(%] cryprography

Article

Efficient RO-PUF for Generation of Identifiers and Keys
in Resource-Constrained Embedded Systems

Macarena C. Martinez-Rodriguez

and Piedad Brox

check for
updates

Citation: Martinez-Rodriguez, M.C.;
Rojas-Muiioz, L.F.; Camacho-Ruiz, E.;
Sanchez-Solano, S.; Brox, P. Efficient
RO-PUF for Generation of Identifiers
and Keys in Resource-Constrained
Embedded Systems. Cryptography
2022, 6, 51. https://doi.org/
10.3390/ cryptography6040051

Academic Editor: Wael Adi

Received: 7 September 2022
Accepted: 30 September 2022
Published: 5 October 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Luis F. Rojas-Muiioz ¥, Eros Camacho-Ruiz ', Santiago Sidnchez-Solano *

Instituto de Microelectrénica de Sevilla, IMSE-CNM, CSIC/Universidad de Sevilla, 41092 Sevilla, Spain
* Correspondence: santiago@imse-cnm.csic.es; Tel.: +34-954466666

Abstract: The generation of unique identifiers extracted from the physical characteristics of the un-
derlying hardware ensures the protection of electronic devices against counterfeiting and provides
security to the data they store and process. This work describes the design of an efficient Physi-
cal Unclonable Function (PUF) based on the differences in the frequency of Ring Oscillators (ROs)
with identical layout due to variations in the technological processes involved in the manufacture
of the integrated circuit. The logic resources available in the Xilinx Series-7 programmable devices
are exploited in the design to make it more compact and achieve an optimal bit-per-area rate. On
the other hand, the design parameters can also be adjusted to provide a high bit-per-time rate
for a particular target device. The PUF has been encapsulated as a configurable Intellectual Property
(IP) module, providing it with an AXI4-Lite interface to ease its incorporation into embedded systems
in combination with soft- or hard-core implementations of general-purpose processors. The capability
of the proposed RO-PUF to generate implementation-dependent identifiers has been extensively
tested, using a series of metrics to evaluate its reliability and robustness for different configuration
options. Finally, in order to demonstrate its utility to improve system security, the identifiers provided
by RO-PUFs implemented on different devices have been used in a Helper Data Algorithm (HDA)
to obfuscate and retrieve a secret key.

Keywords: hardware security; physical unclonable functions; device authentication; key generation;
reconfigurable devices; embedded systems

1. Introduction

The combination of encryption, authentication, and data verification provides robust
and reliable mechanisms necessary to guarantee the security of the information captured,
processed, and transmitted by devices today connected to the Internet to support a multi-
tude of services related to leisure, health, business, or industry [1,2]. To be truly effective,
security protocols for the authentication and integrity of critical data need to be grounded
in hardware and not reliant on pure software-based solutions. The grounding of security
in silicon manufacturing processes provides a hardened layer of protection that increases
confidence in electronic systems [3,4].

Physically Unclonable Functions (PUFs) have emerged as a potential solution to build
trusted anchors that provide secure hardware solutions for consumer and industrial IoT
devices [5]. Based on their properties, PUFs can be used to generate unique identifiers that
facilitate device authentication to prevent spoofing and counterfeiting. They also introduce
an extra hardware-based layer for building lightweight encryption schemes, as they can
be used to obfuscate the secret keys used by ciphers, ensuring the confidentiality of data
exchanged by the electronic device in which the PUF is embedded or attached. In addition,
PUFs can provide seeds to be used in the creation of public and private key pairs for public-
key cryptography, increasing system security by avoiding the need to share secret keys.

Cryptography 2022, 6, 51. https:/ /doi.org/10.3390/ cryptography6040051

https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6040051
https://doi.org/10.3390/cryptography6040051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0003-3025-5736
https://orcid.org/0000-0002-5568-1136
https://orcid.org/0000-0002-3177-2260
https://orcid.org/0000-0002-0700-0447
https://orcid.org/0000-0003-1059-5338
https://doi.org/10.3390/cryptography6040051
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6040051?type=check_update&version=2

Cryptography 2022, 6, 51

2 of 20

A PUF maps an input challenges sequence to an output response in a unique (it cannot
be replicated, that is, it is unclonable), reliable (it can be reproducible over time), and
unpredictable (it cannot be anticipated) way. The initial idea for this type of one-way
function was introduced by Pappu et al. in [6]. The operating principle of silicon PUFs is
based on the variations that arise during the manufacturing process of an integrated circuit.
Roughly, research on silicon PUFs has focused on three categories: (i) memory-based
PUFs (SRAM [7], DRAM [8,9]) that use unpredictable start-up values of memory cells;
(ii) delay-based PUFs that use the relative time-delay differences between two theoretically
identical circuits (Ring oscillators [10-19], Arbiter [20], Butterfly [21]); and (iii) analog PUFs
that exploit measurements of variables in mixed-signal and analog integrated circuits (for
instance, current mirrors [22]).

The use of Field-Programmable Gate Arrays (FPGAs) and programmable Systems
on Chip (SoCs) to implement embedded systems for specific applications has experienced
a significant boom in recent years. The possibility of incorporating general-purpose proces-
sors such as soft-cores in the former, or of using the powerful processing systems available
in the latter, makes these reconfigurable devices very advantageous for providing solutions
with reduced size, energy consumption, and cost, especially suitable for IoT applications.
Security requirements for these implementations are identical to those for realizations
employing Application-Specific Integrated Circuits (ASICs), so the proposed solutions are
largely independent of the implementation technique.

PUF implementations on FPGAs have been mainly focused on RO-PUFs, since SRAM-
based PUFs are not feasible, because the on-chip memories of programmable devices
are usually initialized to a fixed value after start-up, and arbiter PUFs impose severe
restrictions in the layout in order to obtain symmetric delay paths, which is difficult
to achieve on programmable devices. RO-PUFs are based on closed delay chains (delay
loops) whose oscillation frequencies are compared to obtain the PUF output. In theory,
the oscillation frequencies of two ideally identical inverter chains should be the same, but
this is not the case due to variability in the manufacturing process of the CMOS ICs that
affects each device differently.

This paper describes the design of an RO-PUF to improve the security of embedded
systems implemented on programmable devices. The combination of different design
strategies proposed in the literature, as well as previous results obtained by the authors,
gives rise to an efficient implementation in terms of resource consumption and speed of op-
eration on Xilinx Zyng-7000 SoC devices. The design has been conceived as a configurable
IP module, which includes mechanisms for the generation of the challenges sequence and
the selection of the output bits, and it provides a standard connection interface to facilitate
its incorporation as a basic block for the identification and generation of cryptographic
keys in embedded systems. The paper also presents the different metrics used to verify
the functionality of the PUF and perform its characterization under different operating
conditions. The main contributions of the work are:

* Take advantage of the internal structure of programmable devices with the aim of ob-
taining a compact implementation of an RO-PUF. This strategy is carried out by
using absolute and relative location directives in the VHDL descriptions used as input
to the Vivado design tools for synthesis and implementation on Series-7 Xilinx devices.

¢ Include a mechanism for challenges generation that allows two different comparison
strategies to be performed simultaneously. This feature doubles the number of bits
generated per each comparison, maximizing the ratio between the length of the PUF
response and the amount of resources required to obtain it.

¢ Implement the RO-PUF as a configurable IP module that can be connected to soft- and
hard-core processors using standard interconnection buses. The size and placement
of the RO bank in the programmable logic, as well as other design parameters that
affect the performance of the PUF, can be selected by the designer through a graphical
user interface supported by Vivado’s IP Integrator tool.

Cryptography 2022, 6, 51

30f20

* Provide a set of drivers that facilitates the use of the RO-PUF in a high-level pro-
gramming language, such as C, and allows the development of software applications
to calculate different metrics in order to evaluate its performance.

The paper is structured as follows: Section 2 provides a general review of the different
RO-PUF designs available in the literature and combines the ideas coming from these
sources with those obtained from previous works by the authors to define the specifications
of a new RO-PUF whose architecture, building blocks, and use as an IP module are detailed
in Section 3. The results obtained from the test battery used to verify the functionality and
evaluate the performance of the PUF with different configuration options and operating
conditions are collected and discussed in Section 4. Section 5 illustrates the use of the pro-
posed RO-PUF as a basic element of an HDA to obfuscate and retrieve secret keys. Finally,
the main conclusions obtained in this work are summarized in Section 6.

2. Ring Oscillator PUFs

A Ring Oscillator PUF (or RO-PUF) is a particular type of delay-based PUF whose
operation is founded on the difference of frequencies in closed chains (rings) with an odd
number of inverters. In practice, the ring usually consists of an even number of inverters
and a NAND gate that receives an enable signal to open or close the feedback loop. When
the loop is closed, each inverter generates an oscillating signal at its output, the frequency
of which depends on the delays accumulated in the different stages and connection paths
in the ring. Thus, two ROs with the same number of stages and identical layout should
provide the same oscillation frequency. However, the frequencies are not equal because
of the variability caused by the manufacturing processes of CMOS-integrated circuits,
making each RO have a unique characteristic frequency.

In order to provide the appropriate number of bits to generate an identifier or obfuscate
a cryptographic key, an RO-PUF must include a sufficient number of pairs of ROs. The RO-
PUF proposed in [10], shown in Figure 1a, uses a bank of N ROs that can be selected by
pairs using two multiplexers. The concatenation of the signals that select the pairs of ROs
to be compared, challengel and challenge2, allows establishing the sequence of challenges
in this type of PUFE. Each time a pair of ROs is selected, the frequencies of the two ROs are
compared by connecting their outputs to two counters that will increase at the frequency
determined by each RO. After a certain comparison time fixed externally, the counter values
are compared to obtain a single bit response (so-called herein as “sign bit”) depending
on the counter that reaches a larger value. Due to each pair of ROs only generating one
single-bit response, and only N /2 pairs of ROs being selected to provide non-correlated
output, the generation of bitstreams with a large number of bits requires implementations
with a large number of ROs.

This handicap is partially alleviated in the RO-PUF proposed in [17,18], which allows
more than one bit to be added to the PUF response for each comparison. Unlike the con-
ventional proposal in which the counting interval is fixed by an external clock, in this
case, the decision is taken when the counter of the faster RO overflows. Then, the counter
associated to the slower RO is stopped, and the response is taken from the output bits
of this counter. For the selection of the response bits, the authors analyzed the entropy
and the average probability and stability per bit, selecting those that provide the highest
entropy and average stability while keeping the average probability around 50%. Each RO
is used only once to generate the PUF response, splitting the N ROs into two banks of N /2
ROs, where the challenge signal selects one RO per bank, as illustrated in Figure 1b.

To further increase the PUF response length for a given RO bank size, it is neces-
sary to maximize the number of comparisons without compromising the PUF output bit
correlation [13]. Area efficiency can also be improved resorting to the use of dynamic
reconfiguration techniques available for current families of programmable devices [23],
as well as using comparison strategies such as those described later in this work.

Cryptography 2022, 6, 51 4 0f 20
challenge 1 E—— 3 }
rl :] : COUNTER 1
RO I 1l B .
e N :
e RO2 Y muxi !
H Overflow PUF response
RO 3 etecti h
|, - L — PUF response Detection | - more than
@ E E M~ (0/1 logic) o1

= SeaE N:1

et i i
1= B e o B LS

COUNTER 2

COUNTER 2

challenge 2 J
(a) (b)

Figure 1. Block diagrams of (a) conventional RO-PUF in [10], and (b) RO-PUF presented in [17].

In addition to the bits-per-area ratio, the main features that define the quality of a PUF
are its reliability and uniqueness. Reliability determines the extent to which the PUF
response is repeatable throughout the lifetime of the device, while uniqueness establishes
its potential to generate an output that is unique and identifies univocally to this device.
Both magnitudes can be quantified for a given PUF by evaluating the Hamming distances
between the codes resulting from the repeated application of the challenges sequence
to the same PUF (intra-Hamming distance, HDintra) and to other replicas of it placed
in other locations on the same programmable device or in the same location on different
programmable devices (inter-Hamming distance, HDinter), respectively. The optimal value
for the HDinter metric is 50%. The desirable value of HDintra is 0%, which means that
the response that produces a given PUF implementation is always the same.

Unfortunately, this last objective is hardly achieved as a consequence of different
sources of noise in the device as well as small changes in the operating conditions (mainly
operating temperature and voltage), which cause the PUF response to vary slightly in suc-
cessive applications of the same sequence of challenges. Under these circumstances, to im-
prove the repeatability of the PUF output for a sequence of challenges so that it can be used
in device authentication applications, a helper data algorithm must be applied to achieve
the required reliability. HDAs typically consider three stages: bit selection, Error-Correcting
Codes (ECCs), and entropy compression [24].

Bit selection is essential to ensure an acceptable starting value in the reliability of a PUF.
How this selection is carried out depends on the type of PUF. In PUFs that only use the sign
bit of the comparisons, it basically consists of choosing the RO pairs that are involved in each
comparison. The approach followed in [10] is to select ROs for each comparison of eight
possible candidates, choosing those with the largest frequency differences to increase
the robustness of the PUF against environmental variations and noise. In [11], the ROs are
placed as close as possible in a 2D matrix, and two adjacent ROs are used in each comparison.
A configurable Ring Oscillator PUF that allows choosing the most suitable stages in each
RO is described in [12]. Other techniques to improve the reliability of PUFs are based
on generating enable signals to activate only the ROs involved in the comparisons [13],
choosing the most appropriate challenge-response set [14,15], or using a sensor integrated
on-chip to select the pairs of ROs based on their performance in a temperature range [16].

In PUFs whose output incorporates more than one bit from each comparison, the ap-
propriate selection of these bits is essential to maximize the quality of the PUF. The subset
of metrics used to accomplish this task includes the average stability (S) and probability
(P) as well as the entropy per bit [17,18]. The ideal value for stability is 1, which means
that the bit output is reproducible in all responses (reliable). A value of 0.5 in the average

Cryptography 2022, 6, 51

50f 20

probability ensures that there is no tendency toward a given logical value (no bias). Finally,
to corroborate if the PUF output fulfills the uniqueness requirement, two metrics of entropy
are evaluated: the intra-entropy (Hintra) to evaluate the uniqueness of the PUF output
bits within each PUF implementation, and the inter-entropy (Hinter) to evaluate the bit
uniqueness for each of the RO pairs in different PUF implementations. A maximum entropy
(Hintra and Hinter) equal to 1 guarantees that there is no correlation between the different
output bits at each PUF, and there is no correlation between the same bits among different
implementations (unique and unpredictable).

The different bit-selection metrics often do not reach their ideal values. In these cases,
the other two stages of an HDA can be included to improve the performance of the PUFs
so that they can be used as reliable and robust hardware security elements. ECCs improve
the reliability of PUFs by reducing the effect of noisy output [25]. The proposed tech-
niques range from the use of a simple scheme (such as a repetition code) or a combination
of ECCs that are efficient in terms of resource consumption to more complex ones, which
significantly reduce the size of helper data, based on polar coding [26] or nested polar and
Wyner-Ziv coding [27]. Other pre- and post-processing techniques have been described
in the literature to improve the quality of identifier and secret key generation schemes,
although in most cases, they are difficult to implement on resource-limited embedded
systems. On the other hand, compression can be used to increase the entropy in the PUF
response in order to decrease correlations or bias that lead to information leakage that
can be exploited by an attacker to reduce the search space to obtain the secret. A hash
function can be used to improve the entropy of the PUF response and minimize leaks
by compressing the original output into a shorter one [28]. It is worth mentioning that
the usage of both ECC and entropy compression increases the number of bits required
from the PUF output to obtain a key of a given length.

A test structure to analyze different strategies for the design of RO-PUFs on Xilinx
programmable devices was recently described in [19] by the authors. In that study, dif-
ferent alternatives were considered for the number of stages of the ROs, the generation
of the challenges sequence, the choice of the size of counters, and the selection of the output
bits of the PUF. In particular, the two bit selection options described above (sign bit or bits
chosen from the slower counter) were compared, observing that each of them is appropriate
depending on the relative location of the two compared ROs. In addition, with the idea
of optimizing the response time of the PUF, tests were carried out using counter sizes
between 14 and 16 bits, showing a similar behavior in terms of the metrics used to evaluate
the reliability and uniqueness of the different configurations analyzed. Based on the results
of this previous study and incorporating some of the proposals that appear in the literature,
the following section describes the structure, building blocks, and functionality of a new
RO-PUF implemented as a configurable IP module with the following features:

* Compact: optimizes the use of logic elements available in the Configurable Logic
Blocks (CLBs) of Xilinx 7-Series programmable devices.

» Efficient: in terms of cost (bits per number of resources), by simultaneously compar-
ing two pairs of ROs and extracting two bits from each comparison, and regarding
operation speed (bits per unit of time), by allowing the effective counter size to be
adjusted depending on the target device.

¢ Functional: incorporates in the design a challenges generation mechanism, a bit
selection scheme, and an output memory to store the PUF response.

e Reusable: provided as a highly configurable IP module, with a standard connection
interface and drivers that make its use easy from the general-purpose processor
of an embedded system.

3. RO-PUF IP Module Design and Implementation

The internal structure of the proposed RO-PUF is shown in Figure 2. As with other
PUFs based on ring oscillators, its operation essentially consists of comparing the oscil-
lation frequencies of pairs of elements selected among those available in a bank of ROs

Cryptography 2022, 6, 51

6 of 20

(ro_bnk). To do this, the output signals of the two ROs being compared incrementally
increase the values of two counters, so that when one of them overflows, the counting
process is interrupted to identify the faster counter (which determines the sign bit) and
acquire the value of the slower counter (from which the rest of the bits for the PUF output
corresponding to this comparison will be extracted). The output of the RO-PUF is a bit-
stream conformed by the concatenation of the bits selected for each of the comparisons
after the complete challenges sequence has been applied.

rol rdata
—
ro_cmp
11 ro2 busy
e Ex "
sel2
ro
ro_chl | sel/3 ro_en & ro_bnk T l T puf_mem —r
seld ro3 full
rdata
ro_cmp
rod busy

n_challenges
L cmp_end cmp_rst puf_addw

| | or cmp_str
reset puf_ctrl Cmp,Cﬂppuf_ Tdr
puf_addr

Figure 2. Block diagram of the proposed RO-PUFE.

However, in our contribution, two simultaneous comparisons will be carried out
in parallel, taking advantage of the two different behaviors identified in [19], depending
on whether the comparison is made between two ROs implemented in LookUp Tables
(LUTs) placed in the same position of different CLBs or between ROs implemented in LUTs
placed in different positions within the same or a different CLB, thus doubling the bit
generation rate in the PUF response. The selection and enabling signals for the two pairs
of ROs to be compared in each comparison cycle are provided, respectively, by the chal-
lenges generation (ro_chl) and enable (ro_en) blocks. On the other hand, the information
provided by the two comparison blocks (ro_cmp) constitutes the input to the PUF output
block (pu f_mem). This block first chooses the most suitable bits for each of the two men-
tioned comparisons: in the first case, the sign bit plus a bit from the counter associated
to the slower RO that has adequate values of S, P, Hintra and Hinter, and in the second,
two bits of the counter incremented by the slower RO that meet the same condition. Fi-
nally, the PUF output, consisting of a bitstream generated by the concatenation of the bits
selected when applying the challenges sequence, is structured in 32-bit registers and stored
in the PUF internal memory, which can be read thought the AXI4 interface. The implemen-
tation details of each of the building blocks are described in the following subsections.

3.1. RO-PUF Building Blocks
3.1.1. RO bank (ro_bnk)

The main component of the RO-PUF is a matrix of Nx columns by Ny rows of CLBs,
in which each CLB implements four four-stage ROs. As illustrated in the schematic of
Figure 3a, three stages of each RO correspond to logic inverters, while the fourth is a NAND
gate whose objective is twofold: it closes the feedback loop of the ring oscillator and receives
the row and column enable inputs. The Xilinx Series-7 and Zyng-7000 CLBs include eight
LUTs, each of which can implement two independent Boolean functions of five inputs

Cryptography 2022, 6, 51

7 of 20

or less [29]. Therefore, by using appropriate placement directives in the VHDL description,
it is possible to place the four ROs in the same CLB, taking full advantage of the logical
resources of the programmable device.

J

L BT
ando
Jo nv00 inv10 v20 !] E—
n o 00 00 RG] S — s | t |
[o1 T E] Edd T LA Tl LA
013 = D 4 4
L and1 ES .
10 invo1 invi1 inva21 — = bl b~ 7\
—~n of——Jw o}—Jo o]0 o} il 4 ,_ 3
e LT i T1 E= | £
LT3
& & o -
| e ¥
1o inv02 invi2 inv22 T 3] i 4)
n o0 o 0w o]l—{w o} i= pio
2 LuT1 LUT LuT1
LT3 o o
L and3
o inv03 inv13 inv23
n ol—Jw o 0 o 0 o
— e LuT1 LUTA LUT1
T3

(b)
Figure 3. Four four-stage ROs implemented on a CLB: Schematic (a) and device (b) representation.

Another question arises regarding the location of the ROs within the CLB. It is usually
argued that the two ROs to be compared in a PUF must have identical layouts, so that
the difference in their oscillation frequencies is only due to variations in the manufacturing
process. Information concerning the internal layout of programmable devices is not usually
available to designers, but it is reasonable to assume that the same geometric pattern is
maintained in CLBs with the same functionality. Considering that the left and right slices
of certain CLBs provide different functionalities and, therefore, their layouts must differ,
in the proposed design, location constraints are used to force a horizontal layout (shown
in Figure 3b) in order to obtain closer oscillation frequencies between the ROs.

3.1.2. Challenges Generator (ro_chl)

The challenges generator block provides the challenges sequence that determines the two
pairs of ROs to be compared in each comparison cycle. Any pair of ROs can be compared,
including those located on the same CLB. The block provides four outputs (sell, sel2, sel3, sel4)
that are connected to the enable signal generator block and to the control inputs of the multi-
plexers that select the ROs that will act as clock inputs in the comparison blocks. The sel1 signal
is generated by a counter, which increments by one (sell = sell + 1) on each comparison cycle.
The other selection signals depend on sel1 according to Equation (1),

sel2 =sell +1+s_inc x4; sel3=sell+2;, seld=sell+6-+s_incx4 1)
where s_inc allows us to define the distance, in terms of number of CLBs, between ROs.

The sell and sel2 signals determine the two ROs involved in the first comparison. They
select ROs implemented in LUTs located at different positions in the same or contiguous
CLBs (if s_inc = 0) or in two different CLBs (for s_inc in [1, Nx x Ny — 1]). On the other
hand, sel3 and sel4 control the ROs participating in the other simultaneous comparison.
The elements selected by these signals correspond to ROs implemented in LUTs located
at the same position of two CLBs that are contiguous (s_inc = 0) or separated by a certain
distance (s_inc # 0).

To provide flexibility to choose different configurations, the proposed RO-PUF in-
cludes an online mechanism to select whether the two simultaneous comparisons are
made between the closest or farthest ROs of each type within the RO-bank. Depending

on the value of the NR (Nearby /Remote) option, in the first case, a null value is set for s_inc,

Cryptography 2022, 6, 51

8 of 20

while in the second case, an internally calculated value is used based on the parameters Nx
and Ny that determine the size of the PUF RO-bank.

3.1.3. Enable-Signals Generator (ro_en)

With the goal of minimizing the activity of the components of the RO-block to reduce
energy consumption and avoid mutual influences between them, only the four ROs corre-
sponding to the applied challenge are activated in each comparison cycle. The enable signal
generation block (ro_en) is responsible for activating row (Ey) and column (Ex) enable
signals, which close the feedback loop of the four ROs indicated by sel1-sel4. To simplify
the implementation of this block, only values of Nx that are powers of two are allowed
in the PUF design.

3.1.4. Comparison Block (ro_cmp)

Two identical comparison blocks (ro_cmp) are included in the PUF to perform the two
simultaneous comparisons that provide the response corresponding to a challenge. Each
of these blocks contains two counters, which use as count signals the output of the two
selected ROs, as well as the logic required to stop the operation of the other counter when
one of them reaches the maximum value.

The maximum size of the counters is fixed through a parameter established when
synthesizing and implementing the design. However, with the idea of minimizing the PUF
response time and optimizing it for different target devices, the count_st input shown
in the block diagram of Figure 2 can be used to define an effective length less than the max-
imum in each invocation of the PUF.

The comparison cycle starts simultaneously in both blocks, when the cmp_str signal is
activated by the PUF control block, and it ends when the busy outputs of both blocks go
down to 0 to indicate that one of the two counters has reached its maximum value. Then,
the signals that identify the faster counter in one of the blocks and the output of the slower
counter in both blocks are accessible to the input of the last stage in the block diagram
of the design.

3.1.5. PUF Output Block (puf_mem)

The functionality of the PUF output stage (puf_mem) is twofold. On the one hand,
it selects the bits that will be part of the PUF response for each challenge. On the other hand,
as the application of the sequence of challenges progresses, it is in charge of structuring
the successive responses in 32-bit registers and storing them in a memory, from which
the PUF output will be read once its operation has been completed.

The selected bits depend on the type of ROs being compared as well as on a configura-
tion option (Lower/Higher) defined at run-time by the user. For comparisons between ROs
implemented in LUTs located in different positions of the CLB, bits 6 and 7 (for notation
purposes, we call bit 0 the sign bit, and the rest of the bits are named in ascending order, bit
1 being the MSB of the counter value, as so-called in other works in the literature [17-19])
(for the Lower option) or bits 7 and 8 (for the Higher option) of the slower counter are
chosen to form part of the PUF output. On the other hand, in comparisons between ROs
implemented in LUTs located in the same position of different CLBs, their contribution
to the output of the PUF will consist of the sign bit in combination with bit 7 (Lower option)
or 8 (Higher option) of the slower counter.

The four bits selected in each comparison cycle are sent to a 32-bit shift register, which
is in charge of organizing the PUF output bitstream in registers of this size and storing
them in consecutive locations in the PUF memory, which are implemented using Block
RAM (BRAM) in the programmable device. The PUF output can be accessed from outside
the design using the address and data buses associated with this memory.

Cryptography 2022, 6, 51

9 of 20

3.1.6. Control Block (puf_ctrl)

The control signals necessary to coordinate and sequence the operation of the different
blocks are provided by the puf_ctrl block. The VHDL description of this block includes
two types of components: a Finite State Machine (FSM) to generate the signals controlling
the comparison cycles and a series of processes to generate the signals defining the different
operation phases and controlling the access to the PUF memory.

The FSM receives two external inputs: n_challenges, which defines the number of chal-
lenges used in the PUF invocation (i.e., PUF-length/4), and puf_str, which sets the start
of the PUF operation, as well as the internally generated crmp_end signal indicating the com-
pletion of the two comparisons. It provides as output the cmp_rst and cmp_start signals,
to initialize and start the comparisons, respectively, and the cmp_cap signal, to capture
the bits selected in the two simultaneous comparisons.

Figure 4 shows the FSM state diagram. FSM operation starts from an IDLE state
in which the three output signals (cmp_rst, cmp_str, and cmp_cap) are deactivated by
setting them to 0. When the puf_str signal goes high, the FSM goes to the CMP_RESET
state, and cmp_rst is activated to reset the counters of the two comparison blocks. After
one clock cycle, the FSM goes directly to the CMP_DLY state and deactivates cmp_rst, and
after another clock cycle, it goes to the CMP_START state and activates cmp_str to start
the operation of both comparison blocks. The FSM waits in the CMP_CYCLE state until
both comparisons are complete and the cimp_end input is set. When this happen, it goes
to the CMP_CAPTURE state and activates cmp_cap to capture the four bits that are sent
to the shift register to be part of the PUF output. In the next clock cycle, the FSM returns
again to the IDLE state, waiting for the start of a new comparison cycle.

puf_str=0 cmp_end = 0

done = X
Q < Q N
N\ co 2 e N e v -
IDLE "y | CMP_RESET CMP_DLY CMP_START S CMP_CYCLE S |CMP_CAPTURE
3 e o ol
cmp_rst=0 “CELI 3 cmp_rst=1 cmp_rst=0 cmp_rst=0 5 cmp_rst=0 5 cmp_rst=0
cmp_str=0 cmp_str=0 cmp_str=0 cmp_str =1 cmp_str =0 cmp_str=0
cmp_cap =0 cmp_cap=0 cmp_cap=0 cmp_cap =0 cmp_cap =0 cmp_cap =1
p_cap D, \° p_cap D, \° p_cap P, \° p_cap p_cap p_cap

Figure 4. State diagram of the FSM included in the control block.

Each time the cmp_cap signal goes high, indicating that a comparison cycle has fin-
ished, a counter is incremented to record the number of challenges evaluated. When
eight challenges have been completed, the puf_Idr signal is activated to store the content
of the shift register in the PUF memory location indicated by puf_wa, and its value is
increased by one. Finally, when the number of evaluated challenges is equal to the value de-
fined by the n_challenges input, the done output signal is activated to indicate that the PUF
operation has finished.

3.2. IP Encapsulation and Test System Integration

The PUF design has been encapsulated as a configurable IP module with an Advanced
Extensible Interface (AXI) bus for interconnection with general-purpose processors. The se-
lected protocol, AXI4-Lite, allows for low resource implementation, which is especially
suitable for connecting processors with memory-mapped low- or medium-speed peripher-
als. The interface uses three channels for write operations (address, data, and response)
and two more for read operations (address and data), with 32 or 64 bits for width of data.

The inputs and outputs represented in Figure 2 in blue and red, respectively, are
connected to four 32-bit registers following the bit association scheme shown in Figure 5.
The input register CONTROL is used to provide the PUF with the number of challenges

Cryptography 2022, 6, 51

10 of 20

(n_challenges), the counter-stop mask (count_st), and configuration options (LH and NR),
as well as to send the PUF initialization (reset) and operation start (puf_str) signals. All
fields are fixed lengths except for the first one, which depends on the size established when
implementing the PUF. PUFADDR is also an input register that is used to access the PUF
memory once its operation has finished. The maximum number of bits to represent the read
memory addresses (puf_addr) is adequately adjusted when the design is synthesized,
depending on the length of the PUF response and, consequently, the number of memory
cells required to store it. The DATAOUT output register contains three fields. ID is a user-
defined identifier, which can be set by the designer for debugging or verification purposes
when he/she instances the IP into a higher-level design. On the other hand, puf_end
is a signal that indicates the PUF has finished its operation, while puf_addw contains
the address of the last memory position containing the PUF output, so allowing the user
to corroborate that it has the expected length. Finally, the PUFOUT register provides
in the 32-bit puf_out field the content of the PUF memory location addressed by puf_addr.

31 24 16 8 0
CONTROL n_challenges count_st |5 |Z ; g
PUFADDR puf_addr
DATAOUT D puf_addw ;
PUFOUT puf_out

Figure 5. Input and output IP module registers.

To optimize its implementation and facilitate its use in different applications, the de-
sign of the PUF has been extensively parameterized. Some of these parameters can be
defined by designers through a Graphical User Interface (GUI) when using Vivado’s IP
integrator tool to incorporate the PUF into their design. Specifically, the set of parameters
that can be defined through the PUF GUI includes the number of rows (Ny) and columns
(Nx) of adjacent CLBs that make up the RO-bank, its location within the programmable
device (Xo, Yo coordinates), the maximum number of bits of the counters used to compare
the frequencies of the ROs (Nbc), and the identifier associated with the PUF (ID).

Test System

Programmable SoCs that combine a Processor System (PS) and Programmable Logic
(PL) in an integrated circuit have become excellent platforms for the prototyping and
implementation of small series of devices for validation and performance analysis of new
designs. They put together the flexibility provided by software with the efficiency gained
by implementing part of the system on dedicated hardware specially tailored to a given
application. Taking advantage of these features, a test system has been implemented
in the Xilinx Zynq-7000 SoC device available on the Pynq-Z2 development board to facilitate
the validation and characterization of the proposed PUF through a series of routines
encoded in C language and executed on one of the ARM cores provided by the device.

The test system instantiates 10 identical RO-PUF IP modules, each with 8 rows and
15 columns of CLBS (containing 480 ROs) and a maximum counter size of 15 bits. The loca-
tions of the PUF RO-banks are distributed in the different clock zones present in the device.
The remaining components of each PUF are placed in resources belonging to the same clock
zone and close to the RO-bank with the help of ‘pblock” directives. Figure 6 shows a sym-

Cryptography 2022, 6, 51

11 of 20

bolic representation of the programmable device, in which the distribution of the different
PUFs can be observed. Orange cells correspond to the RO-banks whose positions were
established when the PUFs were instantiated. The purple boxes mark the zones defined by
the “pblock’ directives to locate the other components of each PUF. Finally, the cells in green
show the device resources that are fully or partially used.

Each of the PUFs occupies 1862 LUTs (3.50% of the resources in the device) where
960 LUTs (1.80%) are used by the matrix of ROs. It also consumes 365 (0.34%) Slice
Registers, 256 (0.96%) F7 Muxes, 119 (0.89%) F8 Muxes, and 0.5 (0.36%) BRAMS. The amount
of resources consumed by the complete test system, including those implementing the AXI4
infrastructure required to connect the PUFs and the PS, are 19289 LUTs, 4270 Slice Registers,
2560 F7 Muxes, 1190 F8 Muxes, and 5 BRAMS.

i f f

f
i
i
i

| O S O S I O —

T T T

i (Bp i j i
pbloftk fpufah A [pbidkk bufah 1 |[pHilock pufdh 2. pufgh i3

Figure 6. Device view of the test system implementation.

4. RO-PUF Characterization

The objective of the RO-PUF characterization task is twofold: on the one hand, verify
that the bits selected in each comparison according to the possible options present adequate
values of stability, probability, and entropy; on the other hand, obtain a series of metrics
that allow evaluating how the setting of the different configuration options affects the PUF
reliability and uniqueness.

To meet this dual objective, an extensive battery of tests has been developed taking
advantage of the Python Productivity for Zynq (PYNQ) environment available for Pyng-Z2
boards [30]. It provides a Python framework on an embedded Linux operating system,
which simplifies the interaction between the hardware and software components of an em-
bedded system. For efficiency reasons, in this work, we use the C-API available in [31],
which provides the same functionality through a set of C routines that can be compiled
to generate executable code. This API includes functions to handle the hardware elements
integrated into PYNQ as a hardware equivalency to software libraries.

A series of specific test functions have been coded in C in order to repeatedly invoke
the different PUFs instantiated in the test system and capture the corresponding output
data. When these tests are launched, the number of challenges, the number of tests, i.e.,
the number of PUF calls, and the debug level can be configured by the user. Different
strategies can also be applied by combining configuration options for the selection of lower
or higher bits, nearby or remote ROs, and the effective size of counters. Once the tests are

Cryptography 2022, 6, 51

12 of 20

run through command-line or shell scripts, the output data are captured and stored in files
for posterior processing.

To carry out the study, 10 development boards were used, each one implementing
the test system with 10 PUFs, which means a total of 100 different RO-PUFs. In all cases,
the four configuration options that arise when considering the relative position of the ROs
involved and the bits selected in each comparison were analyzed. The number of calls
to each PUF and the effective length of the counters varied depending on the specific
objective of the test performed. Once the data are captured, a set of MATLAB scripts
and functions are used to calculate the different metrics that allow evaluating the quality
of the proposed PUFE.

4.1. Bit-Selection Analysis

Figure 7 shows the average stability (S), probability (P), and entropy (Hintra and
Hinter) per bit, which are calculated when a complete sequence of 480 challenges is applied
1000 consecutive times to each of the 100 PUF, and the obtained responses, each of them
composed of a stream of 1920 bits, are captured and processed. The data in each bar graph
are grouped according to the four alternatives that arise when considering the possible
combinations of the LH and NR configuration options. In all cases, label 1 corresponds
to the sign bit of the second comparison, while the bits represented by the other three labels
depend on the specific configuration: label 2 is bit 6 (L) or 7 (H) of comparisons between
ROs implemented in LUTs that occupy the same positions in different CLBs; labels 3 and 4
correspond to bits 6 and 7 (L) or 7 and 8 (H) when comparing ROs implemented in LUTs
located at different positions.

Average stability per bit

0.9400
0.9300
0.9200

Average probability per bit

5.
0.5600
05400
0.5200
0.5000 I I I I

Higher/Remote Higher/Nearby Lower/Remote Lower/Nearby Higher/Remote Higher/Near by Lower/Remote Lower/Nearby
ml m2 3 4 ml m2 3 4
(a) (b)
Hintra per bit Hinter per bit

1.00
09950

0.9900

0.9850

0.9800

0.9750

09700 I I

09650

Higher/Remote Higher/Nearby Lower/Remaote Lower/Nearby Higher/Remote Higher/Nearby Lower/Remote Lower/Nearby
mlmlm3nd mlelmimd
(c) (d)

Figure 7. Average stability (a), probability (b), and entropy per bit (c, d).

As can be seen in the graphs, the configurations that use lower bits of the counters (L)
present greater stability and probability, although their entropy values are lower than those
of the configurations that use higher bits (H), which was predictable. As for the relative
position of the compared ROs, no significant differences in stability are observed for config-
urations comparing nearby (N) or remote (R) ROs, although it does seem to affect the other
three metrics in some way but without showing a clear trend for any of the bits considered.

Cryptography 2022, 6, 51

13 of 20

Once we verified that the bits selected in the different configurations meet the con-
ditions required to form part of the PUF output, the following sections show the results
of the tests carried out to determine their performance in terms of reliability and uniqueness.

4.2. PUF Performance Evaluation

As mentioned in the Introduction to this work, HDintra and HDinter are the metrics
commonly used to assess the reliability and uniqueness of a PUF. Therefore, the results ob-
tained when the RO-PUF behavior is evaluated considering different operating conditions
are summarized below. Several analyses have been carried out in order to determine: (a) the
influence of selecting Lower or Higher bits and Nearby or Remote ROs, to check which
strategy provides better performance; (b) the impact of the effective size of the counter
to minimize the PUF response time; and (c) the incidence of the number of calls to the PUF
to verify the generality of the results obtained.

4.2.1. Selection Strategies

This study was carried out on the same number of PUFs used to perform the bit
selection analysis. Data obtained in 1000 successive calls to a total of 100 PUFs, with
480 ROs each and an effective counter size of 14 bits, were processed with the help of a series
of MATLAB functions and scripts coded for this specific purpose. The mean HDinter values,
as well as the mean, minimum, and maximum H Dintra values, for each PUF of the test
system, corresponding to the four possible configurations or comparison strategies, are
shown in Figure 8.

Boards = 10
00 - Higher bits/Remote ROs 01 - Higher bits/Nearby ROs
PUF HDInter HDIntra HDIntra_min HDIntra_max PUF HDInter HDIntra HDIntra_min HDIntra_max
001 43.05 3.22 2.68 4.12 001 43.53 31 2.52 3.76
002 43.42 3.08 2.59 3.75 002 42.95 3.28 2.82 3.78
101 41.89 3.08 2.64 3.60 101 42.65 3.17 2.49 3.85
102 41.69 3.02 2.50 3.39 102 42.39 2.98 2.59 3.71
011 43.08 3.18 2.63 3.90 011 43.25 3.20 2.64 3.82
111 40.65 2.95 2.42 3.33 111 40.38 3.13 2.63 4.07
112 41.51 3.02 243 3.55 112 40.82 3.13 2.89 3.55
021 43.25 3.13 2.70 3.88 021 43.90 3.16 2.58 3.65
121 41.51 3.04 247 433 121 40.89 3.21 2.25 5.22
122 43.73 2.90 2.32 3.62 122 43.52 3.21 2.63 3.90
All 48.94 3.06 2.32 4.33 All 48.89 3.16 2.25 5.22
10 - Lower bits/Remote ROs 11 - Lower bits/Nearby ROs
PUF HDInter HDIntra HDIntra_min HDIntra_max PUF HDInter HDIntra HDIntra_min HDIntra_max
001 40.34 1.43 0.94 1.95 001 40.27 1.51 1.40 1.73
002 40.80 1.46 1.28 1.59 002 39.51 1.56 127 1.84
101 39.92 1.50 1.14 2.07 101 39.89 1.53 116 1.89
102 39.48 1.48 1.14 2.00 102 39.02 1.42 1.19 1.64
011 40.43 1.52 1.29 2.01 011 39.90 1.51 115 2.15
111 38.79 1.44 0.90 1.85 111 38.41 1.52 1.20 1.80
112 39.19 1.43 1.19 172 112 38.05 1.50 118 1.77
021 40.58 148 1.20 1.80 021 40.36 1.58 128 1.90
121 39.48 1.54 1.21 2.32 121 38.92 1.64 116 2.75
122 41.36 1.39 0.92 1.84 122 40.30 1.56 1.01 2.01
All 47.93 1.47 0.90 2.32 All 47.52 1.53 1.01 2.75

Figure 8. HDinter and HDintra values for different selection strategies of bits and ROs.

The first 10 rows of each table show the values of HDinter and HDintra associated
to each of the PUFs instantiated in the test system. The value of HDinter corresponds,
in this case, to the average Hamming distance between the responses of a given PUF and
those of the PUFs implemented in the same position in the other nine development boards.
The mean, minimum, and maximum values of HDintra are calculated as the average,
minimum, and maximum, respectively, of the Hamming distances between the successive

Cryptography 2022, 6, 51

14 of 20

responses of the same PUF. The last row in each table collects global values when consider-
ing all PUFs. HDinter is now calculated as the average of the Hamming distances between
the responses of one PUF and those of the other 99 PUFs. HDintra, HDintra_min, and
HDintra_max correspond to the mean, minimum, and maximum values of the top 10 rows.

As can be seen from the global values highlighted in Figure 8 (and summarized in Table
1 for the sake of a better comparison), HDinter values range from 47.52 (Lower bits/Nearby
ROs) to 48.94 (Higher bits/Remote ROs), while the HDintra mean ranges from 1.47 (Lower
bits/Remote ROs) to 3.16 (Higher bits/Nearby ROs). Considering each of the options
separately, the Lower option provides better performance in terms of reliability (lower
HDintra); however, the HDinter is less than 48%. The Higher option allows increasing
HDinter by more than one point, but at the cost of doubling the HDintra value. Different
behavior is obtained when selecting the test strategies between Nearby or Remote ROs. In
this second case, the mean values of the reliability and robustness indicators of the PUFs
are slightly better when Remote ROs are compared.

Table 1. HDinter and HDintra for different strategies.

Strategy HDinter HDintra HDintra_min HDintra_max
Higher/Remote 48.94 3.06 2.32 4.33
Higher/Nearby 48.89 3.16 2.25 522
Lower/Remote 47.93 1.47 0.90 2.32
Lower/Nearby 47.52 1.53 1.01 2.75

These data are consistent with the stability and entropy values of the PUF bits obtained
in Section 4.1. A lower HDintra value implies a lower Bit Error Rate (BER) and therefore bet-
ter reliability. On the other hand, a value of HDinter closer to 50% improves the uniqueness
and resistance of the PUF to possible attacks. In this way, by setting the different configura-
tion parameters of the proposed RO-PUF, the selection strategy of bits and /or ROs can be
chosen at run-time to establish a reliability /robustness trade-off suitable for a particular
application context.

4.2.2. Effective Counter Size

In order to analyze the timing response of the PUF, a specific study was carried out
to evaluate the impact of the effective size of the counters used when comparing RO
pairs. In this case, the metrics were calculated for 30 PUFs distributed on three different
boards, using the responses obtained by calling each PUF 1000 times with sequences of 480
challenges. Table 2 shows the HDinter and HDintra values for PUFs with an effective
counter size of 13 and 14 bits, using the Higher option in the upper two rows and Lower
option in the lower two rows to compare equivalent bits.

Table 2. HDinter and HDintra for different effective counter size.

Size Strategy HDinter HDintra HDintra_min HDintra_max
13 Higher/Remote 48.14 1.46 1.03 2.33
13 Higher /Nearby 4791 1.52 115 2.74
14 Higher/Remote 48.02 1.41 0.90 2.32
14 Higher/Nearby 47.67 1.53 1.01 2.75

The results of this test allow us to verify, as expected, that the behavior of the PUF
when using the Higher bits with an effective counter size of 13 bits is similar to that obtained
with the Lower bits and an effective counter size of 14 bits, with the clear advantage that
in the first case, the response time of the PUF is reduced by half.

The time invested by the PUF to provide the response depends on the characteristics
of the programmable device in which it is implemented (family, part, and speed grade),
which determine the average oscillation frequency of the ROs as well as the parameters

Cryptography 2022, 6, 51

15 of 20

used when implementing the IP module (Nx, Ny, Nbc), which determine the number
of comparisons and the number of clock cycles per comparison. For illustrative purposes,
Figure 9 shows the variation in the response times of one of the PUFs included in the test
system implemented on the Pyng-Z2 boards when the effective size of the counters varies
between 12 and 16 bits. The typical oscillation frequency of the ROs on this development
board was about 315 MHz, so the 480-RO PUF spends almost 30 ms to provide the response
when using 14-bit counters, but it uses only a little more than half of this time when
the effective size of the counters is reduced to 13 bits.

Response time vs. counter size

16 15 14 13 12
Mbc

Figure 9. Response time (in ms) versus effective counter size (in bits) for one of the 480-RO PUFs
implemented in the test system.

4.2.3. Number of PUF Calls

To complete the characterization of the proposed PUF, a final test was performed with
the idea of verifying the long-term generalization of the results obtained. For this, three
successive series of 3000 calls each were made, and data corresponding to 3000, 6000 and
9000 calls were processed to determine the influence of the number of calls on the PUF
metrics. To carry out this study, the responses of nine different PUFs distributed in three
development boards were considered. Again, PUF responses correspond to the application
of a sequence of 480 challenges and provide 1920 bits.

Bit selection metrics (such as those presented in the analysis described in Section 4.1) are
shown in Figure 10 for the case in which the PUFs are configured to use the Lower/Nearby
options to select bits and ROs, respectively. The results of the other three selection strategies
show the same trend, so they have not been included.

As can be seen in the bar charts in the figure, only the average stability per bit shows
a very slight decrease (less than a thousandth) when the number of calls to the PUFs doubles
and triples, while the variations are practically negligible for the other three metrics.

These data are also consistent with the global values of HDinter and HDintra shown
in Table 3, where it can be seen that the HDinter values are similar for all cases and that
the average and minimum values of HDintra increase a little bit with the number of
responses considered.

Cryptography 2022, 6, 51

16 of 20

Average stability per bit Average probability per bit
1.0000 0.6000
0.9950 0.580¢
9850
0.9750
o I I I | I I I I
9600
1 1 2 3 4
m3000 m 6000 9000
(a) (b)
Hintra per bit Hinter per bit
0050 9200
0.9750 .
peess I I I : II ||
0.9600 0.7800
1 2 3 4 1 2 3 4
m3000 m 6000 9000 m3000 m 6000 9000
(c) (d)

Figure 10. Average stability (a), probability (b), and entropy per bit (c,d) versus number of calls
for the Lower/Nearby selection strategy.

Table 3. HDinter and HDintra versus number of responses for the Lower/Nearby selection strategy.

N HDinter HDintra HDintra_min HDintra_max
3000 47.03 1.54 1.09 2.12
6000 47.05 1.61 1.13 2.15
9000 47.06 1.63 1.17 2.07

5. Generation and Recovery of Secret Keys Based on RO-PUFs

To illustrate one of the main applications of PUFs, the use of the proposed RO-PUF
to generate and retrieve secret keys is discussed in this section. In this example, a simple
ECC consisting of a repetition code scheme is used to deal with the variability in successive
PUF responses that has become apparent when evaluating HDintra in the previous section.

The scheme to obfuscate and retrieve a secret key using the RO-PUF response and
an ECC for a given repetition code, 7, is shown in Figure 11. In the enrollment (or ob-
fuscation) phase, the secret is extended by replicating r times each bit of the key. Later,
the extended key is XOR-ed with the RO-PUF response (which should have the same
length of the extended secret, that is, n x r in which # is the length of the secret key). As
a result of the XOR operation between the extended secret key and the RO-PUF response,
helper data are obtained. Helper data are non-sensitive data that can be public and stored
in any place of the system without being ciphered. In the recovery phase, the secret key is
recovered using the helper data generated in the enrollment phase and a new PUF response,
which can differ slightly from the one used in the previous phase. The helper data and
the new PUF response are XOR-ed to form a new extended secret key, from which the secret
key is recovered using an ECC with the same repetition code used in the enrollment. If
the PUF response is reliable and robust, only the PUF instance that obfuscated the secret
key is the one that can retrieve it, even whether a counterfeit RO-PUF instance has access
to the helper data.

To demonstrate the capacity of the proposed RO-PUF to be used as a basic element
of an HDA [32], a study was carried out with MATLAB using data obtained from 90 PUFs
configured to use the Higher/Nearby selection strategy.

Cryptography 2022, 6, 51

17 of 20

extended secret

secret

Y

) 4
r\ Hel
> per Data
N
PUF ID
(a)
Helper Data
A
» tended secret' > ECC > secret
\ / ex
PUF ID! i)

(b)

Figure 11. HDA scheme to obfuscate (a) and retrieve (b) a secret key using the RO-PUF.

For each RO-PUF instance, a key was first obfuscated, and then, recovery was attempted
using the PUF responses from the same RO-PUF and using the responses from the other
89 RO-PUFs. It was expected that for a given repetition value, only the RO-PUF instance that
obfuscated the key would be able to recover it with a desirable False Negative Rate (FNR) of 0,
and the rest of the instances would never be able to recover it, which means a False Positive
Rate (FPR) of 0. In agreement with the expected results, the calculated FNR for 10 different
PUF instances on different boards, after retrieving 1000 times a 128-bit secret key using the
1920 response bits of a PUF, was equal to 0 for an ECC repetition code with r = 15, which
implies that the secret key could always be retrieved. Likewise, for the same repetition value,
the FPR was also always 0, so the secret key could never be retrieved for a PUF instance other
than the one used to obfuscate it.

This analysis was also performed by varying the operation conditions of the devices,
for which different data sets were collected at different temperatures (0, 14, 28, 42, 56, 70 °C).
For each of the data sets collected at a fixed temperature, a key is obfuscated and recovered
using the PUF responses of the same RO-PUF and using the PUF responses of the other
89 RO-PUFs for different values of r. The experiment was performed by establishing
the temperature values over the Pynq boards with a Thermonics temperature source [33]
in the lab. Figure 12 shows the minimum value of 7, where the FNR and FPR are zeros
for each of the data sets. It is concluded that it is necessary to use an r = 19 for success
in all the experiments; that is, the key is always recovered for each of the RO-PUF devices
at each of the temperatures considered and without any counterfeit device recovering it.

Repetition code value vs Temperature

17
15
13
1
9
7
5
3
1
0 14 25 28 42 56 70

Temperature (T)

Repetition code (r)
-

Figure 12. Repetition Code Value vs. Temperature (in °C).

Cryptography 2022, 6, 51

18 of 20

6. Conclusions

This work addresses the design of a new RO-PUF that is efficient in terms of area
and speed of operation as well as its use to generate identifiers and keys for the microelec-
tronic devices in which the PUF is attached /embedded to. The system takes advantage
of the resources available in the CLBs of Xilinx 7-Series programmable devices to place
four four-stage ROs within one CLB, providing a very compact solution in which the ROs
are located in an array of Nx x Ny CLBs. It also includes a challenges generation mech-
anism that allows two comparisons to be made in parallel. In both cases, the oscillation
frequencies of two Ring Oscillators are compared. One comparison is made between ROs
situated at different positions of the CLBs, and the other is made between ROs placed
at the same positions of different CLBs. In the first case, two bits of the slower counter are
selected to form part of the PUF output, while in the latter, a single bit of the slower counter
and the sign bit that indicates which of the two ROs oscillates at a higher frequency are
selected. The output of the RO-PUF, formed by the concatenation of the four bits obtained
for each challenge, is stored in an internal memory as a sequence of 32-bit registers. This
strategy ensures non-correlation between data while allowing the number of output bits
obtained in [17,18] to be doubled without significantly increasing either the resources used
in the FPGA or the time spent obtaining the PUF response.

The RO-PUF is provided as an IP module, in which an AXI4-Lite interface has been
incorporated so that it can be easily integrated into an embedded system. The dimensions
of the CLB array, its location within the FPGA fabric, and the maximum size of the counters
can be configured before it is implemented. In addition, the PUF functionality can be
configured by using the I/O registers mapped into the memory space of the embedded
processor. By means of this mechanism, it is possible to determine when invoking the PUF
the length of the sequence of challenges and the effective size of the counters as well
as to define the strategy to select the position (Nearby/Remote) of the ROs being compared
and the location (Lower/Higher) of the bits contributing to the PUF output.

An extensive set of tests has been performed to verify design decisions and characterize
the quality of the PUF in terms of the reliability and uniqueness of the outputs it provides.
The results of this study show that the different configuration options allow for establishing
different reliability /robustness trade-offs as well as optimizing the response time of the PUF
depending on the target device in which it is implemented. In addition, using an ECC with
a repetition code equal to 15, the feasibility of the PUF as a basic element of an HDA used
to generate and recover 128-bit keys with null values of FPR and FNR has been verified.

Finally, although a preliminary characterization of the PUF against changes in temper-
ature has been carried out, a more complete characterization against variations in other
operating conditions, such as supply voltage and aging, together with the incorpora-
tion of selection techniques that allow increasing the reliability of the PUF, will be some
of the tasks that we plan to address as a continuation of this work.

Author Contributions: All authors have actively participated in the planning and development of this
work. They also collaborated in extensive tests for the characterization of PUFs and in the writing
of the paper. M.C.M.-R. programmed the scripts to automate the processing data from PUF responses,
L.ER.-M. performed the verification of both the IP module design and the test system implementation.
E.C.-R. prepared the visual support of the published work. S.S.-S. provided the design methodology
for the RO-PUF and developed the test battery for its characterization. P.B. coordinated the funding
acquisition to support the activities leading to this publication. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported in part by the SPIRS Project with Grant Agreement No. 952622
under the EU H2020 research and innovation programme and the ARES Project PID2020-116664RB-
100 funded by MCIN/AEI/10.13039/501100011033 and the EU NextGenerationEU/PRTR. M.C.M.R.
holds a Postdoc fellowship from the Andalusia Government with support from PO FSE of EU. E.C.R.
is supported by the FPU20/03008 predoc grant from the Spanish government.

Institutional Review Board Statement: Not applicable.

Cryptography 2022, 6, 51 19 of 20

Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ASIC Application-Specific Integrated Circuit
AXI Advanced Extensible Interface
BER Bit Error Rate

BRAM Block Random-Access Memory
CLBs Configurable Logic Block

DRAM Dynamic Random-Access Memory
ECC Error-Correcting Code

FNR False Negative Rate

FPGA Field-Programmable Gate Array
FPR False Positive Rate

FSM Finite State Machine

GUI Graphical User Interface

HDA Helper Data Algorithm

IoT Internet of Things

IP Intellectual Property
LUT LookUp Table

PL Programmable Logic
PS Processor System

PUF Physical Unclonable Function
PYNQ Python Productivity for Zynq
RO Ring Oscillator

SoC System on Chip

SRAM Static Random-Access Memory

References

1. Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating Critical Security Issues of the IoT World: Present and Future Challenges.
IEEE Internet Things]. 2018, 5, 2483-2495. [CrossRef]

2. Meneghello, E; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security
Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182-8201. [CrossRef]

3. Xu, T.; Wendyt,].B.; Potkonjak, M. Security of IoT systems: Design challenges and opportunities. In Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2-6 November 2014; pp. 417-423.
[CrossRef]

4. Hameed, A.; Alomary, A. Security issues in IoT: A survey. In Proceedings of the 2019 International Conference on Innovation and
Intelligence for Informatics, Computing, and Technologies (3ICT), Sakhier, Bahrain, 22-23 September 2019; pp. 1-5. [CrossRef]

5. Shamsoshoara, A.; Korenda, A.; Afghah, F; Zeadally, S. A survey on physical unclonable function (PUF)-based security solutions
for Internet of Things. Comput. Netw. 2020, 183, 107593. [CrossRef]

6. Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical One-Way Functions. Science 2002, 297, 2026-2030. [CrossRef] [PubMed]

7. Saraza-Canflanca, P.; Carrasco-Lopez, H.; Santana-Andreo, A.; Brox, P; Castro-Lopez, R.; Roca, E.; Fernandez, F. Improving
the reliability of SRAM-based PUFs under varying operation conditions and aging degradation. Microelectron. Reliab. 2021,
118,114049. [CrossRef]

8. Tehranipoor, F; Karimian, N.; Xiao, K.; Chandy,]. DRAM based intrinsic physical unclonable functions for system level security.
In Proceedings of the 25th Edition on Great Lakes Symposium on VLSI (GLSVLSI'15), Pittsburgh, PA, USA, 20-22 May 2015;
pp. 15-20. [CrossRef]

9. Sutar, S; Raha, A.; Raghunathan, V. D-PUF: An intrinsically reconfigurable DRAM PUF for device authentication in embedded
systems. In Proceedings of the 2016 International Conference on Compliers, Architectures, and Sythesis of Embedded Systems
(CASES), Pittsburgh, PA, USA, 1-7 October 2016; pp. 1-10. [CrossRef]

10. Suh, G.E,; Devadas, S. Physical unclonable functions for device authentication and secret key generation. In Proceedings of the

2007 44th ACM/IEEE Design Automation Conference, San Diego, CA, USA, 4-8 June 2007; pp. 9-14.

http://doi.org/10.1109/JIOT.2017.2767291
http://dx.doi.org/10.1109/JIOT.2019.2935189
http://dx.doi.org/10.1109/ICCAD.2014.7001385
http://dx.doi.org/10.1109/3ICT.2019.8910320
http://dx.doi.org/10.1016/j.comnet.2020.107593
http://dx.doi.org/10.1126/science.1074376
http://www.ncbi.nlm.nih.gov/pubmed/12242435
http://dx.doi.org/10.1016/j.microrel.2021.114049
http://dx.doi.org/10.1145/2742060.2742069
http://dx.doi.org/10.1145/2968455.2968519

Cryptography 2022, 6, 51 20 0f 20

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.
29.
30.
31.
32.

33.

Maiti, A.; Schaumont, P. Improving the quality of a physical unclonable function using configurable ring oscillators. In
Proceedings of the 2009 International Conference on Field Programmable Logic and Applications, Prague, Czech Republic,
31 August-2 September 2009; pp. 703-707. [CrossRef]

Maiti, A.; Schaumont, P. Improved Ring Oscillator PUF: An FPGA-friendly Secure Primitive.]. Cryptol. 2011, 24, 375-397.
[CrossRef]

Merli, D.; Stumpf, F.; Eckert, C. Improving the quality of ring oscillator PUFs on FPGAs. In Proceedings of the 5th Workshop on
Embedded Systems Security (WESS’10), Scottsdale, AZ, USA, 24 October 2010. [CrossRef]

Yin, C.E.D.; Qu, G. LISA: Maximizing RO PUF’s secret extraction. In Proceedings of the 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13-14 June 2010; pp. 100-105. [CrossRef]

Komdircti, G.; Pusane, A.E.; Diindar, G. Enhanced challenge-response set and secure usage scenarios for ordering-based ring
oscillator-physical unclonable functions. IET Circuits Devices Syst. 2015, 9, 87-95. [CrossRef]

Yin, C.E.; Qu, G. Temperature-aware cooperative ring oscillator PUF. 2009 IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST), San Francisco, CA, USA, 17 July 2009; pp. 36—42. [CrossRef]

Kodytek, F.; Lérencz, R. A design of ring oscillator based PUF on FPGA. In Proceedings of the 2015 IEEE 18th International
Symposium on Design and Diagnostics of Electronic Circuits Systems, Belgrade, Serbia, 22-24 April 2015; pp. 37—42. [CrossRef]
Kodytek, F; Lorencz, R.; Buek, J. Improved Ring Oscillator PUF on FPGA and Its Properties. Microprocess. Microsyst. 2016,
47,55-63. [CrossRef]

Martinez-Rodriguez, M.C.; Camacho-Ruiz, E.; Brox, P.; Sdnchez-Solano, S. A Configurable RO-PUF for Securing Embedded
Systems Implemented on Programmable Devices. Electronics 2021, 10, 1957. [CrossRef]

Lee, J.; Lim, D.; Gassend, B.; Suh, G.; van Dijk, M.; Devadas, S. A technique to build a secret key in integrated circuits for
identification and authentication applications. In Proceedings of the 2004 Symposium on VLSI Circuits. Digest of Technical
Papers (IEEE Cat. No.04CH37525), Honolulu, HI, USA, 7-19 June 2004; pp. 176-179. [CrossRef]

Kumar, S.S.; Guajardo, J.; Maes, R.; Schrijen, G.J.; Tuyls, P. Extended abstract: The butterfly PUF protecting IP on every FPGA. In
Proceedings of the 2008 IEEE International Workshop on Hardware-Oriented Security and TRUST (HOST), Anaheim, CA, USA,
9 June 2008; pp. 67-70. [CrossRef]

Kumar, R.; Burleson, W. On design of a highly secure PUF based on non-linear current mirrors. In Proceedings of the 2014 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), Arlington, VA, USA, 6-7 May 2014; pp. 38—43.
[CrossRef]

Gehrer, S,; Sigl, G. Using the reconfigurability of modern FPGAs for highly efficient PUF-based key generation. In Proceedings
of the 2015 10th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Bremen,
Germany, 29 June-1 July 2015; pp. 1-6. [CrossRef]

Delvaux, J.; Gu, D.; Schellekens, D.; Verbauwhede, I. Helper Data Algorithms for PUF-Based Key Generation: Overview and
Analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 889-902. [CrossRef]

Hiller, M.; Kiirzinger, L.; Sigl, G. Review of error correction for PUFs and evaluation on state-of-the-art FPGAs. J. Cryptogr. Eng.
2020, 10, 229-247. [CrossRef]

Chen, B.; Ignatenko, T.; Willems, EM.].; Maes, R.; van der Sluis, E.; Selimis, G. A robust SRAM-PUF key generation scheme
based on polar codes. In Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM 2017), Singapore, 4-8
December 2017; pp. 1-6. [CrossRef]

Giinlii, O.; Iscan, O.; Sidorenko, V.; Kramer, G. Code Constructions for Physical Unclonable Functions and Biometric Secrecy
Systems. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2848-2858. [CrossRef]

Gassend, B.; Clarke, D.; van Dijk, M.; Devadas, S. Silicon physical random functions. In Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS’02), Washington, DC, USA, 18-22 November 2002; pp. 148-160. [CrossRef]
Xilinx. 7 Series FPGAs Configurable Logic Block: UG474 (v1.8). User Guide, Xilinx: San Jose, CA, USA, 2016. Available online:
http://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB (accessed on 26 September 2022).

PYNQ—Python Productivity for Zynq. Available online: http:/ /www.pyngq.io/ (accessed on 26 September 2022).

C API Drivers for PYNQ FPGA Board. Available online: https://github.com/mesham/pynq_api (accessed on 26 September 2022).
Guajardo, J.; Kumar, S.S.; Schrijen, G.J.; Tuyls, P. FPGA intrinsic PUFs and their use for IP protection. In Proceedings of the
International Workshop on Cryptographic Hardware and Embedded Systems, Vienna, Austria, 10-13 September 2007; pp. 63-80.
ATS-505 THERMOSTREAM®—inTEST ATS-505 Thermostream Advanced Temperature Source. Available online: https:/ /www.
atecorp.com/products/temptronic-intest/ats-505 (accessed on 26 September 2022).

http://dx.doi.org/10.1109/FPL.2009.5272361
http://dx.doi.org/10.1007/s00145-010-9088-4
http://dx.doi.org/10.1145/1873548.1873557
http://dx.doi.org/10.1109/HST.2010.5513105
http://dx.doi.org/10.1049/iet-cds.2014.0089
http://dx.doi.org/10.1109/HST.2009.5225055.
http://dx.doi.org/10.1109/DDECS.2015.21
http://dx.doi.org/10.1016/j.micpro.2016.02.005
http://dx.doi.org/10.3390/electronics10161957
http://dx.doi.org/10.1109/VLSIC.2004.1346548
http://dx.doi.org/10.1109/HST.2008.4559053
http://dx.doi.org/10.1109/HST.2014.6855565
http://dx.doi.org/10.1109/ReCoSoC.2015.7238105
http://dx.doi.org/10.1109/TCAD.2014.2370531
http://dx.doi.org/10.1007/s13389-020-00223-w
http://dx.doi.org/10.1109/GLOCOM.2017.8254007
http://dx.doi.org/10.1109/TIFS.2019.2911155
http://dx.doi.org/10.1145/586110.586132
http://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
http://www.pynq.io/
https://github.com/mesham/pynq_api
https://www.atecorp.com/products/temptronic-intest/ats-505
https://www.atecorp.com/products/temptronic-intest/ats-505

	Introduction
	Ring Oscillator PUFs
	RO-PUF IP Module Design and Implementation
	 RO-PUF Building Blocks
	 RO bank (ro_bnk)
	Challenges Generator (ro_chl)
	Enable-Signals Generator (ro_en)
	Comparison Block (ro_cmp)
	PUF Output Block (puf_mem)
	Control Block (puf_ctrl)

	IP Encapsulation and Test System Integration

	RO-PUF Characterization
	Bit-Selection Analysis
	PUF Performance Evaluation
	Selection Strategies
	Effective Counter Size
	Number of PUF Calls

	Generation and Recovery of Secret Keys Based on RO-PUFs
	Conclusions
	References

