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Abstract: We propose cryptographic rational secret sharing protocols over general networks. In a
general network, the dealer may not have direct connections to each player, and players may not
have direct connections to each of the other players. We present conditions on the network topology
for which our proposed protocols are computational strict Nash equilibria and (k − 1)-resilient,
along with analysis on their round and communication complexity. We also present new notions
of equilibria such as Φ-resilient computational Nash equilibria, whereby a protocol is resilient to
coalitions that satisfy conditions in Φ, regardless of the coalition’s size. We also propose (n− 1)-key
leakage-tolerant equilibria applicable to cryptographic protocols involving secret keys, whereby the
equilibrium holds even if some players acquire (n− 1) tuples of secret keys.

Keywords: rational secret sharing; algorithmic game theory; network security; protocol mechanism
design

1. Introduction

Secret sharing schemes address the problem of securely disseminating a secret among
several participants, which is a relatively old problem in cryptography. Perhaps the most
popular early secret sharing scheme is the (n, k) secret sharing scheme by [1], which is
also termed as a (n, k) threshold sharing scheme. In this secret sharing scheme, the setting
involves a dealer who wants to share a secret among n players. The dealer subdivides
the secret into n pieces (i.e., shares) and sends a piece to each player. If at least k players
cooperate and share their shares, then the secret can be efficiently reconstructed. How-
ever, if less than k players cooperate, their shares reveal no information about the secret.
To achieve these conditions, the scheme of [1] uses properties of polynomials and Lagrange
interpolation, and it is shown to be secure under the formalized security notion of a secret
sharing scheme [2]. Since this invention by [1], several other secret sharing schemes have
been proposed [3], many of which are closely related to the field of secure multiparty
computation [4–7].

The setting for standard (n, k) secret sharing, however, assumes that players are
either completely honest or malicious [8], and security is guaranteed against completely
malicious players (termed adversaries). In a paper by [9], however, players are instead
modeled as rational in the game-theoretic sense [10], i.e., players have associated utility
functions, and the goal of each player is to maximize their own utility as a function of
the game’s outcome—while taking into account the effects of the actions of other players
in determining the outcome of the game. It is shown in [9], that standard non-rational
secret sharing schemes would fail to obtain the desired objective of having all players
learn the secret if participants are modeled as rational under natural assumptions on their
utility functions. Thus, non-rational protocols have to be modified in order to factor-in
the utility-maximizing behavior of players and the widened action space that comes from
rationality. This notion of a rational player by [9] paved the way for the research area
of rational secret sharing, where solutions are expressed in the form of protocols that
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induce Nash equilibria [11]. In particular, the rational secret sharing scheme in [9] is
a protocol where players have an incentive to follow the protocol and learn the secret
together, rather than for a player to deviate from the protocol and learn the secret by
itself. In this regard, Ref. [9] showed that their scheme is not only a Nash equilibrium but is
also not weakly dominated [11], which, in some instances, involves a stronger condition
than Nash equilbrium. Moreover, [9] showed that no rational secret sharing scheme exists
for n = 2 players, but such a scheme exists for n > 2 by taking advantage of randomness
and uncertainty over the game’s outcome. Several other papers on rational secret sharing
followed after [9]. The scheme of [12] is a simple rational secret sharing scheme that
allows the dealer to either draw a true secret from some subset of a field, or draw a false
secret—which is a simplification from the original protocol of [9]. This random drawing by
the dealer gives uncertainty in players’ point of view, such that for the players, the more
viable and less risky option is to comply with the protocol. Another paper by [13] considers
the dependence of schemes on various notions of utility. The chapter of [14] claims that
rational secret sharing contributed a new notion of equilibrium to the field of game theory,
which is the (k− 1)-resilient equilibrium. In particular, a protocol induces a (k− 1)-resilient
equilibrium if it is a Nash equilibrium and if any coalition of less than k players has no
incentive to deviate from the protocol. Other rational secret sharing schemes are presented
in [15–18].

The schemes of [9,12,19] consider settings where the dealer has a direct connection to
each of the players to send each players’ share. In addition, players have access to a simulta-
neous broadcast channel, whereby any transmission sent over the channel is automatically
received by all the players (although [12] presented a sketch in the end of his paper over an
asynchronous broadcast channel). These assumptions are relaxed in [20], whereby players
still have access to a broadcast channel, but transmissions are performed asynchronously.
In addition, ref. [20] showed that the schemes of [9,12] are not exactly Nash equilibria
if players are allowed to perform a superpolynomial number of computations—which
is not at all a given requirement in games according to game-theory literature (i.e., some
games are even assumed to be infinite [21]). Ref. [20] thus presented a scheme that is a
Nash equilibrium in an information-theoretic sense by drawing shares from an unbounded
domain. The scheme of [20], however, assumes that players are allowed to receive shares
of arbitrary size. The results of [20] have theoretical appeal, but as per [8], coming up
with rational secret schemes where participants are constrained to compute in polynomial
time, i.e., cryptographic rational secret schemes, are still meaningful. This led [8] to for-
mulate notions of computational Nash equilibria, computationally strict Nash equilibria,
as well as (k− 1)-resilient computational Nash equilibria, which are modified notions of
Nash equilibria over games that constrain its participants to operate in polynomial-time.
Moreover, the equilibrium notions of [8] are defined in terms of actions cast as informa-
tion transmissions relative to each participants’ point-of-view—disregarding any hidden
internal computations done by other participants. The scheme of [8] is asynchronous and
operates over point-to-point networks instead of broadcast channels. In particular, [8] uses
cryptographic primitives termed verifiable random functions (VRFs) [22,23].

The setting considered in [8], however, assumes that the dealer has access to each of the
players, and each player has access to all other players over a point-to-point network. In this
paper, we consider rational secret sharing schemes over general networks, which is a further
relaxation from the networks considered in [8,20]. In particular, in a general network,
the dealer is not guaranteed to have direct access to each of the players, and players
are not guaranteed to have direct access to each of the other players. This implies that
transmissions from the dealer or from a player may have to pass through some other player
nodes in the network before it reaches its intended recipient. The work of [24,25] deals
with the problem of securely disseminating a player’s individual share of the secret given
that the dealer is not directly connected with each player. In particular, Ref. [24] specifies
a graphical property of the network, namely, the k-path disjoint property, as a condition
for securely disseminating a player’s share despite general network constraints. The work
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of [26] presents a non-rational secret sharing scheme that is secure on general networks and
has much less communication complexity—under the condition that the corresponding
graph describing the network topology is k-propagating [26]. Both the schemes of [24,26],
however, deal more with the first phase of a secret sharing scheme, namely, the secret
generation and share/key dissemination phase.

In Section 4.1, we discuss the limitations of the secret sharing schemes surveyed in
the above paragraphs. As discussed, the rational secret sharing schemes [8,9,12] assume a
broadcast channel or a point-to-point network, by which participants can send messages to
one another (whether simultaneous or asynchronously). However, in Section 4.1, we show
that in some instances of a general network, equilibrium guarantees of these schemes would
fail to hold. On the other hand, non-rational secret sharing schemes (as in [24,26]) are not
valid in the case of rational participants, as given rationality and natural assumptions on
utility, players are better off by not sharing their shares—as discussed in [9] and described in
Section 2.3. It is the goal of the paper, then, to present protocols which provide equilibrium
guarantees (under certain conditions of the network topology), even in the combined case
of a general network topology over rational participants for all phases of a secret sharing
protocol. In particular, our contributions are as follows:

Our Contributions

1. In this paper, we provide protocols that guarantee equilibrium even in the combined
case of a general network topology over rational participants for all phases of a secret
sharing protocol. We likewise state the required graphical properties of such general
networks in order for such equilibria to hold. Thus, our protocols are able to overcome
the limitations of existing protocols that are either non-rational or which assume
broadcast channels/point-to-point connections among participants—albeit under
some conditions on the network topology. In particular, we present three protocols.
The first protocol uses a pseudorandom function cryptographic primitive [2] and
induces a computational Nash equilibrium given an online dealer, i.e., the dealer
transmits information throughout the protocol. For the second protocol, we use the
verifiable random functions as conducted in [8], which also results in a computational
Nash equilibrium but requires only a semi-online dealer, i.e., the dealer transmits
information only at certain phases of the protocol, but is not needed throughout
the protocol’s execution. The second protocol, however, has much higher round
complexity compared to the first scheme. The equilibria of each scheme borrows
a technique proposed by [8], which is to randomly draw the value of a definitive
iteration from a geometric distribution but to delay the moment when players discover
the definitive iteration to create uncertainty. In addition, we apply a scheme inspired
by [24] to distribute a secret perfectly in a general network. However, in Section 4.1,
we mention that additional mechanisms are required in order for computational Nash
equilibrium to provably hold—and we show reasons why the equilibrium is not
clear under a straightforward combination of the schemes of [8,24]. Moreover, we
mention the required graph-theoretic properties of the general network required for
such equilibria , which we term as the k-disjoint property, where each pair of nodes in
the graph has at least k disjoint paths connecting them.

2. Aside from computational Nash equilbrium, we also show that our proposed protocol
induces stronger notions of Nash equilibrium, i.e., computationally strict Nash equlib-
rium and (k− 1)-resilient computational Nash equilibrium following [8]. For each
equilibrium notion, we present the required properties of the network topology
needed for the equilibrium to hold. These properties are expressed using graph
theoretical concepts.

3. We present new notions of the computational Nash equilibrium. The first is termed a
Φ-resilient computational Nash equilibrium, whereby a protocol is a Φ-resilient if it is
a computational Nash equilibrium and if it is resilient to any coalition that satisfies
the properties listed in Φ, regardless of the coalition’s size, where the properties in Φ
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are expressed using graph theoretical concepts. We present a third protocol which is
a Φ-resilient computational Nash equilibrium and derive the result that a k-resilient
protocol may be resilient to some coalitions of size greater than k, as long as such
coalitions satisfy the graphical properties required in Φ. The second equilibrium
notion is termed (n− 1)-key leakage resilient equilibrium, whereby a rational secret
sharing scheme is still a computational Nash equilibrium in spite of some players
acquiring (n− 1) secret keys.

2. Model and Definitions

Let κ ∈ N denote a security parameter, where the notion of a security parameter
relative to a cryptographic scheme is explained in detail in [2]. A function f : N → R is
negligible if, for all c > 0, there is a κc > 0 such that f (κ) < 1/κc for all κ > κc. Throughout
the paper, the notation x ← X refers to x being randomly drawn from the probability
distribution of random variable X, but it is also sometimes used as y← f (x), where f is
some probabilistic function.

Let A be any probabilistic polynomial-time algorithm. The advantage of A is defined
to be its capacity to distinguish between the probability distributions of two collections
of random variables. For instance, let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be two collections
of random variables indexed by κ. The advantage of algorithm A in this instance is
|Pr [A(1κ , x) = 1]− Pr [A(1κ , y) = 1]| for x ← Xκ and y← Yκ . Two collections of random
variables X and Y are computationally indistinguishable if the advantage of any polynomial-
time algorithm is negligible in κ.

An (n, k) secret sharing scheme Π for domain S is a polynomial-time protocol carried out
by a dealer d and a set of n players {p1, p2, . . . , pn}, where the time spent by the protocol and
the size of S are functions of κ. In particular, |S| has to be superpolynomial with respect to
κ in order for a secret sharing scheme to be secure in the cryptographic sense. The protocol
Π is given by polynomial-time algorithms (SG, SR), where SG is a share generation algorithm,
and SR is a secret reconstruction algorithm. To securely disseminate a secret s among the
n players, the protocol proceeds in two phases. The first phase is the secret generation and
share (or key) dissemination phase, where the dealer uses SG on input s ∈ S to generate n
shares {s1, s2, . . . , sn} ∈ S . The dealer gives si to player pi for i ∈ [n]. In the second phase,
termed the secret reconstruction phase, a subset of players of size na ≤ n, termed the active
players are meant to collaborate in reconstructing s, such that given any set consisting of at
least k shares, the secret s can be efficiently and correctly reconstructed using algorithm SR.
This is termed the correctness property of secret sharing schemes. Moreover, secret sharing
schemes satisfy the secrecy requirement, whereby any data that provide information on less
than k shares reveal nothing about s.

2.1. Game Theory Definitions

Following standard notions in game-theory [11], a game is described by: (1) a set of
participants who have associated utility functions (which are termed as players), and possi-
bly other participants without utility functions (for instance, nature as described in [10]);
(2) the possible actions available to each participant; (3) rules that determine the order
in which participants make their moves; (4) a rule that determines the outcome of every
possible game ending; and (5) a definition of the utility function associated with each
player in the game. Several forms of games have been considered, but here we consider the
extensive form of a game with imperfect information following [20]. Namely, an extensive
form game G with imperfect information is a tuple

(N, (Ai)i∈[|N|], ΩH , fnext, (Ii)i∈[|N|], o, (µi)i∈[|N|])

where:

1. N—a finite set of players denoted as {p1, p2, . . . , pn} with n = |N|.
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2. Ai—the action space available to player pi with an element denoted as act ∈ Ai. Ai
can be finite or infinite.

3. ΩH—a set of sequences (termed histories) with elements ω := (act1, act2, . . . , actm)
(for some m > 0) of actions taken by players that satisfy the following: (1) ∅ ∈
ΩH and (2) for any m > 0, if (act1, act2, . . . , actm) ∈ ΩH and m′ < m, then
(act1, act2, . . . , actm′) ∈ ΩH . A history (act1, act2, . . . , actm) is terminal if there
is no actm+1 such that

(act1, act2, . . . , actm+1) ∈ ΩH .

The set of actions for player pi after a non-terminal history ω := (act1, act2, . . . , actm)
is denoted as Ai(ω) := {actm+1|(act1, act2, . . . , actm, actm+1) ∈ ΩH}.

4. fnext—a function fnext : ΩH → N for which fnext(ω) is the player who takes action
after history ω ∈ ΩH .

5. Ii—the information partition for player pi, which is a partition of {ω ∈ ΩH | fnext(ω) =
pi} with the property that Ai(ω) = Ai(ω

′) if ω and ω′ are both in the same element
of the partition. An element of Ii is denoted as I, which is termed an information set.
The set of actions for pi after reaching I is Ai(I).

6. o—a set of outcomes, where an outcome is a description of events in the game once a
terminal history is reached.

7. µi—a utility function from the set of terminal histories to R, which determines pi’s
gain depending on the game’s outcome.

Definition 1. Given an extensive form of game G with imperfect information, a behavioural
strategy (or simply strategy) is denoted as a vector σ := {σ1, σ2, . . . , σn}, where for i ∈ [n], σi is
the strategy of player pi. Each σi for i ∈ [n] is a function mapping I to a probability distribution
over Ai(I).

The definition of strategy given in Definition 1 is the standard definition in game-
theory [11], whereby actions are functions of histories or information sets. An equivalent
(and perhaps more intuitive) definition of strategy for player pi ∈ N views actions Ai(I)
taken by pi under information set I as conditional on the information contained in I. For in-
stance, a history in an information set I may consist of past actions of a player’s internal
computations, along with past actions of other players consisting of transmissions sent over
a network. In this case, the set of information contained in I consists of the outputs of these
internal computations plus the content of transmissions from other players. Strategy in this
case is defined as actions taken by a player conditional on the information contained in I
after reaching information set I. This notion of information contained in an information set
is denoted as φi(I) for pi ∈ N and is defined below.

Definition 2. Let pi ∈ N reach information set I. The information from I or information in I
is denoted as φi(I), which consists of all possible information from the point of view of pi upon
reaching I. The set of actions for pi after reaching I and conditional on φi(I) is denoted as Ai(φi(I))
and Ai(φi(I)) = Ai(I), i.e., the difference between Ai(φi(I)) and Ai(I) is merely conceptual.

Definition 3. Given an extensive form game G with imperfect information, a behavioural strategy
(or simply strategy) is denoted as a vector σ := {σ1, σ2, . . . , σn}, where for i ∈ [n], σi is the strategy
of player pi. Each σi for i ∈ [n] is a function mapping the space of φi(I) to a probability distribution
over Ai(I).

Definition 4. Define: σ−i := (σ1, . . . , σi−1, σi + 1, . . . , σn), and similarly, define (σ′i , σ−i) =
(σ1, . . . , σi−1, σ′i , σi+1, . . . , σn), i.e., the strategies of all players are the same as in σ, except for
player i, who changed his strategy to σ′i .
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2.2. Graph Theory Definitions

Recall that a graph G = (V, E) consists of a set of nodes V and a set of edges E ⊆ V ×V,
such that two nodes a1, a2 ∈ V are joined or are adjacent to each other if (a1, a2) ∈ E. In this
setting, graphs are assumed to be undirected. A walk from node a to node b is a finite
sequence of edges ((a1, b1), (a2, b2), . . . , (am, bm)) for some m > 0 (i.e., all walks in this
setting are assumed to end and we do not consider infinite walks), such that a1 = a, bm = b,
and bl = al+1 for l ∈ [m− 1]. The first edge of a walk ((a1, b1), (a2, b2), . . . , (am, bm)) is the
edge (a1, b1) ∈ E. Given a walk ((a1, b1), (a2, b2), . . . , (am, bm)), the nodes {a1, a2, . . . , am, bm}
comprise the node sequence of the walk. A path from a to b is a walk in which all elements of
its node sequence are distinct, and the first and last nodes in the node sequence are a and b,
respectively. Given a path from a to b, the path is said to originate at a, and the node a is
termed the origin-node, or the origin, while the node b is termed the end-receiver node or the
end-node. Two distinct nodes a, b ∈ V are connected if there exists a path from a to b, in which
case the path is connecting a to b. Two paths are completely disjointed if their respective node
sequences have empty intersection (i.e., they do not cross each other). Aside from these
standard graph theory definitions, we also define special types of paths and graphs that
will be used in this setting. Let a, b ∈ V be a pair of distinct nodes.

Definition 5. A set of paths from a to b is internally disjoint if: (1) the node sequences of the paths
have a as the origin and b as the end-receiver and (2) if, aside from the beginning and end, the node
sequences of the paths do not share any node in common. Furthermore, given a graph G(V, E), let
a, b be two distinct pair of nodes in V. A set of k paths from a to b is a set of k-disjoint paths from a
to b if they are internally disjoint. Lastly, given a graph G(V, E), let V̄ ⊂ V. The set of nodes V̄ is
k-disconnected if, for each distinct pair of nodes a, b ∈ V̄, we have: (1) (a, b) 6∈ E and (2) for any
path connecting a and b, the size of the node sequence is at least k + 2.

While dense clique graphs are likely to be path-disjoint, it is not necessary for a graph
to be a clique in order to be path-disjoint. As shown in Figure 1, we have a graph that is
3-path disjoint even though it is not a clique. A useful property of k-path disjoint graphs is
stated in Lemma 1, which will be used in the proofs in the Appendix.

(a) (b)
Figure 1. The left figure (a) shows a graph that is (k = 3)-path-disjoint even if it is not a clique.
An example of a 3-disjoint paths from one green node to another green node given the graph in (a) is
shown in the right figure (b).

Lemma 1. Given a k-path-disjoint graph G(V, E), let V̄ ⊂ V be a set of size k − 1. For each
distinct pair of nodes a, b ∈ V, any set of k-disjoint paths from a to b contains a path that does not
contain nodes belonging to V̄.

Proof. Let a, b be an arbitrary pair of distinct nodes in V. Let V̄ ⊂ V be an arbitrary subset
of nodes of V of size k− 1. Suppose that there exists a set of k-disjoint paths from a to b such
that each path contains nodes belonging to V̄. Since this particular set of paths is internally
disjoint, this implies that there are k paths whose first edges are distinct from each other
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and which originate at a. Distribute the members of V̄ to these k paths. However, since
|V̄| < k, some paths do not contain nodes belonging to V̄, which is a contradiction.

2.3. Rational Secret Sharing

Early secret sharing schemes’ model players are either completely honest or mali-
cious [1]. In a rational secret sharing scheme, however, players are rational in the game-
theoretic sense and are associated with utilities depending on outcomes of a game [9]. Thus,
a protocol Π in rational secret sharing corresponds to a prescribed strategy over a game.
In particular, in a rational secret sharing game, there are n + 1 participants consisting of
n players who wish to reconstruct the secret and have associated utility functions, plus
a dealer without an associated utility function. However, among these n players, only a
subset of na ≤ n players are willing to participate in the protocol, namely, the active players.
In the setting of [9], each active player has access to a broadcast channel, whereby if an active
player transmits information in this channel, all other active players in the game learn
the transmitted information automatically. An important result of [9] (and described in
Section 4.1), is that standard non-rational cryptographic protocols fail if participants are
modeled as rational instead of plainly honest or malicious.

The secret sharing game described in [9] proceeds in several iterations, and each
iteration consists of multiple communication rounds. At the beginning of each iteration,
the dealer privately distributes information to each of the n players. Afterwards, the subset
of na active players run the protocol among themselves by simultaneously broadcasting
messages in a series of rounds. At the end of an iteration, the protocol either terminates or
proceeds to the next iteration. At the beginning and throughout the game, it is assumed
that the dealer and each of the players know the identities of the na active players.

The strategies of the game’s active players in [9] can be viewed as probabilistic interac-
tive Turing machines [27] that operate in polynomial-time following [8]. In this context,
the dealer and the active players can perform arbitrary polynomial-time probabilistic com-
putations internally in each round. In addition, in each round, the dealer and the active
players can either (1) broadcast information (i.e., a share) or (2) abstain from broadcasting
information (players only). In addition, players can (3) abort the game or (4) output a
guess of the secret. If all active players abort, the game ends, and the outcome of a game
is described in terms of the outputs of each active player. Following [9], the value of the
utility function µ of a player increases if it correctly outputs the secret s. Each active player,
however, prefers that the number of active players who correctly outputted s be as small
as possible, as shown in Definition 6 below. For simplicity, however, in all that follows
in this paper, we assume that all players are active, i.e., na = n, so that if some player is
referred to as performing some action or strategy or whose utility is being computed, it is
automatically assumed that the player is an active player.

Definition 6. Let o denote an outcome vector of length n such that oi = 1 if player pi outputs
the secret s. If a player outputs s correctly, it is considered to have learned s, without the need to
look into its internal computations. If pi outputs a wrong secret or aborts without any output, pi
is considered to not have learned the secret and oi = 0. Let µi(o) denote the utility of player i
given outcome o. Following [8], let o = {o1, o2, . . . , on} and o′ = {o′1, o′2, .., o′n} be two distinct
outcomes. For each player pi ∈ P, we have: (1) if oi > o′i then µi(o) > µi(o′), and (2) if oi = o′i
and ∑i∈[n] oi < ∑i∈[n] o′i , then µi(o) > µi(o′).

Definition 7. Given an outcome o, let ui(o) denote player i’s expected utility function, where
expectation is taken over the value of s (which is assumed to be chosen uniformly by the dealer at the
beginning of the game), the randomness of the dealer, and the randomness of each player’s strategy.

Definition 8. Let s ∈ S be a secret. Following [8,12], define U+
i := µi(o) if oi = 1, and oi′ = 0

for all i′ ∈ [n] \ i, i.e., player pi learns the secret but no other player does. On the other hand, for any
o such that oi = 1, and ∑i′∈[n]\i oi′ > 0, i.e., player pi learns the secret and at least some other player
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does as well, we define the resulting utility as a single value Ui := µi(o). Lastly, for any o such that
oi = 0, i.e., player pi does not learn the secret, we define the resulting utility as a single value U−i :=
µi(o). For each player pi ∈ N, define Urandom as Urandom := (1/|S|)U+

i + (1− 1/|S|)U−i ,
which is the expected utility of a player who outputs a random guess of s if other parties abort or
output a wrong guess.

For this setting, the functions U+
i , U−i and Ui are the same for all players so that we can refer

to them simply as U+, U− and U. For this paper, we assume that U+ > U > U−. Moreover, it
is required that U > Urandom since, otherwise, players will have no incentive to participate in the
game as shown in [8].

Definition 9. A protocol Π in a rational secret sharing game has an online dealer if the dealer
continually sends transmissions at each iteration until the secret is reconstructed, i.e., the dealer’s
continual transmissions at each iteration throughout the game is required for players to reconstruct
the secret. A protocol has a semi-online dealer if the dealer sends transmissions for a finite number
of iterations, after which, the dealer stops sending any additional transmission even if the secret is
still not yet constructed by the players, i.e., the players are left to reconstruct the secret on their own
(without the dealer) at some point in the game.

2.4. AGN Rational Secret Sharing

The rational secret sharing schemes above consider games where players have access
to broadcast channels, and where the dealer can directly transmit individual shares to
each player. In this setting, we relax the assumption that the dealer can directly transmit
individual shares to each player. Rather, the dealer has direct access to a certain number
of players in the network (which may not necessarily include each player). In addition,
players may be unable broadcast information to all other players at once. Rather, a player
can only transmit information directly to a certain number of players (which may not
necessarily include each player). This leads to the notion of asynchronous general network
(AGN) rational secret sharing, which is a generalization of a rational secret sharing game.
To express these notions better, we use some concepts from graph theory.

We denote an AGN rational secret sharing game associated with a graph G(V, E) with
n + 1 participants (i.e., 1 dealer and n players) in Definition 10. The placement of the dealer
and each of the players in the general network’s topology is represented by G, where the
dealer and each of the players are assigned a node in V so that |V| = n + 1. If an edge in
E joins two nodes of V, this implies that the player (or dealer) represented by the origin-
node can send a transmission using the network to the other player represented by the
end-node. In the description of G below, we switch between referring to the participants as
computational models (i.e., Turing machines), and as nodes in the graph G. However, it will
be understood from the context that if the dealer or a player performs some computations,
it is doing so internally in its capacity as a computational model, while if the dealer node or
a player node sends a transmission to another player node, the participants are sending
transmissions with reference to their representations as nodes in G.

Definition 10. An asynchronous general network (AGN) rational secret sharing game G associated
with a graph G(V, E) and domain S is described by the following:

1. The game has n + 1 participants consisting of n players N := {p1, p2, . . . , pn}, where each
player pi is associated with utility function µi for i ∈ [n], and a dealer d who does not have
an associated utility function. The utility function µi for pi ∈ N follows the utility function
described in Definition 6.

2. The participants of the game are represented by the nodes V of G. An edge (a, b) ∈ E
implies that node a (i.e., a player or the dealer) can directly transmit information to node b
(another player). The dealer is required to have at least one edge joining its node with another
player’s node.

3. The game proceeds in phases. The first set of phases is termed the key and share a gener-
ation/dissemination phase, while the next set of phases is termed the secret reconstruction
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phase. A protocol of the game should take care of letting players know when a phase ends and
when the next phase begins. The key and share generation/dissemination phase is viewed as a
single iteration of the game, i.e., iteration 0 and consists of several communication rounds.
In iteration 0, the dealer samples a secret s ∈ S and distributes shares of the secret along with
other arbitrary forms of information (i.e., secret/public keys) to the players.

4. The secret reconstruction phase consists of a sequence of iterations 1, 2, . . . . Each iteration
consists of a sequence of communication rounds (or round for short). In each round, the dealer
and the players can internally perform arbitrary polynomial-time and size probabilistic com-
putations, and can either (1) transmit information to several other player nodes with whom
its node is joined according to E or (2) abstain. In addition, players can (3) output a guess of
the secret key or (4) abort. If a player aborts, it leaves the game and no longer has access to
information from subsequent iterations/rounds in the game.

5. In each round in the key and share generation/dissemination phase, and in each round in an
iteration in the secret reconstruction phase, the player and the dealer can transmit information
to several other player nodes (with whom its node is joined in E) simultaneously. After trans-
mitting information, a player can no longer transmit again within the round, i.e., transmission
is performed simultaneously and once within a round. After transmission of information,
a player receives information simultaneously from other players with whom it is joined in E.
With this rule, it follows that information received by a player in one round can only be used
in computations/transmissions in the next round.

6. The value of iteration and each round within an iteration is common knowledge among all
participants throughout the game. Likewise, a protocol of the game should take care of letting
all participants know when the current iteration ends and when the next iteration begins.

7. The game ends once all players abort. Once a game ends, its outcome is defined as a vector
o = {o1, o2, . . . , on} such that oi = 1 if player pi outputs the secret s.

8. The expected utility ui of player pi given outcome o for i ∈ [n] follows the expected utility
function described in Definition 6.

From above definition, the graph in a rational secret sharing game with broadcast and
dealer access to each player [9] can be seen as a special instance of an AGN rational secret
sharing game, where the associated graph is fully connected, i.e., each player node has
edges to all other player nodes, and the dealer has edges to each of the players. From the
description of an AGN game above, it could be seen that the action space is very large
since it includes all possible internal computations at each round as well as all possible
transmissions among players. With a very large action space, listing down a function
that maps information sets I to a probability distribution over a player’s actions is not
feasible. This where the notion of φi(I) becomes useful, whereby actions are dependent on
the information contained in an information set I, where actions of a player are decided
for each round. As a result, to define a strategy, we only need to define actions dependent
on certain relevant information that directly affects its utility rather than specifying each
possible information set. With this, let the participants of an AGN rational secret sharing
game G be indexed by the set 0 ∪ [n] such that the dealer has index 0 and player p1 has
index 1, player p2 has index 2, etc. We define strategies and secret sharing schemes in the
context of an AGN rational secret sharing game as follows.

Definition 11. Let G be an AGN rational sharing game associated with a graph G(V, E) and do-
main S . A polynomial-time strategy σ = {σ0, σ1, . . . , σn} is a set of polynomial-time strategies for
each participant that—conditional on information φi(I) in information set I—defines at each round
the participant’s (1) internal probabilistic computations, (2) transmissions (or lack of transmissions)
among participants with whom it is joined by an edge in E, and (3) output and abort actions.

Definition 12. Let G be an AGN rational sharing game associated with a graph G(V, E) and
domain S . Given a polynomial-time protocol Π over G, the strategy σ = {σ0, σ1, . . . , σn} corre-
sponding to Π is a set of polynomial-time strategies for each participant that define its actions at
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each round, such that the participant’s actions follow Π. In this case, σ is termed as the strategy
prescribed by Π.

Definition 13. Let G be an AGN rational sharing game associated with a graph G(V, E) and
domain S , and let s ∈ S denote the secret chosen by the dealer at iteration 0. A protocol Π over
G is an (n, k) AGN secret sharing scheme (not yet considering rationality) if it corresponds to
a polynomial-time strategy σ, such that if players follow the actions prescribed by σ and obtain
information that reveal at least k shares, they can reconstruct the secret s efficiently (correctness).
If players obtain information that reveal less than k shares, the probability of correctly outputting s
is 1/|S| (secrecy).

3. Equilibrium Notions

The standard notion of equilibria in a game-theoretic setting is the Nash equilibrium,
and a protocol is said to induce a Nash equilibrium if no player can gain any advantage by
deviating from the protocol—assuming that all other players follow the protocol. However,
as observed in [8,9], the standard Nash equilibrium concept is inadequate (too weak) in
the setting of rational secret sharing. This led [9] to consider more specialized versions
of the Nash equilibrium, such as equilibrium surviving iterated deletion of weakly dominated
strategies [11]. However, even this notion of equilibrium is not without problems [8,20],
leading [20] to consider further refinements in the equilibrium such as the strict Nash equi-
librium. In this paper, we adopt notions of computational equilibrium from [8], which have
the merit of closely retaining the properties of a strict Nash equilibrium while considering
computational constraints. For this, let G be an AGN rational sharing game associated with
a graph G(V, E) and domain S . Let protocol Π denote a (n, k) AGN secret sharing scheme
over G. Let σ = {σ0, σ1, . . . , σn} denote the strategy corresponding to Π. Let f denote a
negligible function over κ. We have the following:

Definition 14. Π induces a computational Nash equilibrium over G if, for each player pi for
i ∈ [n] in G, we have ui(σ

′
i , σ−i) ≤ ui(σ) + f (κ) for any other polynomial time strategy σ′i for

player pi.

Definition 15. From [8], we define viewΠ
−i as follows. Let scriptd denote the transmissions of

the dealer to its adjacent nodes across all rounds of the game. Let scripti denote the transmissions
of pi to its adjacent nodes (across all rounds of the game), but which do not include transmissions
after pi outputs a guess of the secret s. Let script−i denote the set of transmissions of pi′ for
i′ ∈ [n] with i′ 6= i to its adjacent nodes (across all rounds of the game). Let all participants follow
the strategies prescribed by Π. viewΠ

−i is defined as information which includes scriptd, scripti,
and script−i, plus all randomness involved in the computations of pi′ for i′ ∈ [n] with i′ 6= i
across all rounds.

Definition 16. Let ρi be another strategy of pi with ρi 6= σi. Let all participants (except pi)
follow the strategies prescribed by Π. For its part, player pi follows strategy ρi. Given this
set of strategies, let scriptd, scripti, and script−i be defined as in Definition 15. Let T be
some polynomial-time algorithm that knows the entire view of pi as it follows ρi (i.e., player pi’s
randomness, its computations, its transmissions as written in scripti, and any transmissions
received from other participants) and which outputs a truncation script′i of scripti. We define
view

T,ρi ,Π
−i as information which includes scriptd, script′i, and script−i, plus all randomness

involved in the computations of pi′ for i′ ∈ [n] with i′ 6= i across all rounds. Similarly, define
view

ρi ,Π
−i as the same information contained in view

T,ρi ,Π
−i but which excludes reference to T.
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Definition 17. Let f denote a negligible function in κ. For i ∈ [n], a strategy ρi is equivalent
with respect to Π or ρi ∼ Π if there exists a polynomial-time algorithm T such that for all
polynomial-time distinguishers D, we have:∣∣Pr [D(1κ , viewT,ρi ,Π

−i ) = 1]− Pr [D(1κ , viewΠ
−i) = 1]

∣∣ ≤ f (κ)

Definition 18. Let protocol Π denote a (n, k) AGN secret sharing scheme over G. Let σ =
{σ0, σ1, . . . , σn} denote the strategy corresponding to Π. We say that Π induces a computational
strict Nash equilibrium: (1) if it induces a computational Nash equilibrium and (2) if, for any
polynomial-time strategy σ′i for which σ′i 6∼ Π, there is a c > 0 such that ui(σ) ≥ ui(σ

′
i , σ−i) +

1/κc for infinitely many values of κ.

Having considered the above notions of equilibrium, we now consider an extension
of these equilibrium concepts in the presence of coalitions. Namely, given an AGN secret
sharing game G with n+ 1 participants, a coalition C ⊆ P is a set of players whose strategies
are coordinated arbitrarily. The output of C is a single value which represents the individual
outputs of each member of C. The utility function of C is denoted as µC , and the expected
utility function is uC . Similarly, denote by σ = (σC , σ−C) the resulting strategy if members
of C follow σC while other players that are not members of C follow σ−C . Let protocol Π
denote a (n, k) AGN secret sharing scheme over G. Let σ = (σC , σ−C) be a strategy that
corresponds to Π. Let f denote a negligible function over κ.

Definition 19. Π induces a (k− 1)-resilient computational Nash equilibrium if, for any C ⊆ P
with |C| < k, for any polynomial-time strategy σ′C such that σ′C 6= σC , we have uC(σ′C , σC) ≤
uC(σ) + f (κ).

For completeness, coalition versions of the above definitions are stated in Appendix A.

Additional Equilibrium Notions

We now present two novel equilibrium notions, for which some of our proposed
protocols satisfy. The first equilibrium notion (Definition 20) is a (n− 1)-key leakage-tolerant
computational Nash equilibrium, which is a computational Nash equilibrium that is resistant
to secret key leakage—given a scheme which uses cryptographic primitives involving
secret keys. The second equilibrium is the notion of a Φ-equilibrium (Definition 21).
This notion states that a (k − 1)-computational Nash equilibrium can hold even in the
presence of large coalitions whose size is larger than k—as long as these coalitions satisfy
the graphical properties listed in Φ. This is in contrast to standard definitions of (k− 1)-
resilient computational Nash equilibria whereby an upper bound on the size of any coalition
is imposed.

Definition 20. Let G be an AGN rational secret sharing game with n + 1 participants associated
with a graph G(V, E) and domain S . Let Π be a cryptographic protocol that uses cryptographic
primitives involving a set of secret keys sk := {ski}i∈[n], where ski is a tuple of secret keys of
player pi. Π induces an (n− 1)-key leakage-tolerant computational Nash equilibrium over G if it is
a computational Nash equilibrium, even if each player acquires up to n− 1 tuples of secret keys.

We note that as per Definition 20, each player is constrained to obtain up to n − 1
secret keys, where the secret keys may be obtained through arbitrary means, i.e., by sharing
of keys within a coalition or through side-channel attacks. This rules out the case whereby
a certain player who currently has n− 1 secret keys forms a coalition with the remaining
player whose secret key it does not yet have in order to obtain n secret keys in total.
Such cases are ruled out by the definition of the n− 1-key leakage-tolerant computational
Nash equilibrium.
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Definition 21. Let G be an AGN rational secret sharing game with n + 1 participants associated
with a graph G(V, E) and domain S . Let Φ be a set of conditions over V relative to E. Π induces
a Φ-resilient computational Nash equilibrium over G if, for any arbitrary coalition C ⊆ N whose
respective nodes in G satisfy the conditions in Φ, for any polynomial-time strategy σ′C such that
σ′C 6= σC , we have uC(σ′C , σC) ≤ uC(σ) + f (κ).

4. Protocols
4.1. Overview of Existing Protocols

Existing protocols in the literature are listed in Table 1. These protocols can be grouped
into two major categories: those that allow for rational participants and those that do not
(i.e., non-rational protocols). From Table 1, we discuss the limitations of these schemes
as follows.

Table 1. Rational refers to whether the scheme considers participants as rational or not. Bounded
refers to whether the shares used in the scheme are finite or infinite. Async refers to whether the
scheme allows for asynchronous communication among participants. B/p2p refers to whether
the scheme assumes that players are connected by either a broadcast or a point-to-point network.
General refers to whether the scheme allows for participants to be connected under a general network
topology. The schemes of [24,26] are marked with yes∗ under the “general” column since they work
on a general network where the dealer may not have direct connections to all players during the
share dissemination phase. However, it is not clear in [24,26] how players communicate their shares
to each other and how the network topology would be during the secret reconstruction phase.

Scheme Rational Bounded Async b/p2p General

Halpern and Teague [9] yes yes no yes no

Gordon and Katz [12] yes yes yes yes no

Fuchsbauer et al. [8] yes yes yes yes no

Kol and Naor [20] yes no yes yes no

Shah et al. [26] no yes yes no yes∗

Dolev et al. [24] no yes yes no yes∗

Ours yes yes yes no yes

1. Rational schemes assume broadcast channels/point-to-point networks. The existing rational
schemes [8,9,12,20] are not designed to operate on a general network since they
assume that the dealer d along with n players have access to either a broadcast
channel or a point-to-point network (i.e., all participants are pairwise connected),
for which these schemes achieve (k− 1) equilibrium given some k < n. For reference,
the algorithm of [8] is listed in detail in Appendix E. If applied to some instances of
a general network, however, the equilibrium guarantees that these schemes would
fail. For instance, in Figure 2, d is directly connected to only l = 3 players, and yet, d
needs to send at least 12 messages to all n = 12 players in order to share the secret in
a fair manner following the p2p/broadcast protocol (i.e., since all of these schemes
make the dealer directly send a message to each player). Given this topology, d is
forced to use only l connections to send all of its messages. As a result, one player
that is directly connected to d (say player pi) is bound to receive at least d/l messages.
If d/l ≥ k− 1, pi learns the secret. In this example, it follows that the equilibrium
guarantees of these schemes would fail for some values of k. The same analogy could
be applied to some player communicating information to another player in the secret
reconstruction phase, i.e., several players may send information to one player who is
in a network bottleneck.
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Figure 2. An instance of a general network where the equilibrium guarantees of broadcast/p2p-
network rational secret sharing schemes would fail. Here, the dealer (green node) is only directly
connected to 3 players, p1, p2, p3, whereas there are 12 players (blue nodes) in total. Given that in a
broadcast/p2p-network rational secret sharing scheme, the dealer has to communicate messages to
all players, the dealer in this case is forced to course at least 12 messages through the set of players
p1, p2, p3 (many of which are not designed to be seen by p1, p2, p3). It follows that at least one of
p1, p2, p3 would eventually obtain at least 4 messages from the dealer that provide information on
the secret, breaking the equilibrium guarantees for all k < 4.

2. Non-rational schemes. On the other hand, the protocols of [24,26] are secure for general
networks but assume that participants are non-rational. Specifically, [24] presents the
SMT algorithm which addresses the problem of securely disseminating the shares of
each player during the secret generation/share dissemination phase. Briefly, for each
share outputted by the share generation algorithm, the SMT treats each share as a
new secret, and breaks it down into another k sub-shares. For each player, SMT sends
these k sub-shares along k-disjoint paths, for which each player is able to securely
reconstruct its individual share (not yet the secret). The protocol of [26] improves upon
the SMT concept by lowering communication complexities. Both [24,26], however,
deal with the problem of disseminating shares in a general network during the secret
generation and share dissemination phase. However, it is not clear in their paper
how the secret reconstruction phase would proceed, i.e., whether players are still
connected over a general network once they communicate shares to each other. In our
proposed protocols, however, we assume that in both the secret generation/key
dissemination phase, and the reconstruction phase, all participants are constrained by
a general network. However, perhaps a more fundamental problem with non-rational
cryptographic protocols is pointed out in [8,9]. In particular, if players are modeled as
rational with natural assumptions on their utilities, such non-rational schemes would
fail during the secret reconstruction phase. This is due to the widened action space of
rational players, along with their utility maximizing behaviour (compared to plain
honest players). For instance, suppose that utility is modeled whereby all players
want to learn the secret, but prefer that the smallest number of other players learn the
secret as possible (following Section 2.3). It can be shown that each player does no
worse (and could even do better) by withholding from sharing his secret (this action
is now possible since the player is no longer plainly honest, but rational). To see this,
suppose that the non-rational scheme corresponds to an (n, k) secure secret sharing
scheme and consider a player pi, i ∈ [n]. If less than k− 1 players share the secret, pi
would not learn the secret regardless of his actions. If more than k− 1 players share
the secret, pi would learn the secret regardless of his actions as well. If exactly k− 1
players share the secret, then pi is better off by not sharing his secret since he can
reconstruct the secret given his hidden share along with the k− 1 other shares.

From the discussion above, the equilibrium results of existing rational secret sharing
schemes need to be qualified in the case of a general network. On the other hand, existing
non-rational schemes for general network have to be modified if rational participants are
allowed. As such, the goal of the proposed secret sharing protocols below is to operate
over a general network in all phases given rational participants. In the process, the specific
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network conditions (i.e., topology) that allow for the existence of desirable equilibrium
where all players learn the secret are specified.

4.2. High-Level Overview of Our Protocols

The protocol of [8] is shown in detail in Appendix E. In summary, Ref. [8]’s proto-
col relies on two components to achieve computationally strict Nash equilibrium, namely:
(1) uncertainty on the definitive stage and (2) protocol compliance checking. Given n players,
the first component (1) is achieved by drawing two random polynomials, G and H, such
that G(0) = s and H(0) = 0. In addition, we have {g∗i := G(i) ⊕ VE(ski, r∗)}i∈[n] and
{h∗i := H(i)⊕VE(ski, r∗ + 1)}i∈[n], where r∗ represents the definitive iteration and VE is an
algorithm of a secure VRF (Appendix D). With this, players are able to discover the defini-
tive iteration only at iteration r∗ + 1, since they can reconstruct H and evaluate H(0) = 0.
This delay of 1 iteration from r∗ results in a computational Nash equilibrium. The second
component, i.e., protocol compliance checking results in a further computationally strict
Nash equilibrium as players can use the VRF to check any deviations in transmissions from
the protocol. However, implementing [8]’s protocol directly in a general network setting
results in some problems, such as:

1. The protocol of [8] assumes that the dealer is able to send shares/secret keys to
each player directly at the beginning of the game in the share/key generation and
dissemination phase. In a general network, the dealer may not have this ability, and as
described in the previous section, the protocol of [8] may lead the dealer to concentrate
transmissions to some player nodes.

2. In addition, with rational participants, the action space widens in the first key dissemi-
nation phase. For instance, players may maul the share/secret keys from the dealer or
refrain from sending the share/secret keys to the desired recipients. Given this larger
action space of players, it is not clear if a certain combination of the SMT protocol to
the protocol of [8] would result directly in an equilibrium, and additional mechanisms
may be needed. In particular, in Appendix E.1, we show how a certain combination of
the SMT protocol with [8] over an instance of a general network results in a strategy
that is dominated by some other strategy.

3. Moreover, in the secret reconstruction phase, point-to-point transmissions between
players may not be available, and transmissions may have to pass through interme-
diate players. As a result, some players may maul or modify transmissions along
the way. Once again, it is not clear if [8]’s protocol would still induce an equilibrium
under this enlarged action space of players in the secret reconstruction phase.

To fix the preceding issues, one way for equilibrium to be preserved in a general
network is to include additional coordination mechanisms among participants. However,
additional coordination mechanisms imply that there have to be additional protocol compli-
ance checking steps in order for a player to check if all other players are indeed following
the coordination mechanism. Bearing these in mind, we developed the following approach
for our protocols Π1, Π2, Π2.1—as described from a high level.

1. To guarantee computational Nash equilibrium under rational players in the share
generation/key dissemination phase, we include the additional mechanism by which
the dealer includes in its messages an explicit set of instructions referring to the path
by which the message will be delivered. Together with this, we implement a form
of protocol compliance checking by which each player receives several duplicate
messages from the dealer sent along k-disjoint paths. If any player sees a discrepancy
from messages it received, it knows that some player deviated from the protocol, and it
is able to abort immediately. We note that this mechanism also prevents concentration
of transmissions from the dealer.

2. In the secret reconstruction phase, for our first proposed protocol (Π1), we force the
players to duplicate their transmissions along k-disjoint paths as another form of
protocol compliance checking. This way, players are able to check if all duplicates
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they received are equal. If any player sees a discrepancy, it is able to abort since
this indicates that some other player deviated from the protocol (i.e., by modifying
or mauling a transmission along the way). However, for Π1, without access to a
VRF (see Appendix D) for all participants, the dealer needs to be online in the secret
reconstruction phase in order to impose strict protocol compliance checking in all
players (As noted in Lemma 2).

3. In the secret reconstruction phase, for our next protocols, (Π2) and (Π2.1), we imple-
ment a VRF in order to achieve the same type of protocol compliance checking as
Π1, but with lower communication complexity under a semi-online dealer. However,
compared to Π1, the dealer in Π2 and Π2.1 includes a specific set of instructions by
which players would send their transmissions to each other.

4. Finally, we implement uncertainty in the definitive stage by letting players discover
the definitive iteration r∗ only at iteration r∗ + 1. This is done using a pseudorandom
function (see Appendix C) and random polynomials in Π1, and through a secure VRF
with the pseudorandom property in Π2 and Π2.1 following [8]. Moreover, the number
of rounds in each iteration in Π1, Π2, and Π2.1 are fixed a priori in order for players to
synchronize and know when an iteration begins and when it ends, and by which it
can unambiguously determine in a finite amount of time if some player deviated from
the protocol by not sending any needed transmission, or when the definitive iteration
has already been reached.

This combination of protocol compliance checking and uncertainty on the definitive
stage results in an equilibrium for Π1, Π2, and Π2.1, as we state in Theorems 1–6.

4.3. Proposed Protocol Π1(n, k): With Online Dealer

We now proceed to describe the first proposed protocol of this paper. This protocol
(Π1) uses a standard pseudorandom function (as defined in Appendix C) along with the
Shamir secret sharing scheme (as defined in Appendix B) in order to achieve computational
Nash equilibrium (and also leakage-tolerant equilibrium) in a general network whose
corresponding graph is a k-path-disjoint. This is our first attempt to come up with a secret
sharing protocol that can operate over a specific general network given rational participants.
The protocol Π1, however, assumes that the dealer is online. This requirement will be
relaxed in the succeeding protocol Π2.

Given a security parameter κ ∈ N, denote by ν := ν(κ) the value of a polynomial
in κ. Let (SG, SR) correspond to polynomial-time algorithms that give a secure (n, k)
Shamir Secret Sharing scheme, where SG : {0, 1}κ → {0, 1}ν

1 × {0, 1}ν
2 × · · · × {0, 1}ν

k and
SR : {0, 1}ν

1 × {0, 1}ν
2 × · · · × {0, 1}ν

k → {0, 1}κ . Let Λ : {0, 1}ν × {0, 1}ν → {0, 1}ν denote
a standard secure pseudorandom function. Let G be an AGN rational secret sharing game
associated with a k ≤ n-path-disjoint graph G(V, E) and domain S := {0, 1}ν, with n + 1
participants consisting of a dealer d and n players {pi}i∈[n] := N. Given k ≤ n, the first
protocol proposed in this paper, Π1(n, k), is described as follows, which assumes that the
dealer is online.

Protocol. Π1(n, k).

Phase 0. Dealer Initialization//Secret Generation. The dealer d performs the following
to share a secret s ∈ {0, 1}ν:

1. Choose r ∈ N according to a geometric distribution with parameter β;
2. Generate secret keys {sk1, sk2, . . . , skn};
3. For i ∈ [n], the dealer computes {si,1, si,2, . . . , si,k} = SG(ski);
4. Choose random (n− 1)-degree polynomials G ∈ F2ν [x] and H ∈ F2ν [x] with G(0) = s

and H(0) = 0;
5. Compute {g∗i := G(i)⊕Λ(ski, r∗)}i∈[n] and {h∗i := H(i)⊕Λ(ski, r∗ + 1)}i∈[n].
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Phase 1. Keys dissemination. Let s0 be some uniformly sampled number from {0, 1}ν for
each player pi, i ∈ [n]. Let max_l denote the length of the longest path between any pair of
nodes in G:

1. For i ∈ [n], and for j ∈ [k], the dealer computes {si,1, si,2, . . . , si,j, .., si,k} ← SG(ski).
Afterwards, the dealer d selects arbitrary k disjoint paths from d to pi, and each path is
given a path encoding corresponding to pathi,j := (a0 = d, a1, a2, . . . , am = pi) for j ∈ [k]
and for some m ≤ maxl . The dealer d sends {(si,j, {pathi,j}j∈[k], {g∗i }i∈[n], {h∗i }i∈[n])}j∈[k]
to pi along the k disjoint paths from d to pi.

2. For i ∈ [n], if pi received a transmission from some other node pi′ containing
{pathi,j}j∈[k], it checks if its own node is actually in a path encoding correspond-
ing to pathi,j for some j ∈ [k] (this is unique given that the k paths are disjoint). If not,
pi outputs s0 and aborts. If true, pi checks if it is meant to receive a transmission from
pi′ . If not, pi outputs s0 and aborts. Otherwise, if pi is the end-receiver according to
pathi,j, it keeps the transmission. If pi is not the end-receiver, it sends the transmission
to the next node according to pathi,j.

3. For i ∈ [n], if pi did not receive exactly k tuples of the form

(si,j, {pathi,j}j∈[k], {g∗i }i∈[n], {h∗i }i∈[n])

after max_l rounds such that the origin-node of each path encoding is d and the
end-node is pi, it outputs s0 then aborts. Otherwise, it verifies that all copies of
{pathi,j}j∈[k],{g∗i }i∈[n] and {h∗i }i∈[n]}j∈[k] it received are equal. If not, it outputs s0

then aborts. Otherwise, it reconstructs ski = SR(si,1, si,2, . . . , si,k).
4. After max_l rounds, if all checks in (3) above do not fail, all participants move on to

phase 2.

Phase 2. Secret Reconstruction. For iteration r = 1, 2, . . . , the players and the dealer
perform the following (where Phase 2.0 can be performed simultaneously with Phase 2.1):

1. Phase 2.0: Dealer transmits as origin-node to each player.

(a) The dealer computes h′ = ⊕i∈[n]Λ(ski, r). Afterwards, the dealer selects arbi-
trary k disjoint paths from d to pi, where each path is given a path encoding
corresponding to pathi,j := (a0 = d, a1, a2, . . . , am = pi) for j ∈ [k] and for some
m ≤ maxl . The dealer d sends {{pathi,j}j∈[k], h′)}j∈[k] to pi along the selected k
disjoint paths from d to pi.

2. Phase 2.1: Players transmit information to each other.

(a) For i ∈ [n], if pi received any transmission from some other node pi′ containing a
path encoding, it checks if its own node is actually in the encoded path, and if
it is meant to receive a transmission from pi′ . If any of these are not true, it
outputs sr−1 and aborts. Otherwise, if pi is the end-receiver according to the
path encoding, it keeps the transmission. If pi is not the end-receiver, it sends the
transmission to the next node according to the path encoding.

(b) For i ∈ [n], if pi does not receive exactly k sets of information of the form
({pathi,j}j∈[k], h′), such that the origin-node of each pathi,j for j ∈ [k] is d and
the end-node is pi after max_l rounds, it outputs sr−1 then aborts. Otherwise,
it verifies that all k copies of ({pathi,j}j∈[k], h′) it received are equal. If not, it
outputs sr−1 then aborts.

(c) For i ∈ [n], pi computes gr
i = Λ(ski, r) and hr

i = Λ(ski, r + 1). For every
other player pl , (l ∈ [n], i 6= l), pi selects arbitrary k disjoint paths from pi
to pl , where each path is given an encoding corresponding to pathl,j := (a0 =
pi, a1, a2, . . . , am = pl) for some m ≤ maxl . Afterwards, pi sends

{({pathl,j}j∈[k], gr
i , hr

i )}j∈[k]
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to pl along the selected k disjoint paths for all other players pl , l ∈ [n] \ i.
(d) For i ∈ [n], and for l ∈ [n] \ i, pi checks if it has received (within max_l

rounds)) exactly k tuples of the form ({pathl,j}j∈[k], gr
l , hr

l ) (j ∈ [k]) such that
the origin-node of each path encoding is pl and the end-node is pi. If not, pi
outputs sr−1 then aborts. Otherwise, for l ∈ [n] \ i, it verifies that all k copies
of ({pathi,j}j∈[k], gr

i , hr
i ) it received (whose origin-node is pl) are equal. If not,

pi outputs sr−1 then aborts. Otherwise, once pi receives information from all
players, pi checks if ⊕i∈[n]hr

i = h′. If not, pi outputs sr−1 then aborts.

Otherwise, pi computes {hp
i := h∗i ⊕ hr

i }i∈[n]. It then interpolates an n− 1 poly-
nomial Hr using {hp

i }i∈[n] and checks if Hr(0) = 0. If Hr(0) = 0, it outputs
sr−1 then halts. Otherwise, it computes {g′i := g∗i ⊕ gr

i }i∈[n], then interpolates an
n− 1-degree polynomial Gr using {ĝi}i∈[n]. Afterwards, it sets sr = Gr(0).

3. After max_l rounds, if all checks above do not fail for any participant, all participants
move on to the next iteration of phase 2.

Intuitively, the protocol Π1 works by using redundancies in paths provided by the
k-path-disjoint graph G as shown in Figure 3. Since G is k-path-disjoint, any transmission
from either the dealer or a player to another player has to pass through k disjoint paths.
In phase 1, the dealer breaks the share of each player into k pieces using the Shamir Secret
Sharing scheme and sends these k pieces along k disjoint paths. Any player that sees a
piece of a share does not have k− 1 other pieces and cannot reconstruct the secret key by
himself. Moreover, each transmission contains a copy of the path encoding and the public
keys {g∗i }i∈[n] and {h∗i }i∈[n]. Given that each player acquires k copies of a transmission,
it knows that the path encoding and {g∗i }i∈[n] and {h∗i }i∈[n] are correct if all k copies of
them match. This provides incentives for players not to deviate from Π1 by modifying any
content of a transmission in phase 1 given that they know such behaviour will be detected.
This renders Π1 secure against k− 1-sized coalitions given that, as per Lemma 1, any set
of k transmissions from one player to another has to pass through at least one path not
belonging to the coalition, and any deviations by the coalition will be detected. In addition,
the dealer uses an n-degree polynomial in phase 0 to make it secure against n− 1 secret
key leakage (which is inspired by a note in [8]).

(a) (b)
Figure 3. The graphs in (a,b) show a (k = 3)-path disjoint network graph max_l = 3. The left figure
(a) shows an example of the dealer (green node) d sending messages m1, m2, m3 to player p3 (a blue
node) along 3 disjoint paths. In phases 1 and 2.1 of protocol Π1, we have m1 = m2 = m3, so that
p3 should receive 3 copies of the same message by the 3rd round. The right figure (b) shows an
example of a player (p3) sending messages m1 = m2 = m3 to player p0 along 3-disjoint paths, which
corresponds to the steps performed by each player in phase 2.1 of Π1.

For phase 2, the same reasoning applies, whereby the dealer sends a check variable h′

to each player along k disjoint paths, and each player sends a transmission of the form
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({pathl,j}j∈[k], gr
l , hr

l ) for some l ∈ [n] and j ∈ [k] to all other players along k disjoint paths.
By the same principle, players can use the k copies received from each player to verify the
correctness of the transmission. We note that in Π1, the check variable h′ is crucial for
verifying the correctness of the transmission given that, without h′, some strategy strictly
dominates Π1, as shown in the following Lemma.

Lemma 2. Without the check ⊕i∈[n]hr
i 6= h′ in step 2.d of Π1(n, k), there exists a polynomial-time

strategy for pi that strictly dominates Π1, assuming all other players follow strategies prescribed
by Π1.

Proof. Let pi take the following strategy: follow Π1 in all aspects, except that pi changes hr
i

to some random number then sends it to all other players. Other players will not detect
this since the check ⊕i∈[n]hr

i 6= h′ is not implemented. With non-negligible probability,
at r = r∗ + 1, all other players will have Hr(0) 6= 0 given that they did not receive the real
hr

i from pi. However, pi will know that the current iteration is r∗ + 1 since it has the real
hr

i needed to interpolate the correct polynomial Hr such that Hr(0) = 0. pi would then
output Gr(0) = s and receive utility U+ (given that all other players are not aware that
r = r∗ + 1).

Finally, the equilibrium of Π1 relies on the fact that players are not aware of the value of r∗

until they reach iteration r∗ + 1 following [8]. This generates uncertainty among the players
such that, given a sufficiently low parameter β in the geometric distribution from which
r∗ is sampled, players prefer to follow Π1 rather than deviate. Given this, the following
results regarding Π1 arrive at whose proofs are in the Annex.

Theorem 1. Given κ ∈ N, let ν := ν(κ) denote the value of a polynomial in κ. Let G be an AGN
game with n+ 1 participants associated with a k-path-disjoint graph G(V, E) for k ≤ n and domain
S := {0, 1}ν. The protocol Π1(n, k) is a computational Nash equilibrium, and is also an (n− 1)-
key leakage-tolerant equilibrium provided that [(β×U+) + (1− β)×Urand−U] < 0, where β is
the parameter of a geometric distribution. Given a maximum path length of max_l in G, the average
round complexity of Π1(n, k) is [1+ (1/β)]× max_l, with a communication complexity of at most
n× ν× (k + 2n + 1) per round.

Theorem 2. Given κ ∈ N, let ν := ν(κ) denote the value of a polynomial in κ. Let G be an AGN
game with n+ 1 participants associated with a k-path-disjoint graph G(V, E) for k ≤ n and domain
S := {0, 1}ν. The protocol Π1(n, k) is a computational strict Nash equilibrium provided that
[(β×U+) + (1− β)×Urand −U] < 0.

Theorem 3. Given κ ∈ N, let ν := ν(κ) denote the value of a polynomial in κ. Let G be an AGN
game with n+ 1 participants associated with a k-path-disjoint graph G(V, E) for k ≤ n and domain
S := {0, 1}ν. Suppose that no player can acquire other secret keys unless information related to
it is shared by another player through a transmission. The protocol Π1(n, k) is a (k− 1)-resilient
computational Nash equilibrium provided that [(β×U+) + (1− β)×Urand −U] < 0.

4.4. Proposed Protocol Π2(n, k): With Semi-Online Dealer

We now proceed to describe the second proposed protocol (Π2) of this paper, which
does not require an online dealer but only a semi-online one. Due to this limitation,
compared to Π1, this protocol requires an additional VRF cryptographic primitive (as
defined in Appendix D). Π2 is inspired by the protocol of [8] (see Appendix E), but Π2
includes several additional steps in order to accommodate a general network topology over
the participants. Thus, given a graph G(V, E), assume that it is k-path-disjoint. The protocol
assumes that for each pair a, b ∈ V representing distinct nodes of participants in the game,
any transmission from a to b will be sent through k disjoint paths connecting a and b
according to some order that could be known by all participants using a publicly known
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polynomial-time algorithm. For this purpose, we define two types of ordering termed
path_ordering and transmission_ordering as follows:

Definition 22. Given a graph G(V, E) and a positive integer k, a path_ordering from a to b,
with a, b ∈ V, a 6= b, is a unique sequence of k disjoint paths from the origin-node a to the end-node
b that can be efficiently constructed given some rule on the choice of paths.

Definition 23. Given an AGN game G with n + 1 participants associated with a graph G(V, E),
a transmission_ordering for G is a unique sequence of paths that can be efficiently constructed
given: (1) a rule on the ordering of pairs of distinct nodes in V and (2) a path_ordering for each
distinct pair of origin-nodes and end-nodes. In addition, transmission_ordering marks the
origin-nodes and end-nodes of each path in path_ordering with special symbols to differentiate
them from nodes that are intermediate along the path.

Example 1. path_ordering: Let k > 0 and let G(V, E) be a k-path-disjoint graph with |V| > k.
An example of a path_ordering for each distinct pair (a, b) of nodes in V is given by the following
polynomial-time algorithm that operates according to a lexicographic rule: step 1: on input
(G, a, b), set path_ordering = ∅; step 2: given a, b list down all paths (not necessarily disjoint)
in G from a to b; step 3: obtain the lexicographically first path from a to b in the list and include
it in paths, then remove all nodes crossed by the path from G to arrive at a residual graph G′; using
G′, repeat step 2–step 3 until k disjoint paths from a to b are in path_ordering.

Example 2. transmission_ordering: Let k > 0, and let G(V, E) be a k-path-disjoint graph
with |V| > k. Let path_ordering be the same as in the prior example. Let G be an AGN game
with |V| = n + 1 participants, such that the nodes V = {a0, a1, a2, . . . , a|V|} of G are assigned
as follows: a0 = d (the dealer), a1 = p1 (player 1), a2 = p2 (player 2), etc. An example of a
transmission_ordering for G is given by the following polynomial-time algorithm: step 1: On
input G, set transmission_ordering= ∅. step 2: construct the set pairings as follows, set
the first pair in pairings as (a0, a1), followed by a second pair (a0, a2), etc., up to the nth pair
(a0, an). After the nth pair, set the n + 1th pair as (a1, a2), then the n + 2th pair as (a1, a3), etc., up
to (a1, an). Afterwards, the next pair is (a2, a1) followed by (a2, a3), etc., and so on and so forth so
that a0 (at the left of a pair) is paired with n other nodes (at the right of a pair), and each player node
(at the left of a pair) is paired with n− 1 other player nodes (at the right of a pair). step 3: for each
pair in pairings, compute path_ordering using the algorithm in the example above and include
path_ordering in transmission_ordering, where the origin-node and end-node of each path
in path_ordering are assigned special symbols.

Given common knowledge on the structure of G(V, E) and the rules (i.e., polynomial-
time algorithms) for constructing transmission_ordering, each player in the game can
construct transmission_ordering in polynomial-time on his own at the start of the
game. In the protocol Π2 below, only one participant is meant to send a transmission
for each round. The participant to send a transmission is the origin-node in the paths of
transmission_ordering, and the protocol prescribes participants to follow the transmis-
sion ordering contained in transmission_ordering according to the edges listed in its
paths, where each edge in a path corresponds to one round of transmission. With this
rule, each participant in the game knows whose turn it is to send or receive a transmis-
sion given a certain round. It follows that a participant can verify if it received or sent
information according to the protocol or not. Given this, we now proceed to describe Π2.
Given a security parameter κ ∈ N, denote by ν := ν(κ) the value of a polynomial in κ. Let
(VG, VE, VP, VV) correspond to polynomial-time algorithms that give a secure Verifiable
Random Function scheme, where VG : 1∗ → {0, 1}ν×{0, 1}ν, VE : {0, 1}ν×{0, 1}ν → 0, 1ν,
VP : {0, 1}ν × {0, 1}ν → {0, 1}ν, and VV : {0, 1}ν × {0, 1}ν × {0, 1}ν × {0, 1}ν → {0, 1}. Let
β be a parameter of a geometric distribution that is independent of κ. Let G be an AGN
rational secret sharing game associated with a k-path-disjoint graph G(V, E) and domain
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S := {0, 1}ν, with n + 1 participants consisting of a dealer d and n players {pi}i∈[n] := N.
The second protocol proposed in this paper, Π2(n, k) is described as follows.

Protocol. Π2(n, k).

0. Initialization Phase. The dealer performs the following to share a secret s ∈ {0, 1}ν:

1. Choose r∗ ∈ N according to a geometric distribution with parameter β;
2. Generate public and secret key pairs (pk1, sk1), (pk2, sk2), . . . , (pkn, skn)← VG(1κ);
3. Generate public and secret key pairs (pk′1, sk′1), (pk′2, sk′2), . . . , (pk′n, sk′n)← VG(1κ);
4. Choose random (n− 1)-degree polynomials G ∈ F2ν [x] and H ∈ F2ν [x] such that

G(0) = s and H(0) = 0;
5. Compute {g∗i := G(i)⊕VE(ski, r∗)}i∈[n] and {h∗i := H(i)⊕VE(ski, r∗ + 1)}i∈[n];
6. Construct transmission_ordering_a by listing down k disjoint paths from d to p1

according to path_ordering followed by d to p2, then d to p3, etc., up to d to pn, such
that in each path in transmission_ordering_a the origin-node d is marked with a
special symbol start and the end-node of each path is marked with a special symbol
end;

7. Construct transmission_ordering_b by listing down one arbitrarily chosen path
for each pair of players starting with a path from p1 to p2, followed by a path from
p1 to p3, etc., up to p1 to pn. Afterwards, list down a path from p2 to p1, followed
by a path from p2 to p3, etc. (The algorithm for path_ordering is not needed for
transmission_ordering_b.) In each path in transmission_ordering_b, the origin-
node is marked with a special symbol start, and the end-node of each path is marked
with a special symbol end;

8. Define the tuple of public information as:

Ψ = ({pki}i∈[n], {pk′i}i∈[n], {gi}i∈[n], {hi}i∈[n], transmission_ordering_a,

transmission_ordering_b).

1. Public Information dissemination Phase. Let s0 ∈ {0, 1}ν be a uniformly drawn
number for each player pi ∈ N:

1. For i ∈ [n] and for j ∈ [k], d sends Ψ to pi according to transmission_ordering_a.
2. For i ∈ [n], if pi does not yet have Ψ and receives it for the first time, it checks if it is

meant to receive Ψ according to transmission_ordering_a ∈ Ψ. If not, it outputs s0

then aborts. Otherwise, it keeps the information if it is its turn to receive it (i.e., its own
node is marked with end), or sends the transmission to the respective node dictated
by transmission_ordering_a.

3. For i ∈ [n], if pi has a prior copy of Ψ (received from some previous round), it checks
if it is meant to receive (or not receive) a transmission from some other node according
to transmission_ordering_a in terms of the current round. If there is a violation,
it outputs s0 then aborts. Otherwise, if it received information, pi verifies if all of
its copies of Ψ are so far equal. If not, it outputs s0 then aborts. Otherwise, it keeps
Ψ if it is its turn to receive it (i.e., its own node is marked with end), or sends the
transmission to the respective node dictated by transmission_ordering_a.

4. For i ∈ [n], if pi still does not receive k copies of Ψ as dictated by transmission_order
-ing_a within max_l× n× k rounds, it outputs s0 then aborts. Otherwise, it verifies
that all k copies of Ψ it received are equal. If not, it outputs s0, then aborts.

5. After max_l× n × k rounds, if all checks above do not fail for any participant, all
participants move on to phase 2.

2. Secret Key dissemination Phase.

1. For i ∈ [n], the dealer computes {si,1, si,2, . . . , si,k} = SG(ski) and {s′i,1, s′i,2, . . . , s′i,k} =
SG(sk′i).
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2. For i ∈ [n] and for j ∈ [k], d sends {si,j, s′i,j} to the end-receiver pi according to
transmission_ordering_a.

3. For i ∈ [n], if pi receives or does not receive a transmission from some other node in
violation of transmission_ordering_a in terms of the current round, it outputs s0

then aborts. Otherwise, it keeps the information if it is its turn to receive it (i.e., its
own node is marked with end) or sends the transmission to the respective node as
dictated by transmission_ordering_a.

4. For i ∈ [n], if pi still does not receive k sets of information (following the trans-
missions dictated by transmission_ordering_a) within max_l × n × k rounds, it
outputs s0 then aborts. Otherwise, given {si,j}j∈[k] and {s′i,j}j∈[k], it reconstructs
ski = SR(si,1, si,2, . . . , si,k) and sk′i = SR(s′i,1, s′i,2, . . . , s′i,k).

5. After max_l× n × k rounds, if all checks above do not fail for any participant, all
participants move on to phase 3.

3. Reconstruction Phase.

1. Given transmission_ordering_b, for i ∈ [n], if it is pi’s turn to transmit as the
origin-node for the first time (i.e., its node is marked with start for the first time), pi
computes the following:

yr
i = VE(ski, r), zr

i = VE(sk′i, r)

πr
i = VP(ski, r), ψr

i = VP(sk′i, r)

Afterwards, pi sends (gr
i , hr

i ) to all other players {pi′}i′∈[n]\i according to the transmis-
sions dictated in transmission_ordering_b.

2. For i ∈ [n], if pi receives or does not receive a transmission from some other node
in violation of transmission_ordering_b in terms of the current round, it out-
puts sr−1 then aborts. Otherwise, if its node is not marked with end (following
transmission_ordering_b), it sends the transmission to the respective receiver node
as dictated by transmission_ordering_b. However, if it is pi’s turn to receive infor-
mation (i.e., its node is marked with end), it sets source as the index of the origin-node
of the transmission, i.e., the transmission originates from player psource. Afterwards,
it performs the following:

(a) Check if the information received is of the form (yr, zr, πr, ψr). If not true,
output sr−1 and abort.

(b) Verify that both VV(pksource, r, yr, πr) and VV(pksource, r, zr, ψr) are true. If any
of these are false, abort.

(c) Check if n tuples of the form (yr
i′ , zr

i′ , πr
i′ , ψr

i′) for indices i′ ∈ [n] have so far
been acquired. If true, let I denote the player indices corresponding to such
tuples. Compute hr

i′ := hi′ ⊕ zr
i′ for all i′ ∈ I, and interpolate a (n− 1)-degree

polynomial Hr using {hr
i′}i′∈I . If Hr(0) = 0, output sr−1 immediately as the

computed secret and abort.
(d) Otherwise, if Hr(0) 6= 0 in the above item, compute sr

i as follows: set gr
i′ :=

gi′ ⊕ yr
i′ for all i′ ∈ I. Interpolate a (n − 1)-degree polynomial Gr through

{gi′
r }i′∈I and set sr

i := Gr(0).

3. For i, i′ ∈ [n], if pi: (a) did not receive any transmission from some other origin-node
pi′ (i′ 6= i) according to transmission_ordering_b within max_l× n2 × k rounds, , it
outputs sr−1 then aborts.

4. After max_l× n2 × k rounds, if all checks above do not fail for any participant, all
participants move on to the next iteration in phase 3.

Phases 1–2 of Π2 follow the same principle as that of phase 1 in Π1, whereby, given
that G is k-path-disjoint, participants take advantage of the k disjoint paths for each pair
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of nodes in G in order to transmit redundant information. With this, players can check
the correctness of the transmitted data by comparing the k copies to each other. In phase
3 of Π2, however, instead of using k disjoint paths to transmit information, they use the
properties of the VRF to verify that received data are correct. The absence of redundancy in
phase 3 of Π2 enables Π2 to have less communication complexity than Π1. The following
results regarding Π2 are arrived at, whose proofs are in the Appendix.

Theorem 4. Given κ ∈ N, let ν := ν(κ) denote the value of a polynomial in κ. Let G be an
AGN game with n + 1 participants associated with a k-path-disjoint graph G(V, E) for k ≤ n,
and domain S := {0, 1}ν. The protocol Π2(n, k) is a computational Nash equilibrium, and is also a
(n− 1)-key leakage-tolerant equilibrium provided that [(β×U+) + (1− β)×Urand −U] < 0,
where β is the parameter of a geometric distribution. The average round complexity of Π2(n, k) is
[2×max _l× n× k] + [(1 + 1/β)× max_l× n2], and the communication complexity per round
is at most O(6nν).

Theorem 5. Given κ ∈ N, let ν := ν(κ) denote the value of a polynomial in κ. Let G be an AGN
game with n+ 1 participants associated with a k-path-disjoint graph G(V, E) for k ≤ n and domain
S := {0, 1}ν. The protocol Π2(n, k) is a computationally strict Nash equilibrium provided that
[(β×U+) + (1− β)×Urand −U] < 0.

Theorem 6. Given κ ∈ N, let ν := ν(κ) denote the value of a polynomial in κ. Let G be an AGN
game with n+ 1 participants associated with a k-path-disjoint graph G(V, E) for k ≤ n and domain
S := {0, 1}ν. Suppose that no player can acquire other secret keys unless information related to
it is shared by another player through a transmission. The protocol Π2(n, k) is a (k− 1)-resilient
computational Nash equilibrium provided that [(β×U+) + (1− β)×Urand −U] < 0.

Proposed Protocol Π2.1(n, k): With Dealer Connected Directly to Each Player

The last protocol of this paper Π2.1 induces a Φ-resilient computational Nash equilib-
rium, where Φ is the condition that a subset of nodes be 1-disconnected. The idea behind
this protocol is to provide some equilibrium notions that allow for certain large-sized
coalitions to be formed, contrary to the usual equilibrium notion where all coalitions are
bounded by k. However, unlike Π2, the dealer is assumed to be directly connected to each
player in Π2.1 so that it can transmit shares and keys in one simultaneous move. Given
this advantage, protocol Π2.1 performs additional checks, whereby any transmission re-
ceived by a node is checked for correctness. Given that any coalition is 1-disconnected, any
transmission among members of the coalition have to pass through at least one player not
belonging to the coalition, such that any deviations from the protocol will be checked. This
prevents members of the coalition to share information outside of Π2.1 to each other—in
particular, secret keys.

Protocol. Π2.1(n, k).

0. Secret Generation and Key dissemination Phase. The dealer performs the following to
share a secret s ∈ {0, 1}ν:

1. Choose r∗ ∈ N according to a geometric distribution with parameter β;
2. Generate public and secret key pairs (pk1, sk1), (pk2, sk2), . . . , (pkn, skn)← VG(1κ);
3. Generate public and secret key pairs (pk′1, sk′1), (pk′2, sk′2), . . . , (pk′n, sk′n)← VG(1κ);
4. Choose random (n − 1)-degree polynomials G ∈ F2ν [x] and H ∈ F2ν [x] such that

G(0) = s and H(0) = 0;
5. Compute {g∗i := G(i)⊕VE(ski, r∗)}i∈[n] and {h∗i := H(i)⊕VE(ski, r∗ + 1)}i∈[n];
6. Construct transmission_ordering_b by listing down one arbitrarily chosen path

for each pair of players starting with a path from p1 to p2, followed by a path from
p1 to p3, etc., up to p1 to pn. Afterwards, list down a path from p2 to p1, followed
by a path from p2 to p3, etc. (The algorithm for path_ordering is not needed for
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transmission_ordering_b.) In each path in transmission_ordering_b, the origin-
node is marked with a special symbol start, and the end-node of each path is marked
with a special symbol end;

7. Define the tuple of public information as:

Ψ = ({pki}i∈[n], {pk′i}i∈[n], {gi}i∈[n], {hi}i∈[n],

transmission_ordering_a

transmission_ordering_b);

8. For i ∈ [n], send ((ski, sk′i), Ψ) to pi.

1. Reconstruction Phase.

1. Given transmission_ordering_b, for i ∈ [n], if it is pi’s turn to transmit as the
origin-node for the first time (i.e., its node is marked with start for the first time), pi
computes the following:

yr
i = VE(ski, r), zr

i = VE(sk′i, r)

πr
i = VP(ski, r), ψr

i = VP(sk′i, r)

Afterwards, pi sends (gr
i , hr

i ) to {pi′}i′∈[n]\i as per transmission_ordering_b.
2. For i ∈ [n], if pi receives or does not receive a transmission from some other node

in violation of transmission_ordering_b in terms of the current round, it outputs
sr−1 then aborts. Otherwise, it checks transmission_ordering_b to determine the
source of the transmission which is psource for some source ∈ [n]. Afterwards, given
r and {r, yr, πr, zr, ψr} in the transmission, pi checks that both VV(pksource, r, yr, πr)
and VV(pksource, r, zr, ψr) are true. If any of these are false, pi aborts.
Otherwise, if pi’s node is not marked with end as per transmission_ordering_b, it
sends the transmission to the respective receiver node as per transmission_ordering_b.
However, if it is pi’s turn to receive information (i.e., its node is marked with end), it
sets source as the index of the origin-node of the transmission, i.e., the transmission
originates from player psource. Afterwards, it performs the following:

(a) Check if the information received is of the form (yr, zr, πr, ψr). If not true, output
sr−1 and abort.

(b) Check if n tuples of the form (yr
i′ , zr

i′ , πr
i′ , ψr

i′) for indices i′ ∈ [n] have so far
been acquired. If true, let I denote the player indices corresponding to such
tuples. Compute hr

i′ := hi′ ⊕ zr
i′ for all i′ ∈ I, and interpolate an (n− 1)-degree

polynomial Hr using {hr
i′}i′∈I . If Hr(0) = 0, output sr−1 immediately as the

computed secret and abort.
(c) Otherwise, if Hr(0) 6= 0 in the above item, compute sr

i as follows: set gr
i′ :=

gi′ ⊕ yr
i′ for all i′ ∈ I. Interpolate an (n − 1)-degree polynomial Gr through

{gi′
r }i′∈I and set sr

i := Gr(0).

3. For i, i′ ∈ [n], if pi: (a) did not receive any transmission from some other origin-node pi′

(i′ 6= i) according to transmission_ordering_b, it outputs sr−1 then aborts.

Equilibrium properties of Π2.1 are stated in Theorem 7, which says that Π2.1 guaran-
tees a computational Nash equilibrium. Proof for Theorem 7 is in the Appendix. The more
interesting result, however, for Π2.1 is in Corollary 1, which states that Π2.1 can accom-
modate coalitions of a size larger than k, as long as these coalitions are 1-disconnected.
An example instance for which Corollary 1 applies is shown in Figure 4.
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Figure 4. Example of a graph in the AGN game with a 4-member coalition (red-colored nodes).
The coalition is 1-disconnected, since no member of the coalition is directly connected to every
other member of the coalition. By Corollary 1, this set-up is allowed under Π2.1 and results in a
computational Nash equilibrium even if there is a coalition of size greater than k = 3.

Theorem 7. Given κ ∈ N, let ν := ν(κ) denote the value of a polynomial in κ. Let G be an
AGN game with n + 1 participants associated with a G(V, E) and domain S := {0, 1}ν such
that the E has edges from the dealer node to each of the player nodes. Let Φ denote the set of
conditions Φ := {1-disconnected}. The protocol Π2.1(n, k) is a Φ-resilient computational Nash
equilibrium provided that [(β×U+) + (1− β)×Urand −U] < 0, where β is the parameter of a
geometric distribution.

Corollary 1. Given κ ∈ N, let ν := ν(κ) denote the value of a polynomial in κ. Let G be an
AGN game with n + 1 participants associated with a G(V, E) and domain S := {0, 1}ν such
that the E has edges from the dealer node to each of the player nodes. Let Φ denote the set of
conditions Φ := {1-disconnected}. If Π2.1(n, k) is a Φ-resilient computational Nash equilibrium,
then Π2.1(n, k) is resilient against some coalitions of size larger than k.

Proof. By the definition of a Φ-resilient computational Nash equilibrium, if a protocol
is Φ-resilient, then it is secure against any coalition that satisfies the requirements of Φ
regardless of their size. The corollary thus follows.

5. Possible Directions for Future Work

Some possible directions for future work are as follows:

1. Our paper showed the existence of protocols that guarantee equilibria in an AGN secret
sharing game given very specific graph-theoretical properties. Natural extensions
over these results would be to investigate if there are certain protocols that induce
equilibria over more general graph-theoretical properties. On the other hand, one
could also investigate if there are other graph-theoretical properties that allow either
computationally strict Nash equilibria or Φ-equilibria. For instance, aside from
1-disconnected, could other properties also be included in Φ in order to tolerate larger
coalitions?

2. Our protocols could be further simplified or optimized in terms of their round and
communication complexity. For instance, there may be more computationally efficient
secret sharing schemes aside from Shamir Secret Sharing that allow the protocol
to induce the same types of equilibria. It is also possible to further improve the
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complexity of the (n, k) Shamir Secret Sharing used in securely distributing the secret
along k-disjoint paths.

6. Conclusions

In this paper, we address the problem of designing secret sharing protocols over
a general network with rational players, such that these protocols induce the desirable
equilibrium outcome whereby it is advantageous for each player to stick to the protocol
and let all players correctly reconstruct the secret in the process. We present three protocols,
whereby our first protocol uses the pseudorandom cryptographic primitive along with a
standard Shamir Secret Sharing scheme in the presence of an online dealer. The second
protocol uses a more sophisticated crytpographic primitive, namely, VRFs in order to
reduce communication complexity from the first protocol and requires only a semi-online
dealer. Our third protocol is similar to the second protocol, but requires a special type of
general network whereby the dealer is directly connected to each player.

To formally express the game-theoretic behaviour of our protocols in the context of
computational complexity, we utilize existing notions of computational Nash equilibrium
and also present novel notions of computational equilibria—namely, (n− 1)-key leakage-
tolerant equilibrium and Φ-resilient computational Nash equilibrium. Our results and
proofs show that our first and second protocols, Π1 and Π2, respectively, both induce an
(n, k) strict computational Nash equilibrium, a (n− 1)-key leakage-tolerant equilibrium,
and a (k− 1)-resilient computational Nash equilibrium relative to certain values of the
geometric distribution parameter β and the values of the players’ utilities U+, U, U−.
The communication complexity of Π2 per round is less than Π1, but Π2 has much higher
round complexity. Finally, for the third protocol, Π2.1, we show that it induces a Φ-
resilient computational Nash equilibrium, where Φ contains the graphical property of
being 1-disconnected. This implies that under Π2.1, certain coalitions of size larger than k
can be tolerated by the protocol as long as the location of the members of the coalition in
the network’s graph satisfy the 1-disconnected property.
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Appendix A. Coalition Equilibrium Notions

Definition A1. Let scriptd be as in Definition 15. Given a coalition C, we define viewΠ
−C as

follows. Let scriptC denote the transmissions of members of C to adjacent player nodes that are
not members of C over the course of the game. scriptC does not include any transmissions of
members of C, once a member of C outputs a guess of the secret s. Let script−C denote the set of
transmissions of pi′ for i′ ∈ [n] with i′ 6∈ C to its adjacent nodes over the course of the game. Let all
participants follow the strategies prescribed by Π. viewΠ

−i is defined as information which includes
scriptd, scriptC , and script−C , plus all randomness involved in the computations of pi′ for
i′ ∈ [n] with i′ 6∈ C across all rounds.

Definition A2. Let ρC be a set of strategies of members of C such that ρC 6= σC . Let all participants
(except those in C) follow the strategies prescribed by Π, while members of C follow ρC . Given
this set of strategies, let scriptd, scriptC , script−C be as in Definition A1. Let T be some
polynomial-time algorithm that knows the entire view of members of C as they follow ρC , and which
outputs a truncation script′C of scriptC . We define viewT,ρC ,Π

−C as information which includes
scriptd, script′C , script−C , plus all randomness involved in the computations of pi′ for i′ ∈ [n]



Cryptography 2022, 6, 50 26 of 45

with i′ 6∈ C across all rounds. Similarly, define viewρC ,Π
−C as the same information contained in

view
T,ρC ,Π
−C but which excludes reference to T.

Definition A3. Let f denote a negligible function over κ. For a coalition C, a strategy ρC is
equivalent with respect to Π, or ρC ∼ Π if there exists a polynomial-time algorithm T such that for
all polynomial-time distinguishers D, we have:∣∣Pr [D(1κ , viewT,ρC ,Π

−C ) = 1]− Pr [D(1κ , viewΠ
−C) = 1]

∣∣ ≤ f (κ).

Definition A4. Π induces a (k − 1)-resilient computational strict Nash equilibrium if: (1) it
induces a (k− 1)-resilient computational Nash equilibrium and (2) for any coalition C ⊆ P such
that |C| < k, and any polynomial-time strategy σ′C such that σ′C 6∼ Π, there is a c > 0 such that
uC(σ) ≥ uC(σ′C , σ−C) + 1/κc for infinitely many values of κ.

Appendix B. Security of the Shamir Secret Sharing Scheme

The security notion of an (n, k) secret sharing scheme is stated formally in [2], whereby
an (n, k)-secret sharing scheme (SG, SR) over S is secure if, for every possible secret s, s′ ∈ S
and every subset {s1, s2, . . . , sk−1} ⊆ Sk−1 of size k− 1, the distribution of SG(s) is identical
to the distribution of SG(s′) such that given any set of shares of size k− 1, one cannot tell if
the secret is s or s′ for all s, s′ ∈ S . For a specific instance of a secure (n, k) secret sharing
scheme, below is a non-rational (n, k)-Shamir Secret Sharing scheme based on Lagrange
Interpolation from [1].

[Share Generation.] SG(s): on input secret s, let Zp be a field for some prime p. Perform
the following given n and k:

1. Sample k− 1 random numbers (ri)i∈[k−1], where ri ← Zp;
2. Define the polynomial f (x) ∈ Zp[x] as f (x) := rk−1xk−1 + rk−2xk−2 + · · · +

r1x + c;
3. Choose arbitrary {x1, x2, . . . , xn} ∈ Zp;
4. Evaluate yi = f (xi) and set si := (xi, yi) for i ∈ [n];
5. Return s := (s1, s2, . . . , sk).

[Secret Reconstruction.] SR(s′): on input s′ of size at least k, perform the following:

1. Using any set of k shares from s’, i.e., {si := (x′i , y′i)}i∈[j], re-construct f (x) using
Lagrange interpolation by constructing k polynomials of the form Li(x) below:

Li(x) := ∏k
j=1
j 6=i

x− x′j
x′i − x′j

∈ Zp[x] for i ∈ [k];

2. Form another polynomial g(x) := L1(x) · y1 + L2(x) · y2 + · · · + Lk(x) · yk ∈
Zp[x] and return s′ := g(0).

Lemma A1. From [2], the scheme above is a secure (n, k)-secret sharing scheme.

The following Lemma is a standard result using Lagrange Interpolation.

Lemma A2. Let {(x1, y1), (x2, y2), . . . , (xn−1, yn−1)}, where xi, yi ∈ Zp for some prime p > 0
be coordinates of an n− 1-degree polynomial that is not known. Given the tuple

{(x1, y1), (x2, y2), . . . , (xn−1, yn−1)}

and xn, the distribution of possible values of yn is uniform.
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Appendix C. Pseudorandom Functions

Definition A5. A pseudorandom function Λ : SK × S → Y , where SK is a key space and S
is an input data block, is a deterministic algorithm that behaves like a truly random function [2].
A pseudorandom function has the following properties:

1. Pseudorandomness: The pseudorandom security of a pseudorandom function Λ is defined in
terms of an Attack Game between a challenger and an adversary. Given κ, at the start of the
game, the challenger randomly draws b ∈ {0, 1} and selects a random function f from S to
Y . The adversary submits a sequence of queries to the challenger, where each query consists
of an element s ∈ S . If b = 0, the challenger draws sk ← SK and submits Λ(sk, s) to the
adversary. If b = 1, the challenger submits f (s) to the adversary. The game ends once the
adversary submits a guess b′ ∈ {0, 1} who wins if b′ = b. The advantage of the adversary in
this game is defined as |Pr[b′ = b]− 1/2|. The pseudorandom function P is a secure PRF if
the advantage of any polynomial time adversary in this game is negligible in κ. It follows that
the distribution of the output of Λ is indistinguishable from uniform.

2. Secure key recovery: Let Λ : SK × S → Y be a pseudorandom function. Given s ∈ S and
y ∈ Y , it is computationally difficult to compute sk ∈ SK such that Λ(sk, s) = y.

We note that while secure key recovery is not normally included among the properties
of a pseudorandom function in the literature [2], given that pseudorandomness is a stronger
property than secure key recovery, we explicitly include it here for reference in the proofs.

Appendix D. Verifiable Random Functions

Definition A6. A verifiable random function (VRF) scheme with rangeR = {R}κ is a tuple of
probabilistic polynomial-time algorithms (VG, VE, VP, VV), where VG is a key generation algorithm,
VE is an evaluation algorithm, VP is a proof generation algorithm, and VV is a proof verification
algorithm. The following properties are required of a VRF following [8,24]:

1. Correctness: given κ, let (pk, sk) ← VG(1κ). Let y ← VE(sk, x) and π ← VP(sk, x) for
some κ-bit input x. We have VV(pk, x, VE(sk, x), VP(sk, x)) = 1 with probability 1.

2. Verifiability: given κ, for all possible (pk, sk) ← VG(1κ), there does not exist a tuple
(x, y, y′, π, π′) with y 6= y′ such that VV(pk, x, y, π) = 1 = VV(pk, x, y′, π′).

3. Uniqueness of proofs: given κ, for all possible (pk, sk)← VG(1κ), there does not exist a tuple
(x, y, π, π′) with π 6= π′ such that VV(pk, x, y, π) = 1 = VV(pk, x, y, π′).

4. Pseudorandomness: the security notion for pseudorandomness of a VRF is defined in terms
of an Attack Game between a challenger and an adversary. Given κ, at the start of the game,
the challenger samples b ∈ {0, 1}, and (pk, sk) ← VG(1κ) then gives pk to the adversary.
The adversary adaptively sends a finite number of queries xi ∈ Rκ to the challenger, for which
the challenger returns (yi, πi) = (VE(sk, xi), VP(sk, xi)). At some point, the adversary
performs a challenge query, whereby it sends the challenge query input x∗ to the challenger
(subject to the restriction that x∗ is not in any previous query). Once the challenger receives
x∗, if b = 0, the challenger returns the challenge ciphertext y∗ = VE(sk, x∗) to the adversary.
However, if b = 1, the challenger returns a uniformly sampled y∗ ← Rκ . After the challenge
query, the adversary may proceed to query the challenger again for a finite number of times
(subject to the restriction that no query is equal to x∗). The game ends once the adversary
outputs a guess b′ ∈ {0, 1}. The adversary wins if b = b′. Under this Attack Game, a VRF
is pseudorandom if, for all polynomial-time adversaries, the advantage |1/2− Pr[b = b′]| is
negligible in κ.

Appendix E. Protocol by Fuchsbauer et al.

The following protocol by [8] provides an exactly t-out-of-n secret sharing. Let
(VG, VE, VP, VV) correspond to polynomial-time algorithms that give a secure Verifiable
Random Function Scheme. To share a secret s ∈ {0, 1}l to n players p1, p2, . . . pn, [8]’s
protocol has a sharing phase followed by a reconstruction phase, as follows:
1. Secret Generation and Key dissemination Phase.
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1. Choose r∗ ∈ N according to a geometric distribution with parameter β;
2. Generate keys (pk1, sk1), . . . , (pkn, skn) ← VG(1κ) and (pk′1, sk′1), . . . , (pk′n, sk′n) ←

VG(1κ);
3. Choose (t− 1) random polynomials G and H such that G(0) = 0 and H(0) = 0;
4. Send (ski, sk′i) to pi;
5. Send to all parties the following:

(a) {pk j, pk′j}1≤j≤n;
(b) {gj := G(j)⊕VE(sk j, r∗)}1≤j≤n;
(c) {hj := H(j)⊕VE(sk j, r∗ + 1)}1≤j≤n.

2. Reconstruction Phase.

1. Each player pi chooses s0
i uniformly, and in each iteration, each pi performs the

following:

(a) Send the following to all players:

• yr
i = VE(ski, r) and zr

i = VE(sk′i, r);
• VP(ski, r) and VP(sk′i, r).

(b) If pi receives nothing or an incorrect proof from some other player pj, pi

terminates and outputs sr−1
i and aborts. Otherwise:

• pi sets hr
j := hj ⊕ zr

j for all other players, and interpolates a (t− 1) poly-

nomial Hr through these points. If Hr(0) = 0, pi outputs sr−1
i and aborts.

• Otherwise, pi sets gr
j := gj ⊕ yr

j and interpolates a (t− 1) polynomial Gr

through these points. It sets sr
i := G(0).

Appendix E.1. Issues under a General Network with Combining SMT and [8]’s Protocol

Suppose that in some k-path disjoint graph, the dealer d is not directly connected
to some player pl , but there is a path from d to pl passing through another player pi.
Suppose that the prior protocol by [8] is implemented together with SMT in a general
network, whereby, under this protocol’s strategy, the dealer d sends (skl , sk′l) to pl securely
using SMT. Following SMT, (skl , sk′l) is broken down to several sub-shares and is sent
along k-disjoint paths to pl , for which pl securely reconstructs (skl , sk′l). However, under
the protocol of [8], the dealer d also has to send the tuple of public information Ψ :=
({pk j, pk′j}j∈[n], {gj}j∈[n], {hj}j∈[n] to player pl in phase 1. However, given that Ψ is public,
SMT is no longer applied to Ψ under this protocol. Instead, d sends Ψ to pi, under the
assumption that pi merely has to send Ψ to pl without any modifications. In addition,
The strategy of this protocol for pi, however, is dominated by another strategy. Namely,
in this dominating strategy, pi mauls {hj}j∈[n]. As a result of this action by pi, pl can no
longer correctly compute H(0) = r∗ + 1 in the secret reconstruction phase, and pl cannot
determine if the definitive iteration has been reached. However, pi continues to receive
the correct information from pl during the secret reconstruction phase given that the tuple
(yr

l , zr
l , VP(skl , r), VP(sk′l , r)) provided by pl is independent of {hj}j∈[n]. This implies that

pi can still correctly compute H(0) = r∗ + 1 and determine if the definitive iteration has
been reached, while pl can no longer do so. Given the utility assumptions in Section 2.3,
pi has higher utility under this strategy since it means that one less player gets to know
about the secret. It could be seen that if pl were able to determine that the Ψ it received
from pi is mauled, then pl could avoid this situation by aborting. This is the idea behind
the duplication checks in the proposed protocols of this paper.

Appendix F. Technical Results for Protocol Π1

Lemma A3. Given an extensive game G with imperfect information, let e0 and e1 be two mutually
exclusive events in the game, such that either e0 or e1 occurs with probability 1. For each player
pi ∈ N in the game, let {e0, e1} 6∈ φi(I) for I ∈ Ii, i.e., no player knows if either e0 or e1 occurred.
Denote by Pr0 the game’s probabilities conditional on e0 having occurred, and by Pr1, the game’s
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probabilities conditional on e1 having occurred. If Pr0[φi(I)] is indistinguishable from Pr1[φi(I)]
for all I ∈ Ii and for each pi ∈ N, then the distribution of histories of the game under e0 is
indistinguishable from the distribution of histories of the game under e1.

Proof. If Pr0[φi(I)] is indistinguishable from Pr1[φi(I)] for all I ∈ Ii and for each pi ∈ N,
the distribution of actions Pr0[Ai(φi(I))] is also indistinguishable from Pr1[Ai(φi(I))] for all
I ∈ Ii and for each pi ∈ N given that Ai is a function of φi. The statement thus follows.

Definition A7. Let G be an AGN game with N as the set of n players. Given the protocol Π1(n, k)
over G for some k ≤ n, the following events are defined (relative to player pi ∈ N):

1. short occurs if some player aborts before phase 1 ends.
2. abort occurs if phase 2 is reached and if some player aborts before iteration r∗ + 1.
3. early is the event that r < r∗ and an abort occurs.
4. exact is the event that r = r∗ and an abort occurs.
5. late is the complement of abort, i.e., no player aborts before iteration r∗ + 1.
6. maul is the event that pi modifies any share sl,j for some l ∈ [n], j ∈ [k] received during

phase 1.
7. true(i) is the event that pi outputs the correct secret s.
8. true(-i) is the event that all other players pj (i 6= j) outputs the correct secret s

From the above definition, we have abort = early ∪ exact

Definition A8. From the description of Π1(n, k), each transmission from a player pi to some
player pl (i 6= l) contains a path encoding corresponding to {pathl,j}j∈[k]. Another player pm
(m 6= i ∧m 6= l) does not follow the path encoding contained in a received transmission, if for some
path ∈ {pathl,j}j∈[k], pm is in the node sequence corresponding to path and either: (a) pm refuses
to send the transmission to the next node listed in path, or (b) pm modifies path to another value
and sends the transmission.

Lemma A4. Given Π1(n, k), denote by σ the corresponding set of strategies prescribed by Π1. Let
pi follow some polynomial-time strategy σ′i and let all other players follow σ−i. The event short
occurs due to pi with non-negligible probability if: (1) pi follows σ′i such that it aborts during phase
1; or (2) if for some transmission meant for another player pj (i 6= j), pi does not follow the path
encoding according to Definition A8; or if (3) pi modifies a transmission meant for some other player
pj, where pi sends {(ĝi, ĥi)}i∈[n] such that {(ĝi, ĥi)}i∈[n] 6= {(g∗i , h∗i )}i∈[n]. If short occurs due
to pi, we have σ′i 6∼ Π1.

Proof. In (1), if pi itself aborts in phase 1, short occurs by definition. For (2), let pi
receive a transmission from the dealer whose end-receiver is another player pj, (i 6= j).
From Definition A8, pi does not follow the path encoding if: (a) pi refuses to send the
transmission to the next node in the original path encoding, or (b) pi modifies the original
path encoding and sends the transmission. For (b), two cases are possible: (b.1): pj does not
receive the modified transmission due to the change in the path encoding; (b.2): pj does
receive the modified transmission. For (a) at some point, pj discovers that it has less than k
tuples of information from the dealer after max_l rounds and aborts as a result—making
short occur. For (b.1), if pi modifies the path such that pj will not receive the transmission,
pj will discover that it has less than k tuples of information from d and aborts—making
short occur. For (b.2), if pi modifies the path encoding, pj will detect this change given
that it has k− 1 other copies of the path encoding for comparison—making short occur.
Finally, for (3), if pi modifies {(g∗i , h∗i )}i∈[n] in a transmission meant for pj, the player pj

will notice this given that it has k− 1 other copies of {(g∗i , h∗i )}i∈[n]. Denote by viewσ′i ,Π1

the set of information following Definition 16. For the last statement of the Lemma, we
have σ′i 6∼ Π if viewσ′i ,Π 6= viewΠ. If pi does not follow the path encoding or modifies the
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transmission, then at least one other player pj aborts before iteration r∗ + 1, which implies
that viewσ′i ,Π1 6= viewΠ1 and, therefore, σ′i 6∼ Π1.

Lemma A5. Given Π1(n, k), denote by σ the corresponding set of strategies prescribed by Π1. Let
pi follow some polynomial-time strategy σ′i and let all other players follow σ−i. The event abort
occurs due to pi with non-negligible probability if for some iteration r ≤ r∗, any of the following
occurs: (1) pi aborts before iteration r∗ + 1; (2) some path encoding in a transmission from either the
dealer or some other player is not followed in phase 2 by pi; (3) in some transmission, pi sends h◦

such that h◦ 6= h′ (where h′ is from the dealer); (4) in some transmission from pl to pj that passes
through pi, pi sends (ĝl , ĥl) such that (ĝl , ĥl) 6= (gr

l , hr
l ); (5) with pi as the origin-node, pi sends

(ĝi, ĥi) such that (ĝi, ĥi) 6= (gr
i , hr

i ); or (6) maul occurs in phase 1 due to pi. If abort occurs due
to pi, we have σ′i 6∼ Π1.

Proof. For (1), if pi itself aborts before iteration r∗ + 1, then abort occurs by definition.
For (2), if pi does not follow some path encoding in a transmission from either the dealer or
some other player (either by refusing to send or by modifying the path encoding), the same
reasoning and cases as in the proof for Lemma A4 applies (changing the origin-node of the
path encoding from the d to some other player’s node as the case may be). Therefore, abort
occurs in this case. For (3) if pi sends h◦ such that h◦ 6= h′ (where h′ is from the dealer)
to some other player pj (i 6= j), this change will be detected by pj given that it has k− 1
other copies of h′. In this case, pj aborts, and abort occurs. The same reasoning applies
for (4), whereby if pi sends (ĝl , ĥl) such that (ĝl , ĥl) 6= (gr

l , hr
l ) to pj for some j ∈ [n] \ {i, l},

the player pj will detect this given that it has k− 1 other copies of (gr
l , hr

l ). In this case, pj
aborts and abort occurs.

For (5), if pi itself sends (ĝi, ĥi) such that (ĝi, ĥi) 6= (gr
i , hr

i ), the other players would
not detect this using the k− 1 other copies of (ĝi, ĥi) since they are all equal. However,
the players will detect the change given that ⊕i∈[n]hr

i 6= h′ with non-negligible probability,
and abort occurs. This also implies (6) since, if pi modified some share sl,j meant for pl
(i 6= l) (i.e., maul occurs due to pi) along the jth path to pl , the player pl computes a secret
key sk′l such that skl 6= sk′l . It follows that all computations of pl involving Λ are affected
by this change from skl to sk′l . In particular, pl computes ĥr

l = Λ(sk′l , r) such that ĥr
l 6= hr

l
with non-negligible probability. It follows that ⊕j∈[n]\lhr

j ⊕ ĥr
l 6= h′ with non-negligible

probability, and abort occurs. The same applies if pi for some reason modified si,j for some
j ∈ [k] (i.e., a share that is meant for pi as end-receiver).

Denote by viewσ′i ,Π1 the set of information following Definition 16. For the last state-
ment of the Lemma, we have σ′i 6∼ Π if viewσ′i ,Π1 6= viewΠ1 . If pi performs any of (1)–(6)
under σ′i , then at least one other player pj notices this and abort occurs as shown above,
which implies that viewσ′i ,Π1 6= viewΠ1 and therefore σ′i 6∼ Π1.

Definition A9. Let φi denote the relevant information from pi’s point of view for achieving
utilities U+ or U at any information set in either phase 1 or 2 of Π1(n, k). It follows that we
have φi := {ski, {g∗i }i∈[n], {h∗i }i∈[n]} in phase 1, and for iteration r in phase 2, we have φi :=
{ski, {g∗i }i∈[n], {h∗i }i∈[n], {{gτ

i }i∈[n], {hτ
i }i∈[n]}τ≤r}.

Lemma A6. Under Π1(n, k), suppose that pi deviated and acquired n− 1 secret keys. Given φi
from any information set I in either phase 1 or any iteration r ≤ r∗ in phase 2, the distributions
of {h∗i }i∈[n], {g∗i }i∈[n], and the polynomials H and G are all indistinguishable from random.
In addition, the probability of guessing r∗ is β.

Proof. Without loss of generality, let pi acquire n− 1 secret keys except the last one, skn,
which is owned by pn. We first show that the above Lemma does not hold if pi has n
pairs of secret keys at its disposal. Suppose that pi knows skn as well. A strategy for pi to
compute r∗ is to evaluate hr

i = h∗i ⊕Λ(ski, r) for i ∈ [n] and for r < 2κ − 1 in one round
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(internally). For r < 2κ − 1, pi checks if the interpolated polynomial Hr from {hr
i }i∈[n]

satisfies Hr(0) = 0. If Hr(0) = 0, then pi sets r− 1 = r∗. Thus, r∗ is learned with probability
greater than β since sampling r∗ ≥ 2κ − 1 is negligible.

So suppose that pi does not know skn. The other keys sk j for j ∈ [n] − 1 do not
provide information on skn since they are sampled independently. This leaves us with
φi. Since φi from phase 1 is a subset of φi from any iteration r ≤ r∗ in phase 2, we need
only consider φi from iteration r ≤ r∗ in phase 2. First, we note that for any τ ≤ r, the set
{{gτ

i }i∈[n], {hτ
i }i∈[n]}τ≤r} ∈ φi does not provide information on skn by the secure key

recovery property of Λ in Definition A5. Given this, we consider additional information
in φi. The n− 1 secret keys and φi, give information on the values g′c(i) = g∗i ⊕Λ(ski, r)
and hp

c (i) = h∗i ⊕Λ(ski, r) for r > 0 and i ∈ [n− 1]. This leads to several coordinate tuples
[(1, g′c(1)), (2, g′c(2)), . . . , (n − 1, g′c(n − 1))] and [(1, hp

c (1)), (2, hp
c (2)), . . . , (n − 1, hp

c (n −
1))] for r > 0. The first tuple in the prior statement can be combined with the coordinate
(0, s) to interpolate a candidate polynomial Gr

c such that Gr
c(0) = s and acquire information

on Gr
c(n). It follows that at iteration r > 0, the value gr

n received from pn equals Gr
c(n)⊕

g∗n. However, information about Gr
c(n) is not useful at any iteration r ≤ r∗ given that

s is sampled randomly and is unknown for all iterations r ≤ r∗, and the polynomial
condition Gr

c(0) = s cannot be performed. This leaves us with the second coordinate tuple
[(1, hp

c (1)), (2, hp
c (2)), . . . , (n− 1, hp

c (n− 1))]. For each r > 0, this tuple can be combined
with the known coordinate (0, 0) to interpolate a candidate polynomial Hr

c . This results in
a target coordinate ŷ = Hr

c(n) and a target value ĥr
n = ŷ⊕ h∗n. It follows that at iteration

r = r∗ + 1, the value of hr
n received from player pn is equal to ĥr

n. Using (n, h∗n ⊕ hr
n) and

the known n− 1 other coordinates, information about the true polynomial H is arrived
at—followed by information about G and s (i.e., by following the reconstruction of G and
H in Π1). However, for iterations r ≤ r∗ + 1, given that Λ is pseudorandom and skn is
unknown, the distribution of possible values of hr

n = Λ(skn, r) is indistinguishable from
random, so that the distribution of coordinate (n, h∗n ⊕ hr

n) combined with other n − 1
coordinates at iteration r do not provide much information about the distribution of H
(i.e., since Hr(0) 6= 0 with non-negligible probability). The same holds for the distribution
of G so that both G and H are unknown and their distributions are indistinguishable from
random. It follows that for player pi, given information φi from any information set I in
iteration r ≤ r∗, it is computationally hard to determine if hr

n = ĥr
n for some future r so that

r∗ could only be guessed with probability β. Given that H and G are sampled randomly
and are unknown, it follows that the distribution of h∗i = H(i)⊕ hr

n and g∗i = G(i)⊕ gr
n is

also indistinguishable from random. The Lemma thus follows.

Lemma A7. Suppose that no player can acquire other secret keys unless information related to it is
shared by another player through a transmission. For any coalition C ⊆ N of size at most k− 1,
given φi from any information set I in either phase 1 or any iteration r ≤ r∗ in phase 2 of Π1(n, k),
the distributions of {h∗i }i∈[n], {g∗i }i∈[n] and the polynomials H and G are all indistinguishable
from random. In addition, the probability of guessing r∗ is β.

Proof. This is a corollary of Lemma A6. Given that in a coalition C of size k− 1, the members
can share up to k− 1 secret keys, the results of Lemma A6 can be applied to each member
of C, which assumes a stronger condition of up to n− 1 secret keys.

Lemma A8. Under Π1(n, k), suppose that pi deviated and acquired n− 1 secret keys. If maul
occured in phase 1 due to pi, the probability of true(i) and true(-i) is negligible at any phase.

Proof. Without loss of generality, let pi acquire n− 1 secret keys except the last one skn,
which is owned by pn, where the n− 1 secret keys in pi’s possession are correct and not
modified due to maul on pi’s part. The Lemma does not hold if pi has n pairs of correct secret
keys at its disposal using a similar strategy as in the proof of Lemma A6. So suppose that
pi does not know the correct skn but knows the correct keys ski for i ∈ [n− 1]. Let the event
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maul modify sk j for j ∈ [n] to ŝkj such that ŝkj 6= sk j. Information from phase 1 received
by pi is independent of the value of the modified ŝkj due to maul. Hence, the situation
of pi in phase 1 is similar to its situation if maul did not occur. Using Lemma A6, we
arrive at the statement of Lemma A6 for phase 1. It follows that without information on
H and G, pi’s guess of s (so that true(i) occurs) is as good as random. Since this holds
for any player, the Lemma is proven for phase 1. For phase 2, by the pseudorandomness
of Λ, it follows that with non-negligible probability, we have Λ(ŝkj, r) 6= Λ(sk j, r) for all
r > 0. In particular, at iteration r = 1, we have ĥ1

j = Λ(ŝkj, 1) 6= Λ(sk j, 1) = h1
j so that

[⊕l∈[n]\jh1
l ⊕ ĥ1

j ] 6= [⊕i∈[n]h1
i ] = h′ with non-negligible probability. Thus, the check in Π1

fails at iteration 1 of phase 2 with non-negligible probability, and all players are forced to
guess s from the uniform distribution. This proves the Lemma.

Lemma A9. Suppose that no player can acquire other secret keys unless information related to
it is shared by another player through a transmission. For any coalition C ⊆ N of size at most
k − 1, suppose that maul occured in phase 1 due to some deviation of pi ∈ C from Π1(n, k).
The probabilities of true(i) and true(-i) are8 negligible at any phase.

Proof. This is a corollary of Lemma A8. Given that in a coalition C of size k− 1, the members
can share up to k− 1 secret keys, the results of Lemma A8 can be applied to each member
of C, which assumes a stronger condition of up to n− 1 secret keys.

Lemma A10. Given Π1(n, k), let pi follow any polynomial-time strategy σ′i , and let the rest of the
players follow strategies σ−i prescribed by Π1. We have the following, where S is the domain of the
secret, and where f is some negligible function in κ. This result holds even if σ′i led pi to acquire less
than n secret keys.

1. Pr[true(i)|short, maul] = 1/|S|+ f (κ)
2. Pr[true(i)|early, maul] = 1/|S|+ f (κ)
3. Pr[true(i)|exact, maul] = 1/|S|+ f (κ)
4. Pr[true(−i)|late, maul] = 0
5. Pr[true(i)|maul] = 1/|S|+ f (κ)

Proof. Let φi be defined as in Definition A9. To determine s so that true(i) occurs, pi
needs to determine G and H so that G(0) = s and H(0) = 0. But as per Lemma A6,
G and H are unknown in phase 1 and for any iteration r ≤ r∗ in phase 2, and their
distribution is indistinguishable from random. With G and H unknown, the probability
of guessing s is uniform, i.e., 1/|S|. This proves statements (1)–(3). For statement (4),
the event [true(−i)|late] occurs if at some iteration r > r∗ all other players do not output
s correctly. If iteration r∗ + 1 is reached, this implies that the strategy followed by pi follows
the protocol Π1 up to iteration r∗ + 1 (otherwise, short or abort occurs). If pi follows Π1

at iteration r∗ + 1, then all other players will also learn about s, and true(−i) does not take
place. If pi does not follow Π1 at iteration r = r∗ + 1 such that other players notice, then all
other players will output sr−1 = s, and true(−i) will not take place as well. Statement (5)
follows from Lemma A8.

Definition A10. We now define the following experiments. Let σ′i denote any arbitrary polynomial-
time strategy of pi. Define Pr0 as the probabilities in Exp 0, by Pr1 the probabilities in Exp 1, and by
Pr2 the probabilities in Exp 2, where Exp 0, 1, and 2 are as follows:

Exp 0: This experiment runs Π1 but with pi following σ′i and the rest following the prescribed
strategies Π. In addition pi acquires n− 1 secret keys (skil )l∈[n]−1 (through some leakage
attacks).

Exp 1: This experiment is the same as Exp 0, except that in the initialization phase (i.e., phase 0),
the dealer computes g∗i = G(i)⊕ v1 and h∗i = H(i)⊕ v2, where v1 and v2 are uniformly
sampled from the range of VE.
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Exp 2: This experiment is the same as Exp 1, except that given the k disjoint paths in phase 1 where
pi receives (from the dealer) the set of shares {si,1, si,2, . . . , si,k} to reconstruct ski, one share
(si,j) for some j ∈ [k] is replaced by the dealer in phase 0 with a uniformly sampled number
ŝi,j in the range of SG. Afterwards, the dealer reconstructs a different secret key for pi, i.e., ski,
where ski is computed by the dealer using SR on input ({si,j′}j′∈[k]\j ∪ ŝi,j). Afterwards,
the dealer uses ski in computing for h′ in phase 2.

Lemma A11. Given Π1(n, k), for any polynomial-time strategy σ′i adopted by pi, there exists a
negligible function f in κ such that we have the following, given a fixed stat ∈ {maul, maul} for
each statement. This result holds even if σ′i led pi to acquire less than n secret keys.

1. |Pr0[short|stat]− Pr1[short|stat] ≤ f (κ)
2. |Pr0[exact∧ true(i)|stat]− Pr1[exact∧ true(i)|stat]| ≤ f (κ)
3. |Pr0[exact∧ true(i)|stat]− Pr1[exact∧ true(i)|stat]| ≤ f (κ)
4. |Pr0[late|stat]− Pr1[late|stat]| ≤ f (κ)
5. |Pr0[early∧ true(i)|stat]− Pr1[early∧ true(i)|stat]| ≤ f (κ)
6. |Pr0[early∧ true(i)|stat]− Pr1[early∧ true(i)|stat]| ≤ f (κ)

Proof. From Definition A10, the only difference between Exp 0 and Exp 1 is in the com-
putation of g∗i and h∗i by the dealer in phase 0. Following the notations in Lemma A3,
let e0 denote the event that g∗i and h∗i are computed following Π1 (i.e., Exp 0), and let e1
denote the event that g∗i and h∗i are sampled uniformly (i.e., Exp 1). Let φi be as defined in
Definition A9, so that {e0, e1} 6∈ φi(I) for any information set I in either phase 1 or phase 2.
Suppose first that stat = maul. A difference in player actions between e0 and e1 is sure to
occur at iteration r∗ + 1 given that under e0, both r∗ and s will be learned by all players,
while under e1, it is not clear if r∗ or s will be learned by any player since g∗i and h∗i are
sampled randomly. For phase 1 and at any iteration r ≤ r∗ in phase 2, possible differences
between the distribution of φi(I) under e0 and the distribution of φi(I) under e1 depend on
differences in distribution of {g∗i , h∗i } under e0 and its distribution under e1. We consider
two cases that may arise here, affecting phase 2:

Case 1: In phase 2, for some iteration r ≤ r∗, we have Hr(0) = 0 under e1.

Case 2: In phase 2, for all iterations r ≤ r∗, we have Hr(0) 6= 0 under e1.

The probability of case 1 is negligible by the pseudorandomness of Λ. Note that
under e0, at iteration r = r∗ + 1, we have Hr(0) = 0, but for iterations r ≤ r∗, we have
Hr(0) 6= 0. Under e1, for iterations r ≤ r∗, there is a possibility that Hr(0) = 0 given
that hp

i = h∗i ⊕ Λ(ski, r), and h∗i 6= H(i)⊕ Λ(ski, r) with non-negligible probability. We
specify the conditions that are needed for Hr(0) = 0 to occur at iteration r ≤ r∗ under
e1. Let [(1, hp

c (1)), (2, hp
c (2)), . . . , (n − 1, hp

c (n − 1))] represent the tuple of coordinates
given information in φi(I) at iteration r ≤ r∗ in phase 2, where hp

c (j) = h∗j ⊕ Λ(sk j, r)
for j ∈ [n− 1] (and h∗i is randomly sampled). Combining this tuple with the coordinate
(0, 0), results in an interpolated candidate polynomial Hr

c such that Hr
c(0) = 0. This gives

a target value Hr
c(n) = ŷ. It follows that Hr(0) = 0 if and only if h∗n ⊕ Λ(skn, r) = ŷ,

or ŷ ⊕ h∗n = Λ(skn, r). By the pseudorandomness of Λ, the probability that ŷ ⊕ h∗n =
Λ(skn, r) is close to uniform. Thus, the probability of case 1 is negligible. As for case 2,
given that Hr(0) 6= 0 for r ≤ r∗, the situation of players under e1 is no different from their
situation under e0. Since case 1 is negligible, this implies that its complement, i.e., case 2, is
non-negligible in probability. Given this fact, we note that since skn is unknown, we can
apply Lemma A6, where the distribution of g∗i and h∗i is indistinguishable from random
in phases 1–2. Hence, sampling g∗i and h∗i uniformly as in e1 is not noticeable, and the
distribution of φi(I) under e0 is no different from the distribution of φi(I) under e1 for all
information sets I in phase 1 and for all information sets I in iteration r ≤ r∗ in phase 2,
i.e., Pr0[φi(I)] is indistinguishable from Pr1[φi(I)] for all information sets I in phase 1 and
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for all information sets I in iteration r ≤ r∗ in phase 2. By Lemma A3, statements (1)–(6)
follow under stat = maul.

Suppose now that stat=maul, where pi modified a share in phase 1. As per Π1,
for players pj 6= pi, no abort is performed in phase 1 due to a share’s value. It follows that
for pj 6= pi, their actions in phase 1 are independent of maul or maul. For pi, following the
above paragraph, we have that the distribution of φi under e1 in phase 1 is indistinguishable
from the distribution of φi in phase 1 under e2. Since this holds even if maul occurs,
statement (1) follows under phase 1. For phase 2, as shown in the proof of Lemma A8,
with non-negligible probability, all players abort at iteration 1 and are forced to output a
random guess for s due to maul. Thus, under both e0 and e1, the probability of the event
early ∧ true(i)|maul in statement (6) holds with non-negligible probability. All other
events in statements (2)–(5) are negligible, and the Lemma follows under phase 2.

Lemma A12. Under Π1(n, k), for any polynomial-time strategy σ′i adopted by pi, there exists a
negligible function f in κ such that we have the following, given a fixed stat ∈ {maul, maul} for
each statement. This result holds even if σ′i led pi to acquire less than n secret keys:

1. |Pr1[short∧ true(i)|stat]− Pr2[short∧ true(i)|stat]| ≤ f (κ)
2. |Pr1[short∧ true(i)|stat]− Pr2[short∧ true(i)|stat]| ≤ f (κ)
3. |Pr1[exact∧ true(i)]− Pr2[exact∧ true(i)]| ≤ f (κ)
4. |Pr1[exact∧ true(i)]− Pr2[exact∧ true(i)]| ≤ f (κ)
5. |Pr1[late|stat]− Pr2[late|stat]| ≤ f (κ)
6. |Pr1[early∧ true(i)|stat]− Pr2[early∧ true(i)|stat]| ≤ f (κ)
7. |Pr1[early∧ true(i)|stat]− Pr2[early∧ true(i)|stat]| ≤ f (κ)

Proof. From Definition A10, the only difference between Exp 1 and Exp 2 is that some
share ŝi,j (j ∈ [k]) transmitted by the dealer to pi in phase 1 is uniformly sampled in Exp 2.
Without loss of generality, let this uniformly sampled share be ŝi,k, i.e., the share transmitted
along the kth path from the dealer to pi. Following the notations in Lemma A3, let e1 denote
the event that si,k is computed using SG but h∗i and g∗i are sampled uniformly (i.e., Exp 1),
and let e2 denote the event that ŝi,k, h∗i and g∗i are sampled uniformly (i.e., Exp 2). Let φi be
as defined in Definition A9, so that {e1, e2} 6∈ φi(I) for any information set in either phase
1 or phase 2. Suppose first that stat = maul. We consider three cases brought about by the
change in e2:

Case 1: The distribution of ŝi,k is distinguishable from the distribution of si,k conditional on
{si,j}j∈[k−1] in phase 1.

Case 2: In phase 2, for some iteration r ≤ r∗, we have Hr(0) = 0.

Case 3: In phase 2, for all iterations r ≤ r∗, we have Hr(0) 6= 0.

The probability of case 1 is negligible by the security of the secret sharing scheme.
From Lemma A1, given k− 1 shares, one cannot tell the true value of ski. Hence, conditional
on {si,j}j∈[k−1], from the point of view of pi, the distribution of possible values of ski under
e1 is indistinguishable from the distribution of possible values of ŝki in e2. This implies
that from the point of view of pi, the distribution of possible values of the kth share such
that the secret ski is reconstructed is indistinguishable from the distribution of possible
values of the kth share such that the secret ŝki is reconstructed. Hence, the distribution of
φi(I) (with ski ∈ φi(I)) for any information set I in phase 1 is indistinguishable from the
distribution of φi(I) (with ŝki ∈ φi(I)) for any information set I in phase 1.

The probability of case 2 is likewise negligible by the pseudorandomness of Λ. First,
we note that under e1, the probability that Hr(0) = 0 is negligible for any iteration r ≤ r∗,
as shown in the proof of Lemma A11. Given this, assume that Hr(0) = 0 for any iteration
r ≤ r∗ under e1. Under e2, there is a possibility that Hr(0) = 0 for some iteration r ≤ r∗

due to the change from ski to ŝki. We consider the conditions that are needed for Hr(0) = 0
to occur at iteration r ≤ r∗ under e2. Let [(1, hp

c (1)), (2, hp
c (2)), . . . , (n − 1, hp

c (n − 1))]
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represent the tuple of coordinates formed from φi(I) at iteration r ≤ r∗ in phase 2, where
hp

c (j) = h∗j ⊕Λ(sk j, r) for j ∈ [n− 1] (and where ŝki 6= ski under e2, and h∗i is randomly
sampled in both e1 and e2). Combining this tuple with the coordinate (0, 0) results in
an interpolated candidate polynomial Hr

c such that Hr
c(0) = 0. This gives a target value

Hr
c(n) = ŷ. It follows that Hr(0) = 0 if and only if h∗n ⊕Λ(skn, r) = ŷ or ŷ⊕ h∗n = Λ(skn, r).

By the pseudorandomness of Λ, the probability that ŷ⊕ h∗n = Λ(skn, r) is close to uniform.
Thus, the probability of case 2 is negligible. This in turn implies that the complement of
case 2 in phase 2, i.e., case 3, is non-negligible. However, given case 3, the situation of
players under e2 is no different from their situation under e1 and e0. Moreover, by the
pseudorandomness of Λ, from the point of view of pi, the distribution of Λ(ski, r) is
indistinguishable from the distribution of Λ(ŝki, r) for r > 0. It follows that the distribution
of φi(I) under e1 is no different from the distribution of φi(I) under e2 for all information
sets I in phase 1 and for all information sets I in iteration r ≤ r∗ in phase 2. By Lemma A3,
statements (1)–(7) follow under stat = maul.

Suppose now that stat=maul, where pi modified a share in phase 1. As per Π1,
for players pj 6= pi, no abort is performed in phase 1 due to a share’s value. It follows
that for pj 6= pi, their actions in phase 1 are independent of maul or maul regardless of the
change from ski to ŝki. For pi, following the above paragraph, we have that the distribution
of ski is indistinguishable from the distribution of ŝki conditional on k − 1 other shares.
Since, this holds even if maul occurs, given Lemma A8, statement (1)–(2) follows under
phase 1. For phase 2, as shown in the proof of Lemma A8, with non-negligible probability,
all players already abort at iteration 1 under e1 and are forced to output a random guess
for s due to maul. The reasoning of Lemma A8 holds even if ski is changed to ŝki. Thus,
under both e1 and e2, the probability of the event early ∧ true(i)|maul in statement (7)
holds with non-negligible probability. All other events in statements (2)–(6) are negligible
and the Lemma follows under phase 2.

Proof of Theorem 1. The proof for this theorem follows the flow in the proof of [8]. Let Exp
0, Exp 1 and Exp 2 be defined as in Definition A10. Denote by (σ′i , σ−i) a polynomial-time
strategy where pi follows some polynomial-time strategy σ′i , and all other players following
strategies σ−i prescribed by Π. For correctness of Π1, in phase 2, if all active n parties run Π
honestly, the correct secret is reconstructed by Lagrange Interpolation unless: (1) r∗ ≥ 2κ − 1
or (2) if for some r < r∗ + 1 and i ∈ [n], we have H(i) = hr

i = Λ(ski, r). Sampling r∗ such
that r∗ ≥ 2κ as in (1) occurs with negligible probability and the pseudorandomness of
Λ implies that (2) occurs with negligible probability as well. Thus, the correctness of Π
with overwhelming probability is shown. Denote by ui(σ

′
i , σ−i) the expected utility of

player pi across phases 1 and 2 if (σ′i , σ−i) is followed. Denote by u2
i (σ
′
i , σ−i) the expected

utility of player pi achieved during phase 2 (conditional on the event that it has reached
phase 2 under σ′i ). Note that u2

i (σ
′
i , σ−i) > 0 if and only if short has not occurred. We

first consider the differences in utilities under the experiments in phase 2, followed by
a combination of the differences in utilities under the experiments in both phase 1 and
2—similar to a backward-induction process. Combining all possibilities of events described
in Definition A7 that apply to phase 2, we have the following expression for u2

i (σ
′
i , σ−i):

u2
i (σ
′
i , σ−i) ≤ (Pr0[maul]× utili(Pr0, maul))

+ (Pr0[maul]× utili(Pr0, maul))

where utili : {Pr0, Pr1} × {maul, maul} → R is a function defined as follows, where
stat ∈ {maul, maul}:
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utili(Pr, stat)

:= (U+ × Pr[exact∧ true(i) ∧ true(−i)|stat])
+ (U− × Pr[exact∧ true(i) ∧ true(−i)|stat])
+ (U × Pr[exact∧ true(i) ∧ true(−i)|stat])
+ (U− × Pr[exact∧ true(i) ∧ true(−i)|stat])
+ (U+ × Pr[early∧ true(i) ∧ true(−i)|stat])
+ (U− × Pr[early∧ true(i) ∧ true(−i)|stat])
+ (U × Pr[early∧ true(i) ∧ true(−i)|stat])
+ (U− × Pr[early∧ true(i) ∧ true(−i)|stat])
+ (U+ × Pr[late∧ true(i) ∧ true(−i)|stat])
+ (U− × Pr[late∧ true(i) ∧ true(−i)|stat])
+ (U × Pr[late∧ true(i) ∧ true(−i)|stat])
+ (U− × Pr[late∧ true(i) ∧ true(−i)|stat])

Let u2
i (σ
′
i , σ−i) represent some upper bound for u2

i (σ
′
i , σ−i). To come up with an expression

for u2
i (σ
′
i , σ−i), we modify some terms in utili(Pr, stat). All probabilities that involve

events with exact∧ true(i) can be ruled out since there exists a polynomial-time strategy
for which this event occurs with probability 0. For instance, take the strategy, form a guess
for r = r∗, then output sr at iteration r. It follows that if exact occurs, true(i) automatically
occurs as well. The probability Pr[exact∧ true(−i)] can be replaced with some negligible
function (say 1/|S|) given that if exact occurs at iteration r since pi aborts, other players
will output sr−1, which is not equal to the secret s with non-negligible probability. The same
applies to Pr[early∧ true(−i)]. We also note that Pr[true(−i)|late, stat]) = 0 if stat =
maul as per Lemma A10, since at iteration r = r∗ + 1, all other players will output sr−1 = s
regardless of the actions of pi. Moreover, any strategy such that Pr[true(i)|late, maul]
occurs with positive probability is strictly dominated by a strategy that sets the probability
of this event to 0, i.e., since pi reached late, this means that it followed strategies equivalent
to Π1 up to iteration r∗+ 1. At iteration r∗+ 1, all players can learn both r∗ and s. Under Π1,
all other players will output s regardless of the actions of pi at iteration r∗ + 1, so pi will
gain the most utility if it follows other players and output s as well. From these statements,
we denote the upper bound for u2

i (σ
′
i , σ−i), as follows:

u2
i (σ
′
i , σ−i) = (Pr0[maul]× utili(Pr0, maul))

+ (Pr0[maul]× utili(Pr0, maul))

where utili : {Pr0, Pr1} × {maul, maul} → R is a function defined below, making use of
the following facts: (1) U+ > U > U−; (2) the sum of Pr[exact∧ true(i) ∧ (true(i))] and
Pr[exact∧ true(i) ∧ true(i)] is less than or equal to Pr[exact]; (3) the sum of Pr[early∧
true(i) ∧ true(−i)] and Pr[early∧ true(i) ∧ true(−i)] is equal to Pr[early∧ true(i)]
(similarly for Pr[early ∧ true(i)]); and (4) if maul occurs, from Lemma A8, the proba-
bility of true(i) is equal to random so that an upper bound for u2

i (σ
′
i , σ−i) implies that

maul holds:
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utili(Pr, maul) := (U+ × Pr[exact|maul])
+ (U+ × Pr[early∧ true(i)|maul])
+ (U− × Pr[early∧ true(i)|maul])
+ (U × Pr[late|maul])

utili(Pr, maul) := (U+ × 1/|S|) + (U− × (1− 1/|S|))

We now define Uexp_1 as follows, which uses probabilities of the game under Exp 1:

Uexp_1 = (Pr1[maul]× utili(Pr1, maul))

+ (Pr1[maul]× utili(Pr1, maul))

From Lemma A11, we have |u2
i (σ
′
i , σ−i)−Uexp_1| ≤ f (κ) for some negligible func-

tion f in κ. It follows that Uexp_1 also represents an upper bound for u2
i (σ
′
i , σ−i) with

some negligible difference. Let abort ∧ stat := (early ∧ stat) ∪ (exact ∧ stat) for
stat ∈ {maul, maul}. Information-theoretically, we have Pr1[exact|abort, stat] = β and
Pr1[early|abort, stat] = 1− β since β is independent of stat. Using Lemma A10, we
have the following bound for Uexp_1:

Uexp_1 =
[[

U+ ×
(
Pr1[exact|abort, maul] + (Pr1[true(i)|early, maul]

× Pr1[early|abort, maul])
)]

+
[
U− ×

(
Pr1[true(i)|early]× Pr1[early|abort, maul]

]]
× Pr1[abort|maul]× Pr1[maul]

+
[[

U × Pr1[late|maul]
]]
× Pr1[maul] + (utili(Pr1, maul))

=
[
U+ × [β + (1/|S| × (1− β))]

]
× Pr1[abort|maul]× Pr1[maul]

+
[
U− × (1− 1/|S|)× (1− β)

]
× Pr1[abort|maul]× Pr1[maul]

+
[
U × (1− Pr1[abort, maul])

]
× Pr1[maul] + [(U+ × 1/|S|)

+ (U− × (1− 1/|S|))]× Pr1[maul]

=
[[

U+ ×
(

β +
(
1/|S| × (1− β)

))]
+

[
U− ×

(
1− 1/|S|

)
× (1− β)

]
−U

]
× Pr1[abort|maul]× Pr1[maul] + [U × Pr1[maul]] + [(U+ × 1/|S|)

+ (U− × (1− 1/|S|))]× (1− Pr1[maul])

Simplifying the above equations, we have:

Uexp_1 = Urand + Pr1[maul]×
[
[U −Urand] +

[
(β×U+) + (1− β)×Urand −U

]
× Pr1[abort|maul]

]
By assumption, we have U > Urand and [(β×U+)+ (1− β)×Urand−U] < 0. Hence,

Uexp_1 is maximized if Pr1[maul] > 0 and if Pr1[abort|maul] is minimized. Using the above
equations, we define the following:

Uexp_1|maul = U + [(β×U+) + (1− β)×Urand −U]× Pr1[abort|maul]
Uexp_1|maul = Urand,

so that Uexp_1 = (Pr1[maul]×Uexp_1|maul) + (Pr1[maul]×Uexp_1|maul). We now consider
differences in utilities between Exp 1 and Exp 2, as well as combine phases 1 and 2 of the pro-
tocol. Given any polynomial-time strategy (σ1

i , σ−i), we have the following expression for
ui(σ

′
i , σ−i), using the following facts: (1) U+ > U > U−, and (2) for stat ∈ {maul, maul},

the sum of Pr1[short∧ true(i) ∧ true(−i)|stat]) and Pr1[short∧ true(i) ∧ true(−i)|
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stat]) is equal to the probability Pr1[short∧ true(i)|stat] (and the same applies as well
to Pr1[short∧true(i)]):

ui(σ
′
i , σ−i) ≤ (Pr1[maul]× util2

i (Pr1, maul)) + (Pr1[maul]× util2
i (Pr1, maul))

where util2
i : {Pr1, Pr2} × {maul, maul} → R is a function defined as:

util2
i (Pr, stat) := (U+ × Pr[short∧ true(i)|stat]) + (U− × Pr[short∧ true(i)|stat])

+ (Uexp_1 × Pr[short|stat])

Let ui(σ
′
i , σ−i) represent an upper bound for ui(σ

′
i , σ−i) which the above expression holds

with equality. We now define Uexp_2 as follows:

Uexp_2 := (Pr2[maul]× util2
i (Pr2, maul)) + (Pr2[maul]× util2

i (Pr2, maul))

From Lemma A8, Pr2[true(i)|short, maul] = 1/|S| and Pr2[true(i)|maul] = 1/|S|. Us-
ing these facts we have:

Uexp_2 =
[
Pr2[maul]× Pr2[short|maul]×

[
(U+ × Pr2[true(i)|short|maul])

+ (U− × Pr2[true(i)|short|maul])
]
+

[
Pr2[maul]× (Uexp_1|maul × Pr2[short|maul])

]
+

[
Pr2[maul]× Pr2[short|maul]×

[
(U+ × Pr2[true(i)|short|maul])

+ (U− × Pr2[true(i)|short|maul])
]
+

[
Pr2[maul]× (Uexp_1|maul × Pr2[short|maul])

]
= Pr2[maul]×

[
[Pr2[short|maul]×

[
(U+ × 1/|S|) + (U− × (1− 1/|S))]]

+ (Uexp_1|maul × Pr2[short|maul])
]
+ Pr2[maul]×

[
[Pr2[short|maul]

×
[
(U+ × 1/|S|) + (U− × (1− 1/|S))]] + (Uexp_1|maul × Pr2[short|maul])

]
= Pr2[maul]× [(Pr2[short|maul]×Urand) + (Uexp_1|maul × (1− Pr2[short|maul]))]
+ Pr2[maul]× [(Pr2[short|maul]×Urand) + (Uexp_1|maul × (1− Pr2[short|maul]))]

= Pr2[maul]× [Uexp_1|maul + (Urand −Uexp_1|maul)× Pr2[short|maul]]
+ Pr2[maul]× [Uexp_1|maul + (Urand −Uexp_1|maul)× Pr2[short|maul]]

= Pr2[maul]× [Uexp_1|maul + (Urand −Uexp_1|maul)× Pr2[short|maul]]
+ Pr2[maul]× [Urand]

where the last line uses the definition Uexp_1|maul = Urand. This gives us:

Uexp_2 = Urand + Pr2[maul]× [(Uexp_1|maul −Urand)

+ (Urand −Uexp_1|maul)× Pr2[short|maul]]

From Lemma A12, we have |ui(σ
′
i , σ−i)−Uexp_2| ≤ f (κ) for some negligible function

f in κ. It follows that Uexp2 represents an upper bound for ui(σ
′
i , σ−i) with some negligible

difference. Define the equations (note the change from Pr1 to Pr2):

Ûexp_1|maul = U + [(β×U+) + (1− β)×Urand −U]× Pr2[abort|maul]

Ûexp_1|maul = Urand
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Using Lemma A12 again, both Ûexp_1|maul and Ûexp_1|maul differ from Uexp_1|maul and
Uexp_1|maul by a negligible factor, respectively. This gives us the following expression,
where f is a negligible function in κ:

Ûexp_2 + f (κ) = Uexp_2 = Urand + Pr2[maul]× [(Ûexp_1|maul −Urand)

+ (Urand − Ûexp_1|maul)× Pr2[short|maul]] + f (κ)

Finally, to prove that Π is a computational Nash equilibrium, we have to show that for
any polynomial-time strategy σ′i adopted by pi, we have ui(σ

′
i , σ−i) ≤ U + f (k) for some

negligible function f in κ. Combining all of the above, we have the following, which proves
Π1 is a computational Nash equilibrium (i.e., ui(σ

′
i , σ−i) ≤ U + f (κ) for some negligible f

in κ):

ui(σ
′
i , σ−i) ≤ Uexp2

= Ûexp_2 + f (κ)

= Urand + Pr2[maul]× [(Ûexp_1|maul −Urand)

+ (Urand − Ûexp_1|maul)× Pr[short|maul]]
+ f (κ)

= Urand + Pr2[maul]× [(U −Urand)

+ [(β×U+) + (1− β)×Urand −U]

× Pr2[abort|maul]
+ (Urand − Ûexp_1|maul)× Pr[short|maul]]
+ f (κ)

= [U × Pr2[maul] + Urand × (1− Pr2[maul])]

+ Pr2[maul]× [(B− × Pr2[abort|maul)
+ (C− × Pr[short|maul])] + f (κ)

≤ U + f (k)

where the last statement uses the following facts:

1. If Pr2[maul] < 1 we have [U×Pr2[maul] +Urand× (1−Pr2[maul])] < 0 since Urand <
U by assumption.

2. B− := [(β×U+) + (1− β)×Urand −U] < 0 by assumption.
3. C− := Urand − Ûexp_1 < 0 given that Ûexp_1 contains a U term and Urand < U by

assumption.

This proves that Π1 is a computational Nash equilibrium. To show that Π1 is also an
(n− 1)-key leakage-tolerant equilibrium, we note that Lemmas A5, A4, A8, A11, and A12
used in the proof above hold even if a player acquires n− 1 secret keys. For the round
complexity, in each round of Π1, each participant in the game can simultaneously send k
transmissions along k disjoint paths to several other participants. Each transmission takes
up to at most max_l rounds before it reaches its end-receiver. Phase 1 would then take up to
max_l rounds, and each iteration in phase 2 takes up to max_l rounds. Given β, the expected
value of r∗ is 1/β, from which it follows that an average of up to 1/β + 1 rounds will take
place in phase 2, and we have that the average round complexity is 2+ 1/β rounds as stated.
Finally, for the communication complexity, the largest amount of bits are communicated by
the dealer during phase 1, which amounts to a total of ν× (k + 2n + 1) per player. Since
there are n players, we have that the maximum amount of bits communicated in a single
round would be at most n× ν× (k + 2n + 1), as stated.

Corollary A1. Let pi follow a strategy σ′i such that σ′i ∼ Π1(n, k), then ui(σ
′
i , σ−i) = U + f (κ)

for some negligible function f in κ.
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Proof. If σ′i ∼ Π1, then from Lemmas A4 and A5, we have Pr[maul] is equal to 1 with
non-negligible probability and Pr[abort∨ maul] is negligible. The corollary follows from
Theorem 1.

Proof of Theorem 2. To show that Π1 is a strict Nash equilibrium, suppose that some player
pi plays a polynomial-time strategy σ′i 6= Π. From Lemmas A4 and A5, we have Pr[abort∨
short] occur with non-negligible probability, so that for some c > 0, we have Pr0[abort ∨
short] ≥ 1/κc for infinitely many values of κ. Combining Lemmas A11 and A12, we have
Pr2[abort ∨ short] ≥ 1/κc and Pr2[abort ∨ short] ≥ 1/κc, as well for infinitely many
values of κ. Using the same terms as in the proof for Theorem 1, this implies that |Ûexp2 −
U| ≥ 1/κc for infinitely many values of κ. Given that ui(σ

′
i , σ−i) ≤ Ûexp2 | (since Ûexp2

represents an upper bound for ui(σ
′
i , σ−i)), we have |ui(σ

′
i , σ−i)−U| ≥ 1/κc for infinitely

many values of κ, thereby proving the Theorem.

Proof of Theorem 3. To show that Π1 is a (k− 1)-resilient computational Nash equilibrium,
we revise Lemmas A4 and A5 to the following versions that consider coalitions:

Coalition Version of Lemma A4: Given Π1(n, k), denote by σ the corresponding
set of strategies prescribed by Π1. Let C be a coalition of size at most k − 1,
such that its members follow a set of polynomial-time strategies σC := {σ′pi

}pi∈C
and let all other players follow σ−C . The event short occurs due to C with
non-negligible probability if: (1) some member of C aborts during phase 1; (2) a
transmission originating from outside of C and is meant for pl ∈ N \ C passes
through a member pi ∈ C, such that pi does not follow the path encoding of the
transmission; or (3) a member pi ∈ C transmits as origin node the information
{(ĝi, ĥi)}i∈[n] to another player pl 6∈ C such that {(ĝi, ĥi)}i∈[n] 6= {(g∗i , h∗i )}i∈[n].
If short occurs due to C, we have σC 6∼ Π1.

Coalition Version of Lemma A5: Given Π1(n, k), denote by σ the corresponding
set of strategies prescribed by Π1. Let C be a coalition of size at most k − 1,
such that its members follow a set of polynomial-time strategies σC := {σ′pi

}pi∈C
and let all other players follow σ−C . The event abort occurs due to C with non-
negligible probability if, for some iteration r ≤ r∗, any of the following occurs:
(1) a member pi ∈ C aborts before iteration r∗ + 1; (2) a transmission originating
from outside of C and is meant for player pl 6∈ C as the end-receiver passes
through some member pi ∈ C such that pi does not follow the path encoding in
the transmission; (3) a transmission originating from outside of C and is meant
for player pl 6∈ C as the end-receiver passes through some member pi ∈ C such
that pi sends a modified h◦ to pl 6∈ C such that h◦ 6= h′ (where h′ is from the
dealer); (4) a transmission originating from outside of C and is meant for player
pl 6∈ C as the end-receiver passes through some member pi ∈ C such that pi sends
a modified (ĝl , ĥl) to pl 6∈ C such that (ĝl , ĥl) 6= (gr

l , hr
l ), or (5) given a member

pi ∈ C as the origin-node, pi sends (ĝi, ĥi) to pl 6∈ C such that (ĝi, ĥi) 6= (gr
i , hr

i ).

To prove the coalition versions above, we note that any coalition C has to be of size at
most k− 1. From Lemma 1, this implies that for any distinct pair of players (pi, pj), any
set of k-disjoint paths from pi to pj has to contain a path that does not contain members
of C. This implies that any transmission from some player pi 6∈ C to some other player
pj 6∈ C, and which passes through some coalition member pl ∈ C, such that pl follows a
strategy σ′l 6∼ Π1 (i.e., the situations in the above coalition versions of the Lemmas) will be
discovered by pj. This is because, as per Lemma 1, the transmission from pi to pj passes
through one other path which does not contain members of C, and so pj can use information
from this transmission to perform checks against other transmissions that passed through
members of C. Using similar arguments as in the proofs of Lemmas A4 and A5, we prove
their coalition versions above. Given these coalition versions of Lemmas A4 and A5 and the
fact that, given a coalition C of size at most k− 1, the results of Lemmas A8, A11, and A12
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hold (given that only up to k− 1 secret keys can be shared by members of C), the above
Theorem follows using a similar proof as in Theorem 1.

Appendix G. Technical Results for Protocol Π2

Lemma A13. Given Π2(n, k), denote by σ the corresponding set of strategies prescribed by Π2. Let
pi follow some polynomial-time strategy σ′i and let all other players follow σ. The event short occurs
due to pi with non-negligible probability if: (1) pi follows σ′i such that transmission_ordering_a
is not followed in phases 1 and 2, or if (2) pi under σ′i sent an incorrect message that does not match
Ψ in phase 1. If short occurs due to pi, we have σ′i 6∼ Π2.

Proof. If pi itself aborts in phase 1 or in phase 2, then it does not follow the transmission
scheme in transmission_ordering_a and short occurs. If some other player pj with i 6= j,
j ∈ [n] aborts in phases 1 and 2, this event happens if (1) pi sends a transmission that
does not match transmission_ordering_a or (2) pi sends Ψ′ 6= Ψ to some other player.
If Ψ′ 6= Ψ is sent by pi, this will be noticed by some other player given that the other player
receives k − 1 other copies of Ψ according to transmission_ordering_a and the other
player aborts as required by Π2. For the last statement of the Lemma, we have σ′i 6∼ Π2 if
viewσ′i ,Π2 deviates from viewΠ2 . If pi does not follow transmission_ordering_a or sends
Ψ′ 6= Ψ in phase 1, then at least one other player pj notices this. These events imply that
viewσ′i ,Π2 6= viewΠ2 in the relevant parts involving phases 1 and 2 and σ′i 6∼ Π2.

Lemma A14. Given Π2(n, k), denote by σ the corresponding set of strategies prescribed by Π2. Let
pi follow some polynomial-time strategy σ′i and let all other players follow σ. The event abort occurs
due to pi with non-negligible probability if: (1) pi follows σ′i such that transmission_ordering_b
is not followed in phase 3 or (2) if pi sends an incorrect message (y′i, z′i, π′i , ψ′i) such that (y′i, z′i, π′i , ψ′i)
6= (yr

i , zr
i , πr

i , ψr
i ) for some iteration r. If abort occurs due to pi, we have σ′i 6∼ Π2.

Proof. If pi itself aborts before iteration r∗ + 1, then it does not follow the transmission
scheme in transmission_ordering_b and abort occurs. If pi sent correct messages with
respect to (yr

i , zr
i , πr

i , ψr
i ) for each iteration r, but some other player pj (i 6= j) aborts, this is

due to pi sending a transmission that does not match transmission_ordering_b (given
that all other players follow Π2). If pi follows transmission_ordering_b but some other
player pj (i 6= j) aborts, this could only be due to pi sending a transmission (y′i, z′i, π′i , ψ′i) 6=
(yr

i , zr
i , πr

i , ψr
i ) for some iteration r ≤ r∗, which is detected by pj using the VRF. This is

because Π2 prescribes that a unique (y′i, z′i, π′i , ψ′i) be sent by each player at each iteration—
using the VRF’s properties in Definition A6. For the last statement of the Lemma, we have
σ′i 6∼ Π2 if viewσ′i ,Π2 deviates from viewΠ2 . If pi does not follow transmission_ordering_b
or sends an incorrect transmission for iteration r ≤ r∗ in phase 3, then at least one other
player pj notices this. These events imply that viewσ′i ,Π2 6= viewΠ2 in the relevant parts
involving phase 3 and σ′i 6∼ Π2.

Given these terminologies, we state the following Lemmas and definitions.

Definition A11. We now define the following experiments. Let σ′i denote any arbitrary polynomial-
time strategy of pi. Define Pr0 as the probabilities in Exp 0, by Pr1 the probabilities in Exp 1, and by
Pr2 the probabilities in Exp 1.

Exp 0: This experiment runs Π2(n, k) but with pi following σ′i and the rest following the prescribed
strategies Π2. In addition, pi can acquire n− 1 secret key pairs (skil , sk′il )l∈[n]−1.

Exp 1: This experiment is the same as Exp 0, except that in the initialization phase (i.e., phase 0),
the dealer computes g∗i = G(i)⊕ v1 and h∗i = H(i)⊕ v2, where v1 and v2 are uniformly
sampled from the range of VE.
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Exp 2: This experiment is the same as Exp 1, except that, given the k disjoint paths in phase 2,
where pi receives shares {si,1, si,2, . . . , si,k} and {s′i,1, s′i,2, . . . , s′i,k} to reconstruct ski and sk′i,
respectively, one pair (si,j, s′i,j) for some j ∈ [k] is replaced by the dealer in phase 0 with a
uniformly sampled pair of numbers in the range of SG.

Lemma A15. Under Π2(n, k), suppose that pi deviated and acquired n − 1 secret key pairs
(ski′ , sk′i′) for i′ ∈ [n]. Given information φi(I) from any information set I in either phase 1 or
any iteration r ≤ r∗ in phase 2 of Π2(n, k), the distribution of h∗i and g∗i for any i ∈ [n] and the
distribution of H and G are indistinguishable from random. In addition, the probability of guessing
r∗ is β.

Proof. Given that VE is pseudorandom, the same proof as that for Lemma A6 would
hold word for word after making the appropriate substitutions, i.e., (i) changing Λ to VE;
(ii) changing from using ski for both gr

i and hr
i to using ski for gr

i and sk′i for hr
i ; and (iii)

adjusting the phase numbers from phase 1 in Π1 to phases 1–2 in Π2 and from phase 2 in
Π1 to phase 3 in Π2.

Lemma A16. Suppose that under Π2(n, k), pi deviated and acquired n − 1 secret key pairs
(ski′ , sk′i′). If maul occurred in phase 1 due to pi, the probability of true(i) and true(-i) is
negligible at any phase.

Proof. Given that VE is pseudorandom, the same proof as that for Lemma A8 for phase 1
would hold word for word after making the appropriate substitutions, i.e., (i) changing
Λ to VE; (ii) changing from using ski for both gr

i and hr
i to using ski for gr

i and sk′i for hr
i ;

and (iii) adjusting the phase numbers from phase 1 in Π1 to phases 1–2 in Π2 and from
phase 2 in Π1 to phase 3 in Π2. For phase 2, if maul occurred, the secret key pair (sk j, sk′j)

of some player pj ∈ N is modified to (ŝkj, ŝk
′
j) 6= (sk j, sk′j) so that pj computes:

(ŷr
i = VE(ŝki, r), ẑr

i = VE(ŝk
′
i, r),

π̂r
i = VP(ŝki, r), ψ̂r

i = VP(ŝk
′
i, r))

By the properties of the VRF (Definition A6), this implies that with non-negligible
probability, we have VV(pk j, r, ŷr

i , π̂r
i ) 6= true and VV(pk′j, r, ẑr

i , ψ̂r
i ) 6= true since, with

non-negligible probability, pk j 6= p̂kj, where p̂kj denotes the correct public key paired by

VG given a secret key ŝkj. Given that the prior checks would fail for all players, it follows
that, with non-negligible probability, under Π2, players abort and output a guess for s from
the uniform distribution. This proves the Lemma.

Lemma A17. Given Π2(n, k), for any polynomial-time strategy σ′i adopted by pi, there exists a
negligible function f in κ such that we have the following, given a fixed stat ∈ {maul, maul} for
each statement. This result holds even if σ′i led pi to acquire less than n secret key pairs:

1. |Pr0[short]− Pr1[short] ≤ f (κ)
2. |Pr0[exact∧ true(i)]− Pr1[exact∧ true(i)]| ≤ f (κ)
3. |Pr0[exact∧ true(i)]− Pr1[exact∧ true(i)]| ≤ f (κ)
4. |Pr0[late]− Pr1[late]| ≤ f (κ)
5. |Pr0[early∧ true(i)]− Pr1[early∧ true(i)]| ≤ f (κ)
6. |Pr0[early∧ true(i)]− Pr1[early∧ true(i)]| ≤ f (κ)

Proof. Given that VE is pseudorandom and skn is unknown for pi, the same proof as that
for Lemma A11 would hold word for word after making the appropriate substitutions,
i.e., (i) changing Λ to VE; (ii) changing from using ski for both gr

i and hr
i to using ski for gr

i
and sk′i for hr

i ; and (iii) adjusting the phase numbers from phase 1 in Π1 to phases 1–2 in Π2
and from phase 2 in Π1 to phase 3 in Π2.
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Lemma A18. Given Π2(n, k), for any polynomial-time strategy σ′i adopted by pi, there exists a
negligible function f in κ such that we have the following, given a fixed stat ∈ {maul, maul} for
each statement. This result holds even if σ′i led pi to acquire less than n secret keys:

1. |Pr1[short∧ true(i)]− Pr2[short∧ true(i)] ≤ f (κ)
2. |Pr1[short∧ true(i)]− Pr2[short∧ true(i)] ≤ f (κ)
3. |Pr1[exact∧ true(i)]− Pr2[exact∧ true(i)]| ≤ f (κ)
4. |Pr1[exact∧ true(i)]− Pr2[exact∧ true(i)]| ≤ f (κ)
5. |Pr1[late]− Pr2[late]| ≤ f (κ)
6. |Pr1[early∧ true(i)]− Pr2[early∧ true(i)]| ≤ f (κ)
7. |Pr1[early∧ true(i)]− Pr2[early∧ true(i)]| ≤ f (κ)

Proof. Given that VE is pseudorandom and skn is unknown by pi, the same proof as that
for Lemma A12 would hold word for word after making the appropriate substitutions,
i.e., (i) changing Λ to VE; (ii) changing from using ski for both gr

i and hr
i to using ski for gr

i
and sk′i for hr

i ; and (iii) adjusting the phase numbers from phase 1 in Π1 to phases 1–2 in Π2
and from phase 2 in Π1 to phase 3 in Π2.

Proof of Theorem 4. To prove Theorem 4, we note that the results of Lemmas A4 and A5
for Π1 have their equivalent in Lemmas A13 and A14 for Π2. The results of Lemmas A11
and A12 for Π1 have their equivalent as well in Lemmas A17 and A18 for Π2. Given that
VE also has the pseudorandom property similar to Λ, the proof for Theorem 4 holds word
for word for Theorem 4 after making the appropriate substitutions as were performed in
the proof of Lemmas A17 and A18.

Proof of Theorem 5. To prove the theorem, we note that Π2 prescribes that a unique trans-
mission be sent by a unique player at each round as shown in Lemmas A14 and A13.
The proof for the above Theorem follows that of Theorem 2 by substituting Lemmas A4
and A5 for Π1 to their equivalent Lemmas A13 and A14 for Π2,and substituting Lemmas
A11 and A12 for Π1 to their equivalent Lemmas A17 and A18 for Π2.

For the average round complexity, we note that phases 1 and 2, take up at most
2 × max_l × n × k rounds, given that the dealer sends Ψ to n players along k disjoint
paths and that the maximum length of a path is at most max_l. In phase 3, the average
value of r∗ is 1/β, so that an average of 1 + 1/β iterations take place under Π2. Each
iteration in turn takes up at most max_l× n2 × k, as each player sends to each other player
a transmission along a path of length at most max_l. Finally, the largest communication in
a round takes place in phase 1, when the dealer sends Ψ to each participant, which takes
up O(4nν) bits, which may differ by a constant factor per graph G due to bits taken up
by transmission_ordering_a and transmission_ordering_b—both of which depend on
the size of G.

Proof of Theorem 6. Coalition versions of Lemmas A13 and A14, as performed in the
proof of Theorem 3 for Lemmas A4 and A5, can be constructed here using the fact that Π2
prescribes that a unique transmission be sent by a unique player at each round as shown in
Lemmas A14 and A13. It follows that any transmission sent by a member of C to another
player outside of C would be readily checked for deviations from Π2. Using these coalition
versions of Lemmas A14 and A13, along with the fact that Lemmas A8, A17, and A18 hold
in a coalition of size at most k− 1 (given that a k− 1-sized coalition may only share up to
k− 1 secret keys among its members), the Theorem follows.

Proof of Theorem 7. From the assumptions of the theorem, each player has acquired the
public information Ψ and the pair of secret keys directly from the dealer, and each player
has the correct copy of transmission_ordering_b. We note that the difference between
protocol Π2 and Π2.1 is that for every transmission in Π2.1, each node through which the
transmission passes checks the correctness of the transmission using the VRF algorithm VV .
Given that this is a stronger requirement than Π2 (where only end-nodes of the transmission
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check for correctness), the results of Lemma A14 readily apply. In addition, the condition
in Φ (where a coalition should be 1-disconnected) implies that for each pair of members
pi, pj ∈ C, any transmission from pi to pj has to pass through players that are not in C. It
follows that all transmissions among members of C are checked for correctness, and they
cannot include additional information in their transmission. In particular, members of C
cannot transmit secret keys to each other as this will violate the VRF checks, and players
are constrained to have only 1 secret key, and Lemmas A17 and A18 apply. It follows that
all players strictly conform to the strategies prescribed by Π2.1, and given Lemmas A14,
A12, and A18, we apply the same proof as in Theorem 4 to prove the Theorem above.
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