
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Game G2′ and G3 : Initialize K $←− {0, 1}n, Iπ = φ,

priv Auth
On Encryption-Query (A, M, f lag)

1. Parse M = M1||M2 . . . ||Mt where |Mi | = n for
1 ≤ i ≤ t− 1 and |Mt| ≤ n

2. M′ ← Padout(A, M)

3. T ← MACg(K,·)(M′)

4. K∗ $←− {0, 1}n

5. for i = 1→ t− 1 do

yi ← π(K∗, T + i− 1)

if ∃ v s.t. (K′, T + i− 1, v) ∈ Iπthen yi ← v

else yi
$←− {0, 1}n, Iπ = Iπ ∪ {K′, T + i− i, yi}

Ci ← yi ⊕Mi

end

6. yt ← π(K∗, T + t− 1)

if ∃ v s.t. (K′, T + t− 1, v) ∈ Iπthen yt ← v

else yt
$←− {0, 1}n, Iπ = Iπ ∪ {(K′, T + t− i, yi)}

7. yt ← yt [first |Mt| bits]
8. Ct ← yt ⊕Mt
9. C = C1||C2 . . . ||Ct

10. Return (A, C, T)

on Padout(A, M)

1. M′ = bin64(|A|)||A||M
2. return M′

priv Auth
On π query (K′, m)

1. if ∃ v s.t. (K′, m, v) ∈ Iπ then return v
2. v $←− {0, 1}n

3. Iπ = Iπ
⋃{(K′, m, v)}

4. return v;

Auth
On Decryption-Query (A, C, T)

1. Parse C = C1||C2 . . . ||Ct where |Ci | = n for
1 ≤ i ≤ t− 1 and |Ct| ≤ n

2. K∗ $←− {0, 1}n

3. for i = 1→ t− 1 do

yi ← π(K∗, T + i− 1)

if ∃ v s.t. (K′, m, v) ∈ Iπthen yi ← v

else yi
$←− {0, 1}n, Iπ = Iπ ∪ {K′, T + i− i, yi}

Mi = yi ⊕ Ci

end

4. yt ← π(K∗, T + t− 1)

if ∃ v s.t. (K′, T + t− 1, v) ∈ Iπthen yt ← v

else yt
$←− {0, 1}n, Iπ = Iπ ∪ {(K′, T + t− i, yi)}

5. yt ← yt [first |Ct| bits]
6. Mt ← yt ⊕ Ct
7. M = M1||M2 . . . ||Mt
8. M′ ← Padout(A, M)

9. T′ ← MACg(K,·)(M′)
10. if (T == T′) then

Return K∗

else
Return ⊥

end

priv Auth
On π−1 query (K′, v)

1. if ∃ m s.t. (K′, m, v) ∈ Iπ then return m
2. m $←− {0, 1}n

3. Iπ = Iπ
⋃{(K′, m, v)}

4. return m;

Subroutine g(K′, x)

1. if ∃ y s.t. (K′, x, y) ∈ Ig then return y
2. y← {0, 1}n

3. Ig = Ig
⋃{(K′, x, y)}

4. return y;

Figure A3. Games G2’ and G3.
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Game G4: Initialize K $←− {0, 1}n

priv Auth
On Encryption-Query (A, M, f lag)

1. Parse M = M1||M2 . . . ||Mt where |Mi | = n for
1 ≤ i ≤ t− 1 and |Mt| ≤ n

2. M′ ← Padout(A, M)

3. T $←− {0, 1}n

4. K∗ $←− {0, 1}n

5. for i = 1→ t− 1 do
yi

$←− {0, 1}n

Ci ← yi ⊕Mi

end

6. yt
$←− {0, 1}n [First |Mt| bits]

7. Ct ← yt ⊕Mt
8. C = C1||C2 . . . ||Ct
9. Return (A, C, T)

on Padout(A, M)

1. M′ = bin64(|A|)||A||M
2. return M′

priv Auth
On π query (K′, M)

1. if ∃ v s.t. (K′, M, v) ∈ Iπ then return v
2. v $←− {0, 1}n

3. Iπ = Iπ
⋃{(K′, M, v)}

4. return v;

Auth
On Decryption-Query (A, C, T)

1. Parse C = C1||C2 . . . ||Ct where |Ci | = n for
1 ≤ i ≤ t− 1 and |Ct| ≤ n

2. K∗ $←− {0, 1}n

3. for i = 1→ t− 1 do
yi

$←− {0, 1}n

Mi = yi ⊕ Ci

end

4. yt
$←− {0, 1}n [First |Mt| bits]

5. Mt ← yt ⊕ Ct
6. M = M1||M2 . . . ||Mt
7. M′ ← Padout(A, M)

8. T′ $←− {0, 1}n

9. if (T == T′) then
Return K∗

else
Return ⊥

end

priv Auth
On π−1 query (K′, v)

1. if ∃ M s.t. (K′, M, v) ∈ Iπ then return M
2. M $←− {0, 1}n

3. Iπ = Iπ
⋃{(K′, M, v)}

4. return M;

Figure A4. Game G4.
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Game G5: Initialize K $←− {0, 1}n

priv Auth
On Encryption-Query (A, M, f lag)

1. Parse M = M1||M2 . . . ||Mt where |Mi | = n for
1 ≤ i ≤ t− 1 and |Mt| ≤ n

2. T $←− {0, 1}n

3. K∗ $←− {0, 1}n

4. for i = 1→ t do
Ci

$←− {0, 1}n

end
5. C = C1||C2 . . . ||Ct
6. Return (A, C, T)

on Padout(A, M)

1. M′ = bin64(|A|)||A||M
2. return M′

priv Auth
On π query (K′, M)

1. if ∃ v s.t. (K′, M, v) ∈ Iπ then return v
2. v $←− {0, 1}n

3. Iπ = Iπ
⋃{(K′, M, v)}

4. return v;

Auth
On Decryption-Query (A, C, T)

1. Parse C = C1||C2 . . . ||Ct where |Ci | = n for
1 ≤ i ≤ t− 1 and |Ct| ≤ n

2. K∗ $←− {0, 1}n

3. for i = 1→ t− 1 do
Mi =

$←− {0, 1}n

end
4. M = M1||M2 . . . ||Mt

5. T′ $←− {0, 1}n

6. if (T == T′) then
Return K∗

else
Return ⊥

end

priv Auth
On π−1 query (K′, v)

1. if ∃ M s.t. (K′, M, v) ∈ Iπ then return M
2. M $←− {0, 1}n

3. Iπ = Iπ
⋃{(K′, M, v)}

4. return M;

Figure A5. Game G5.
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Adversary Game BO(RK(∗,K),·),π,π−1

A ,K $←− {0, 1}n (chosen by challenger) whereO is either π(RK(∗, K), ·) or g(RK(∗, K), ·),
∗ ∈ {φconst, φident} and g $←− Maps({0, 1}2n, {0, 1}n).

priv Auth
On Sim-Encryption-Query (A, M, f lag)

1. Parse M = M1||M2 . . . ||Mt where |Mi | = n for
1 ≤ i ≤ t− 1 and |Mt| ≤ n

2. M′ ← Padout(A, M)

3. T ← MACO(RK(φident ,K),·)(M′),
IT = IT ∪ {(T, K, M′)}

4. K∗ ← O(RK(φconst, K), T)
5. for i = 1→ t− 1 do

yi ← Sim− π(K∗, T + i− 1)
Ci ← yi ⊕Mi

end
6. yt ← Sim− π(K∗, T + t− 1) [First |Mt| bits]
7. Ct ← yt ⊕Mt
8. C = C1||C2 . . . ||Ct
9. Return (A, C, T)

on Padout(A, M)

1. M′ = bin64(|A|)||A||M
2. return M′

priv Auth
on Sim− π query (K′, m)

1. v = π(K′, m)
2. Return v

Auth
On Sim-Decryption-Query (A, C, T)

1. Parse C = C1||C2 . . . ||Ct where |Ci | = n for
1 ≤ i ≤ t− 1 and |Ct| ≤ n

2. K∗ ← O(RK(φconst, K), T)
3. for i = 1→ t− 1 do

yi ← Sim− π(K∗, T + i− 1)
Mi ← yi ⊕ Ci

end
4. yt ← Sim− π(K∗, T + t− 1) [First |Mt| bits]
5. Mt ← yt ⊕ Ct
6. M = M1||M2 . . . ||Mt
7. M′ ← Padout(A, M)

8. T′ ← MACO(RK(φident ,K),·)(M′),
IT = IT ∪ {(T′, K, M′)}

9. if (T == T′) then
Return K∗

else
Return ⊥

end

priv Auth
on Sim− π−1 query (K′, v)

1. m = π−1(K′, v)
2. Return m

Figure A6. Adversary BA.
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Adversary Game DOA where O is either MACg(K,·) or $.

priv Auth
On Sim-Encryption-Query (A, M, f lag)

1. Parse M = M1||M2 . . . ||Mt where |Mi | = n for
1 ≤ i ≤ t− 1 and |Mt| ≤ n

2. T ← O(M′)

3. K∗ $←− {0, 1}n

4. for i = 1→ t− 1 do

yi
$←− {0, 1}n

I′π = I′π ∪ {K′, T + i− i, yi}
Ci ← yi ⊕Mi

end

5. yt
$←− {0, 1}n [First |Mt| bits]

6. I′π = I′π ∪ {(K′, T + t− i, yi)}
7. yt ← yt [first |Mt| bits]
8. Ct ← yt ⊕Mt
9. C = C1||C2 . . . ||Ct

10. Return (A, C, T)

on Padout(A, M)

1. M′ = bin64(|A|)||A||M
2. return M′

priv Auth
On Sim-π query (K′, m)

1. v = π(K′, m)
2. return v;

Auth
On Sim-Decryption-Query (A, C, T)

1. Parse C = C1||C2 . . . ||Ct where |Ci | = n for
1 ≤ i ≤ t− 1 and |Ct| ≤ n

2. K∗ $←− {0, 1}n

3. for i = 1→ t− 1 do
if (K′, T + i− 1, y) ∈ I′π then

yi ← y

else

yi
$←− {0, 1}n

I′π = I′π ∪ {(K′, T + i− i, yi)}
end

Mi = yi ⊕ Ci

end
4. if (K′, T + t− 1, y) ∈ I′π then

yt ← y

else

yt
$←− {0, 1}n

I′π = I′π ∪ {K′, T + t− i, yt}
end

5. yt ← yt [first |Ct| bits]
6. Mt ← yt ⊕ Ct
7. M = M1||M2 . . . ||Mt

8. T′ $←− {0, 1}n

9. if (T == T′) then
Return K∗

else
Return ⊥

end

priv Auth
On Sim−π−1 query (K′, v)

1. m = π−1(K′, v)
2. return M;

Figure A7. Adversary DA.
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