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Abstract: We propose highly efficient certificate-less (CL) protocols for the infrastructure used by
authenticated key exchange (AKE). The construction is based on elliptic curves (EC) without pairing,
which means it can be easily supported by most industrial cryptography libraries on constrained
devices. Compared with other pairing-free CL solutions, the new CL-AKE protocol enjoys the least
number of scalar multiplications over EC groups. We use a unified game-based model to formalize
the security of each protocol, while most previous works only assess the security against a list of
attacks, provide informal theorems without proper modeling, or use separate models for protocols
in different stages. We also present an efficient integration of the core protocols into the TLS cipher
suites and a stand-alone implementation for constrained devices. The performance is evaluated on
constrained devices in real-world settings, which further confirms the efficiency of our proposal.

Keywords: certificate-less cryptography; authenticated key exchange; TLS; IoT security

1. Introduction

The authenticated key exchange protocols (AKE) based on conventional certificates are
still widely deployed. Even in relatively new standards, such as TLS 1.3 [1], certificate-based
cipher suites remains significant. Theoretical frameworks for evaluating protocol security,
such as extensions of the Bellare–Rogaway model (BR) [2], eCK model [3] and universal
composability (UC) [4], are usually used while assuming the existence of certificate-based
public key infrastructure (PKI) [5,6].

However, the drawbacks of certificate-based infrastructure are also obvious. Ever-
growing certificate revocation lists (CRL), floods of Online-Certificate States Protocol
(OCSP) requests and the complicated logic of certificate chain verification may not fit
into constrained devices [7] in the Internet of Things (IoT), where 50 KB RAM is already
a luxury. Turning to pure symmetric key cryptography is not optimal in practice, either, as
that introduces heterogeneity in the infrastructure, and scales poorly.

Therefore, exploring practical certificate-less AKE protocols (CL-AKE) is extremely
meaningful.

CL-AKE solutions can use certificate-less public key encryption (CL-PKE) or signature
(CL-SIG) to replace certificate chains. The syntax of the scheme and the types of adversaries
have been defined for the first CL-PKE and CL-SIG by Al-Riyami and Paterson [8]. Unlike
the key generation center (KGC) in identity-based or attribute-based cryptography (IBC,
ABC), the KGC in CL-PKE can only compute partial private keys of users, so solutions
based on CL-PKC do not suffer from the key escrow problem. The initial construction
of CL-PKC in [8] is bilinear pairing based. Later, in 2007, Crampton et al. proposed
a password-enabled and certificate-free grid security infrastructure (PECF-GSI) [9]. The
protocols in PECF-GSI use bilinear pairing as heavily as the original Al-Ruyami–Paterson
schemes. Other pairing-based certificate-less solutions in the last two decades [10–15] have
experienced various improvement and trade-offs.
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One of the major challenges for building certificate-less infrastructure is to optimize
the efficiency of every protocol in its cryptographic core. As pointed out in [16], a bilinear
pairing operation is about ten-times slower than a point multiplication on elliptic curves
(EC), so it is necessary to avoid pairing and also to trim the redundant components, such as
signature generation or decryption, off the CL-AKE main protocol.

Another critical challenge is establishing a unified security model for the two stages:
user key registration and AKE. An adversary A against CL-PKE/SIG with key
registration [8] has the power to corrupt users, corrupt KGC and register new public
keys. However, whether A can see any message exchanged between an honest user and
the KGC is undefined. In contrast, adversaries against AKE protocols have different pow-
ers in BR [2], eCK [3] and other game-based models [5]. These adversaries can tamper
with messages and corrupt parties but may not be allowed to register new public keys.
Although it has not been theoretically ruled out that messages in the key registration phase
can threaten the AKE phase, most previous works on CL-AKE [15,17–19] used separate
game-based models for the generation/registration of user key pairs (in a secure channel
or out of band channel) and AKE protocol (in the public channel), or ignore the messages
exchanged during the registration.

1.1. Our Contribution and Paper Outline

To meet the challenges mentioned above, we make the following contribution in
this paper.

1. We propose a practical cryptographic core of a certificate-less (CL) infrastructure, in-
cluding user key registration and CL-AKE. The protocols are constructed from elliptic
curves (EC) without pairing or any signature so that they can be easily supported
by most industrial public key cryptography libraries for constrained devices. To the
best of our knowledge, our AKE protocol also enjoys the optimal number of point
multiplication over EC compared to other pairing-free solutions (see Table 1).

2. We integrate CL-AKE into TLS ciphersuites [1]. The performance is compared with
TLS-DHE with certificates in data volume and computation. We also deploy and test
the slim implementation of CL-AKE without the TLS stack on constrained IoT devices.
Subsequently, the evaluation confirms the real-world efficiency of our proposal.

3. Our new provably secure CL signature scheme ΠCL-SIG with two-way public key
reconstruction can be of independent interest.

Table 1. Comparison with other provably secure pairing-free (EC)DH-based CL-AKE. Proposals
without security models, such as [18,20], are not included. BPM: base-point multiplication on each
side; PM: non-base-point multiplication on each side;

# BPM # PM Security Model

Yang and Tan [17] 1 10 dedicated, game-based, stage-separated

Song et al. [16] 1 7 dedicated, game-based, stage-separated

He et al. [19] 1 4 eCK for CL-AKA only

This work 1 3 extended eCK for AKE and key reg.

After the introduction, we present the necessary notation and preliminaries in Section 2.
As a starting point for building CL-AKE and proving its security in the game-based frame-
work, we introduce a new certificate-less and paring-free signature scheme with two-way
public key reconstruction in Section 3. The game-based AKE security model is presented
in Section 4. The new certificate-less key registration, CL-AKE protocols and the security
analysis can be found in Section 5. We present the integration to TLS and the evaluation in
Section 6.
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1.2. Technical Road Map

The cost of verifying a conventional certificate chain is proportional to the number of
certificates on the chain. More specifically, to verify the end-level signature, a user has to
verify the first-level signature with the public key in the root certificate and then the second-
level signature with the public key of the first-level certificate. The verification continues
until the signature on the end-level certificate is verified. For EC-based signatures, the
verification usually involves a significant amount of point multiplication in an EC group.

A CL-SIG is designed to identify and utilize shortcuts during the verification process.
Ideally, a user only has to verify the end-level public key with the root public key, usually
the public key of the KGC. This verification can also be enforced implicitly through com-
putation. If an end-level public key pkj can be reconstructed by any honest user using the
KGC’s public key pkKGC and the identifier PIDj, then intuitively, the verification of pkj is
almost finished.

The shortcut we implement in CL-SIG is to replace the signature verification with
a hash function, which is considerably more efficient. The hash function H1() maps binary
strings to elements in an integer group. If a public key is an EC point that can be encoded
as a binary string, and the corresponding private key is an integer in a group, H1() provides
an efficient way to bind the public keys pkj, pkKGC and the identifier PIDj with the private
key. Moreover, to make CL-SIG fully functional, there must be two alternatives to how pkj
can be reconstructed. One is through skj, i.e., the way that only the key owner can take, and
another one is through the use of H1(), pkKGC and some additional information Bj, i.e., any
user can do it. For details, we refer the reader to Figure 1 in Section 3.

We implement another shortcut to construct CL-AKE from CL-SIG. Instead of using
the signing and verification algorithms in our CL-SIG, we keep only the public key recon-
struction algorithms in the AKE. An AKE participant can reliably reconstruct its peer’s
public key pkj and then use pkj with its own ephemeral key materials to derive the session
keys. A message authenticate code is used to confirm the knowledge of all related secrets,
replacing the expensive signature verification. For details, we refer the reader to Figure 2 in
Section 5.

In summary, we replace as many public key operations (e.g., signature and point mul-
tiplication) with efficient symmetric essential operations (e.g., hash, message authentication
code and pseudo-random function) as possible, while keeping the CL solution provably
secure. The resulting CL-AKE enjoys forward secrecy due to the Gap Diffie–Hellman
problem’s hardness and the new CL-SIG’s security.

1.3. Related Work

We review existing approaches to construct certificate-less AKE and authentication
infrastructure, including identity-based cryptography, attribute-based cryptography, and
CL-AKE with and without pairing.

1.3.1. IBC and ABC-Based CL Solutions

An important line of research is replacing certificate-based PKI with identity-based
cryptography (IBC) [21]. In principle, the IBC public key is a user identity pid itself, and
pid is embedded algebraically into the user’s secret key by KGC with its master secret
key msk. IBC eliminates certificates and simplifies the management of public keys greatly,
but it suffers from the key escrow problem. More specifically, in the standard syntax of
IBC, such as in [21,22], every user secret key is derived from its pid and a system-wide
static msk of KGC. Once msk is compromised, the adversary can use msk to recover all
previous user secret keys, destroying forward secrecy (FS). Attribute-based cryptography
(ABC) [23] can be seen as a generalization of IBC. Instead of using one single identity, ABC
uses a combination of multiple attributes to encrypt a message. However, the key escrow
problem remains if any user secret key is derivable from msk and the attribute combinations
alone. This KGC setting is preserved in various IBC-/ABC-based solutions [24,25], and
some are flawed or without FS later [15,26].
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1.3.2. CL-PKC and Pairing-Based Attempts

The notion of certificate-less public key cryptography (CL-PKC) was first formalized
in 2003 by Al-Riyami and Paterson [8]. As the KGC in CL-PKC can only compute partial
private keys for users, solutions based on CL-PKC do not inherently suffer from the key
escrow problem. Later, Crampton et al. proposed a password-enabled and certificate-free
grid security infrastructure (PECF-GSI) [9] in 2007. The protocols in PECF-GSI use bilinear
pairing heavily as the original Al-Ruyami–Paterson schemes.

Various pairing-based attempts have been made for different trade-offs between
security and efficiency. In 2012, Sanaa Taha et al. proposed certificate-less authentication
key agreement (CL-AKA), a link-layer authentication and key agreement protocol based
on CL-PKC, which does not consider ephemeral key leakage attacks [10]. Maity et al.
proposed a novel certificate-less on-demand public key management (CL-PKM) protocol
for self-organized MANETs [27]. Memon et al. proposed two authentication protocols
based on Al-Ruyami–Paterson CL-PKC and IBE [11,12] in 2015. The security is analyzed
with BAN-logic. Balakrishnan et al. proposed a practical email system based on CL-PKC
with user authentication and key exchange in 2016, but the encryption of messages actually
bears no forward secrecy when the receiver’s long-term keys are exposed [13]. Bala et al.
proposed a secure key management and authentication protocol in 2017, making use of
hybrid cryptography that involves both symmetric and CL-PKC but without formal security
models [14]. Saeed et al. proposed a lightweight online/offline certificate-less signature
(L-OOCLS) and a heterogeneous remote anonymous authentication protocol (HRAAP) for
IoT applications in 2018 [15]. The L-OOCLS scheme is pairing-based and provably secure
in random oracle model. The proposed HRAAP, however, cannot be proved secure in the
BR or eCK model as the session key is directly used in handshake.

1.3.3. Pairing-Free CL-AKE

Pairin-free CL solutions have also been proposed. Song et al. [16] proposed a secure
lightweight certificate-less authenticated key agreement (CL-AKA) for securing vehicle-to-
vehicle (V2V) communication without using pairings. Unfortunately, the protocols need
a large number of exponentiations in an integer group. Yang and Tan [17] proposed a CL-
AKA that is provably secure in a dedicated model. He et al. [19] proposed efficient CL-AKA
with security proofs in an extended eCK model dedicated to the key agreement part alone.
Farouk et al. also introduced an efficient pairing-free CL-AKA protocol for grid computing
environments [18] by extending the work of He et al. [19]. In 2018, KhanSafi et al. proposed
an authentication framework for the message dissemination of toll payment information
with a pairing-free CL-PKC system [20]. Unfortunately, there is no security proof provided
in [19,20].

Defining a unified security model for each stage of CL-AKE is not a trivial task. On
the one hand, the adversary for CL-PKE or CL-SIG in [8] has the power to corrupt users,
corrupt the KGC or register new public keys, but cannot see any messages exchanged
between the user and KGC. On the other hand, adversaries against authenticated key
exchange (AKE) protocols, however, have different powers in BR [2], eCK [3] and other
game-based models [5]. These adversaries can tamper with messages and corrupt parties
(users) but cannot register new public keys. However, it has not been confirmed or denied
whether messages in the key pair generation phase can threaten the AKE phase. Most
previous works on CL-AKE [10,15,16,18,19] used separate models for the generation of
user key pairs (in a secure channel or out-of-band channel) and AKE protocol (in public
channels), or even ignore the messages exchanged during the key pair generation.

From 2021 till now, lattice-based (LBC) and isogeny-based cryptography have been
introduced for post-quantum security, and new constructions have been proposed [28–32].
However, deploying LBC on constrained devices remains challenging now and in the near
future, especially when facing the conflict between the large key/ciphertext size required
by LBC and the limited RAM/storage on constrained devices [33].
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2. Notation and Preliminaries

In this section, we introduce the necessary cryptographic building blocks of
our solution.

2.1. Notations

We use κ ∈ N and 1κ to denote the security parameter. Let [n] = {1, . . . , n} ⊂ N be the
set of integers from 1 to n. If S is a set, a $← S means sampling a uniformly random element
a from S. If A() is an algorithm, m← AO(·)(x) and AO(·)(x) $→ m denote that A outputs
m on input x with the help of another oracle O(·). X||Y means concatenating two binary
strings X and Y. We use Pr[E : A] to denote the probability that event E happens if action
A is taken. Other notations will be introduced as needed.

2.2. Cryptographic Primitives and Hardness Assumptions

Message authentication code (MAC) is frequently used in AKE protocols for message
integrity and can also work as a proof of the knowledge of the secret key.

Definition 1 (Message Authentication Code, MAC). A MAC scheme MAC = (MAC.Gen,
MAC.Tag, MAC.Vfy) consists of three algorithms: MAC.Gen,MAC.Tag and MAC.Vfy
described below.

• MAC.Gen(1κ)
$→ k. The non-deterministic key generation algorithm MAC.Gen() takes the

security parameter 1κ as the input and outputs the secret key k.
• MAC.Tag(k, m)

$→ mTag. The (non-deterministic) message tagging algorithm MAC.Tag()
takes the secret key mTag and a message m as the input and outputs the authentication
tag mTag.

• MAC.Vfy(k, m,mTag) = b. The deterministic tag verification algorithm MAC.Vfy() takes
the MAC secret key k, a message m and a tag mTag as input and outputs a boolean value b. b
is TRUE if mTag is a valid MAC tag on m.

Hash functions are used for obtaining a digest of the input. The digest can be of fixed
length or in a finite domain.

Definition 2 (Collision-resistant Hash Function). A hash function H :M→ D is collision-
resistant if there exists a negligible function ϵcoll() such that for any algorithm A with running
time bounded by poly(κ), it holds that

Pr
[

(m0, m1)← A(1κ , H) :
m0 ̸= m1

∧
H(m0) = H(m1)

]
≤ ϵcoll(κ),

whereM is the message space, and D is the hash image space.

Pseudo-random function (PRF) can be used for key derivation as in TLS 1.3 [1]. PRF
ensures that the output looks random if the secret key is not leaked.

Definition 3 (Pseudo-random function, PRF). A pseudo-random function F = (FKGen,PRF)
consists of two algorithms, FKGen and PRF, described below.

• FKGen(1κ)
$→ k. The non-deterministic key generation algorithm FKGen() takes the security

parameter 1κ as the input and outputs the secret key k.
• PRF(k, x) = y. The PRF evaluation algorithm PRF() takes as the input the secret key k and

a value x in the domain and outputs an image y.

The Schnorr signature scheme can be seen as a general template for (EC-)group-based
signature. The most critical operation is the scalar-point multiplication. Note that the
verification algorithm SIG.Vfy of Schnorr needs two point multiplication, one on the base
point G and one on the non-base point pk. In contrast, the signing only needs one base
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point multiplication. In practice, base point multiplication has been optimized for each EC
group, so it is usually much quicker than non-base point multiplication.

Definition 4 (Schnorr signature scheme). Let H2() : {0, 1}κ → Zq be a collision-resistant
cryptographic hash function. The Schnorr signature scheme SIG consists of three algorithms
(SIG.Gen, SIG.Sign, SIG.Vfy) described below.

• SIG.Gen(1κ)
$→ (params, pk, sk). The non-deterministic key generation algorithm SIG.Gen()

takes the security parameter 1κ as the input and outputs the public parameters params, the
public key pk and the corresponding private key sk, where params = (G, G,H2()), G is the
generator of group G of large prime order q, pk = x · G, sk = x with x $← Z|G|, and H()
maps any bit string to an integer in Zq.

• SIG.Sign(sk, m)
$→ σ. This signing algorithm SIG.Sign() takes the private key sk and the

message m as the input. It chooses r $← Zq, computes R = r · G, e = H2(R||m), and
β = r + e · sk. It outputs the signature σ = (R, β).

• SIG.Vfy(pk, m, σ) = b. This verification algorithm RingVrfy() takes a public key pk, a message
m and a signature σ = (R, β) as input. It first computes e′ = H2(R||m), then outputs TRUE
if β · G = R + e′ · pk, and FALSE otherwise.

We refer the reader to standard cryptography literature, such as [34], for the security
definition of all the cryptographic primitives above and Diffie–Hellman key exchange (DH).

Definition 5 (Discrete logarithm, DL). Let GGen(1κ) be a group generation algorithm which
outputs params = (G, G, q), where G is the description of a cyclic group, with G as its generator
and q as its order. The discrete logarithm (DL) assumption with respect to G states that the following
quantity is negligible for any probabilistic polynomial time (PPT) adversary A.

AdvA,DL := Pr
[
Y = x · G : Y $← G; x ← A(params, Y)

]
The proof of Schnorr’s security or schemes that use group elements with hash usually

relies on the hardness of the Discrete logarithm problem above. For proving security of
AKE, we need the gap computational Diffie–Hellman Problem (GCDH), which is defined
as: given public parameter params and (a · G, b · G) for a, b ∈ Zq, compute the element
Z = (ab) · G with the help of a Decisional Diffie–Hellman Oracle Oddh(·) , i.e., Oddh(·)
answers whether a given quadruple (G, a · G, b · G, c · G) has ab ≡ c mod q.

Definition 6 (Hardness of GCDH). GCDH is hard with respect to G, if for any PPT adversary A,
the following quantity is negligible.

AdvA,GCDH := Pr
[

Z = (ab) · G : a, b $← Zq; Z ← AOddh(·)(params, a · G, b · G)
]

In this section, we have reviewed the most relevant cryptographic primitives and hard
problems. In the next section, we show how to construct an efficient CL-SIG from them.

3. New Certificate-Less Signature with Two-Way Reconstructable Public Key

We construct an extended certificate-less signature (CL-SIG) as the starting point.
Although signing and verification are not used in our CL-AKE protocol, the security of
ΠCL-SIG simplifies the argument in the game-based framework.

Definition 7 (CL-SIG with Two-way Reconstructable PK). A certificate-less signature scheme
with a two-way reconstructable public key (CL-SIG-TRK) is a tuple of seven algorithms (Setup,
PPKey-Extract, Set-Private-Key, Set-Secret-Value, Set-Public-Key, Sign, Verify, Reconst-Pk) de-
fined as follows.
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• Setup(1κ)
$→ (params,msk). The (non-deterministic) algorithm Setup() takes in the security

parameter 1κ and outputs the system parameters params and the master key msk.
• Set-Secret-Value(params,PIDi)

$→ (ai, Ai). This algorithm outputs party i’s secret value ai
and auxiliary information Ai on input params and the identifier PIDi.

• PPKey-Extract(params,msk,PIDi, Ai)
$→ (si, Bi) . This partial key extraction algorithm

outputs party i’s partial private key si and the partial public key Bi on input params, msk,
PIDi and Ai.

• Set-Public-Key(params, si, Bi, ai)→ pki. This algorithm takes as input params, si, ai and Bi,
and outputs i’s public key pki.

• Reconst-Pk(params,PIDi, Bi)→ pki . This public key reconstruction algorithm takes as
input params, identity PIDi and the partial public key Bi, and it outputs the complete public
key pki of party i.

• Sign(params, ski, m)
$→ σ. This algorithm takes params, the private signing key ski and

a valid message m as input and outputs a signature σ.
• Verify(params, pki,PIDi, m, σ) → b. This algorithm outputs a bit value b ∈ {TRUE,

FALSE} on input pki, PIDi, m and a signature σ. The value b is TRUE if σ is a valid
signature on m with respect to pki and PIDi.

Algorithms and outputs in dashed boxes are the extensions to the syntax in [8]. In
the original syntax, pki can only be computed by its owner with Set-Public-Key(). The
extension Reconst-Pk(params,PIDi, Bi), allows anyone who knows Bi and the KGC’s pubic
key to reconstruct pki. Thus, there are two ways to reconstruct the public key, giving space
for more efficiency improvement in the CL-AKE construction.

The security game for CL-SIG in [8] is an EUF-CMA game extended with queries in
Table 2. In principle, Type I adversaries can replace public keys but cannot get KGC’s
private key, while Type II adversaries can have the KGC’s private key but cannot replace
public keys.

Table 2. Queries (adversary’s ability) in the CL-SIG security game [8]. Notations are adapted to ours.

Query Description

PPKey-Extract(PIDi) return partial private/public keys

ReplacePK(PIDi, pk′i) replace the public key of PIDi with pk′i

getPrivateKey(PIDi) get the private key of PIDi

getKeyKGC() return msk

SIG.Sign(PIDi, m) get PIDi’s signature on m

More specifically, let PIDj be the challenged party and (m∗, σ∗) the forgery. Besides
being forbidden to ask getKeyKGC(), the restrictions on a Type I adversary A are :

1. A cannot query PPKey-Extract(PIDj).
2. For any PIDi, A cannot query getPrivateKey(PIDi), if it has previously queried

ReplacePK( PIDi, pk′i).
3. A cannot query ReplacePK(PIDj, pk′j) before submitting forgery, if it has previously

asked PPKey-Extract(PIDj).
4. A has not queried SIG.Sign(PIDj, m∗) before submitting (m∗, σ∗).

Besides being forbidden to ask ReplacePK(PIDi, pki)
′ for any i, the restrictions on

a Type II adversary A are :

1. A cannot ask getPrivateKey(PIDj).
2. A has not queried SIG.Sign(PIDj, m∗) before submitting (m∗, σ∗).

Our new CL-SIG-TRK ΠCL-SIG is in Figure 1, where SIG is the Schnorr signature
scheme in Definition 4. The security of ΠCL-SIG is summarized in Theorem 1. We still
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stick to the original syntax of Verify(). On the other hand, the extension, Reconst-Pk(), also
provides more flexibility in the verification, as a signature (σ′, Bi) can now be verified with
itself and the KGC public key pkKGC. We will show how a receiver of the partial public key
Bi can check and use it efficiently in AKE in Section 5.

Setup(1κ)

1 : Choose EC group G with base point G;

2 : skKGC
$← Z|G|; pkKGC = skKGC · G;

3 : params = (G, G,PIDKGC, pkKGC);

4 : msk = skKGC;

5 : return (params,msk);

Set-Secret-Value(params,PIDi)

1 : ai
$← Z|G|, Ai = ai · G;

2 : return (ai, Ai)

PPKey-Extract(params,msk,PIDi, Ai)

1 : bi
$← Z|G|, Bi = Ai + bi · G;

2 : si = bi +H1(PIDi||PIDKGC||Bi) ·msk;

3 : return (si, Bi);

Set-Private-Key(params, si, Bi, ai)

1 : Ti = H1(PIDi||PIDKGC||Bi) · pkKGC
2 : if si · G ̸= Bi − Ai + Ti : return ⊥;

3 : ski = (ai, si, Ti);

4 : return ski;

Set-Public-Key(params, si, Bi, ai)

1 : pki = (ai + si) · G;

2 : return pki

Reconst-Pk(params,PIDi, Bi)

1 : h = H1(PIDi||PIDKGC||Bi);

2 : Ti = h · pkKGC;

3 : pki = Bi + Ti;

4 : return pki

Sign(params, ski, m)

1 : Parse ski as (ai, si, Ti);

2 : Bi = si · G + ai · G− Ti;

3 : sk′i = ai + si;

4 : σ′ = SIG.Sign(sk′i , m);

5 : σ = (σ′, Bi);

6 : return σ

Verify(params,PIDi, pki, m, σ)

1 : Parse σ as (σ′, Bi);

2 : h = H1(PIDi||PIDKGC||Bi);

3 : Ti = h · pkKGC;

4 : if pki ̸= Bi + Ti : return FALSE;

5 : return SIG.Vfy(pki, m, σ′);

Figure 1. Construction 1, the pairing-free CL-SIG-TRK construction ΠCL-SIG. Capital letters, such as
A, B and T, represent EC group elements (points). Lowercase letters, such as a, b and s, represent
integers in Z|G|.

Theorem 1 (Security of ΠCL-SIG). If the discrete logarithm problem is hard with respect to group
G, then the CL-SIG-TRK scheme ΠCL-SIG is existentially unforgeable against chosen message attack
(EUF-CMA) in the presence of Type I and Type II adversaries in the random oracle model, where
Type I and Type II adversaries have access to queries defined in [8].

More specifically, if there exists S against ΠCL-SIG, then there exist DL problem solvers D and
U , such that

AdvS ,CL-SIG ≤ 2d · AdvSIG + 4
√
(qH1

+ qH2)
6 · AdvDLP

D,G

+ 4

√
3 · (qH1

+ qH2)

|G| +
d2 + q2

H1
+ 2 · q2

H2
+ 2

|G| (1)

with AdvSIG ≤ 2
√
(qH2 + qSIG + 1) · AdvDLP

U ,G

+ 2

√
(qH2 + qSIG + 1) · (qSIG + 1)

|G| ,
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where AdvS ,CL-SIG is the advantage of any PPT adversary S against ΠCL-SIG, AdvDLP
D,G and

AdvDLP
U ,G the advantage of D and U against DLP, respectively, AdvSIG the advantage of any PPT

adversary against Schnorr Signature SIG, d the maximal number of clients with distinct identifiers,
qH1

the number of queries to random oracle H1 used in ΠCL-SIG, qH2 the number of queries to
random oracle H2 used in Schnorr SIG, and qSIG the number of signing queries.

We defer the proof of Theorem 1 to Appendix A, as it relies on the multiple forking
lemmma in [35] and is rather technical. Intuitively, the multiple-forking lemma helps us
connect the CL-SIG security to the hardness of DLP (Definition 5).

From Theorem 1, we can have Corollary 1, which is necessary for proving the security
of the user key registration protocol (see Figure 3 in Section 5). The proof of Corollary 1 is
quite straight forward, as unforgeable CL-SIG implies unforgeable and non-replaceable
key pairs.

Corollary 1. If the advantages of Type I and Type II adversaries against ΠCL-SIG are upper-bounded
by AdvCL-SIG, the probability that any public-private key pair (pki, ski) is forgeable or replaceable
by Type I and Type II adversaries is also upper-bounded by AdvCL-SIG.

Now, we have all the necessary tools to construct a CL-AKE with forward secrecy [1].

4. Game-Based Security Model for CL-AKE

In this section, we define a security model for certificate-less AKE protocols. We
assume each participant communicates through a public network, and the adversary
controls all the data traffic. This setting is formalized in the execution environment.

4.1. Protocol Execution Environment

Let SK ∈ {0, 1}κ denote the session key space, and K is the pre-shared key space.
Let {P1, . . . , Pℓ} be the set of all parties for ℓ ∈ N, where a potential participant Pi has
a long-term pre-shared key K ∈ K that corresponds to its identity i.

Each Pi can have a polynomial number of process oracles {πs
i }, where s ∈ [d] is an

index with d ∈ N. A unique session identifier sid labels a protocol session between a client
and a server instance. Moreover, we assume that besides the access to long-term secrets,
such as private keys, each oracle πs

i maintains a list of independent internal state variables
as described in the following list (Table 3).

Table 3. Internal states of oracles.

Variable Description

PIDs
i records the identities {j} ⊂ {1, . . . , ℓ} of intended communication partners {Pj}

Φs
i denotes Φs

i ∈ {accept, reject}
sids

i denotes the session identifiers
Ks

i records the session key Ks
i ∈ K

Ephs
i records the ephemeral secret used to compute the session key Ks

i

The internal state of each oracle πs
i is initialized as (PIDs

i , Φs
i , sids

i , Ks
i , Ephs

i ) = (∅, ∅, ∅,
∅, ∅), where ∅ denotes the empty string. We assume that the session key is assigned to the
variable Ks

i such that Ks
i ̸= ∅ if each oracle completes the execution with an internal state

Φs
i = accept.

4.2. Adversary Model

An active adversary A can interact with the execution environment by issuing the
queries below. Queries in the dashed boxes are our extensions to the eCK model [3].

• Send(πs
i , m): A can use this query to send any message m of its choice to oracle πs

i .
The oracle will respond according to the protocol specification and its internal state. If
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m consists of a special symbol ⊤ (m = ⊤), then πs
i will respond with the first protocol

message.
• RegCorruptParty(i, ski, pki) This query allows A to register a new party with ski, pki

given by A. If party i already exists, then upon this query, all long-term key pairs will
be replaced with ski, pki, and existing randomness and session keys holding by any πs

i
will be erased. In any case, party i has τi = 0 once this query has been issued.

• Corrupt(i): The oracle πs
i responds with the long-term private keys of party Pi. If

Corrupt(i) is the τ-th query issued byA, then we say that Pi is τ-corrupted. For parties
that have never been corrupted, we define τ := ∞.

• RevealKey(πs
i ): Oracle πs

i responds to this query with the contents of variable Ks
i to

A. This query models the attacks that the exposure of a session key should not be
damaging to other sessions. (Note that we have Ks ̸= ∅ if and only if Φs

i = accept.)
• RevealEph(πs

i ): Oracle πs
i responds with the contents of the ephemeral secret stored in

variable Ephs
i .

• Test(πs
i ): This query can be made at most once. It does not model attacks but functions

as a judgment for whether A’s attacks are successful. Oracle πs
i handles this query as

follows. If the oracle has state Φs
i ̸= accept, then it returns a failure symbol ⊥. If the

oracle does not have access to the corresponding type of keys, it returns some failure
symbol ⊥.
Otherwise, it flips a fair coin b, and it returns Kb, where K0 is the real Ks

i and K1
$← K.

• TestForge(i, sk′i, pk
′
i) This query judges the result of an attack, the goal of which is to

forge a valid key pair. The output is 1 if checkKey(sk′i, pk
′
i) = TRUE and 0 otherwise,

where checkKey() is parameterized by concrete protocols.

4.3. Security Definitions

Let sids
i ∈ SID denote the session identifier received by oracle πs

i , where SID ⊆
{0, 1}poly(κ), i.e., a set of binary strings of length poly(κ).

Definition 8 (Partnering Using sid). In the protocol execution described above, we say that πs
i

(with (PIDs
i , Φs

i , sid
s
i )) and πt

j (with (PIDj
t, Φt

j, sid
t
j)) are partnered if the following hold for both

oracles: (1) PIDs
i = j and PIDt

j = i; (2) Φs
i = accept and Φt

j = accept; (3) sids
i = sidt

j; .

Definition 9 (Registration Freshness). Let TestForge(PIDi, pk′i, sk
′
i) be the τ1-th query. We call

an oracle πs
i τ1-reg-fresh if all the following conditions hold for the adversary A.

• (No direct corruption) i is τ-corrupt with τ > τ1.
• (No corrupt-and-replace) If pk′i = pkj and pkj is an honest generated public key, then j is

τ′-corrupt with τ′ > τ1.
• (Type 1) If the first RegCorruptParty(i) is the τ-th query with τ < ∞, then Server is τS-

corrupt, τS > τ1, where Server is the KGC,
• (Type 2) If Corrupt(Server) is the τS-th query of A with τS < τ1, then A has not made any

RegCorruptParty(i) before τS.

Here, we define the security of the key pair registration protocol.

Definition 10 (Secure Key Pair Registration). Let the KGC be party S. We say that a key pair
registration protocol Π is (t, ϵ)-secure, if for all adversaries A with running time bounded by t,
for some function ϵ = ϵ(κ), it holds that if A has issued a TestForge(PIDi, ·, ·)-query as the τ1-th
query to oracle πs

i , every client oracle πs
i is τ1-reg-fresh, then the advantage Advreg is bounded by

a function ϵ. More specifically,

Advreg = Pr[TestForge(i, pk′i, sk
′
i) = 1 : (i, pk′i, sk

′
i)

$← AO(·)(1κ)] ≤ ϵ,
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where O = {Send(),RegCorruptParty(),Corrupt()}.

Definition 11 (Session Oracle Freshness). Let πs
i be an accepting oracle held by a party Pi with

intended partner Pj. Meanwhile, let πt
j be an oracle (if it exists), such that πs

i and πt
j are partnered.

Then the oracle πs
i is said to be τ0-fresh, if it is τ0-reg-fresh, and when the adversary A issues its

τ0-th query to πs
i and NONE of the following conditions holds:

• A has either made a RevealKey(πs
i ) query or a RevealKey(πt

j) query, (if πt
j exists);

• Pi is τi-corrupted with τi ≤ τ0;
• Pj is τi-corrupted with τj ≤ τ0, (if πt

j exists);
• if πt

j exists, it is NOT τ0-reg-fresh;
• A has either made both RevealEph(πs

i ) and Corrupt(i) queries, or both RevealEph(πt
j) and

Corrupt(j) (if πt
j exists).

Definition 12 (Secure Authenticated Key Exchange). We say that an AKE protocol Π is (t, ϵ)-
secure, if for all adversaries A with running time t, for some probability ϵ = ϵ(κ), it holds that:
when A returns b′ such that A has issued a Test()-query as the τ0-th query to oracle πs

i , and the
client oracle πs

i is τ0-fresh and has a synchronized partner throughout the security game, then the
advantage Advake is bounded by a function ϵ. More specifically,

Advake =
∣∣∣Pr[b = b′ : b′ ← AdvO(·)(1κ)]− 1/2

∣∣∣ ≤ ϵ,

where O = {Send(),RegCorruptParty(),Corrupt(),RevealKey(), RevealEph(),Test()}.

The model that we have discussed so far provides a unified framework to evaluate
the new CL-AKE protocols. The freshness ensures that we are focusing on real threats, and
the queries can be combined to emulate attacks such as replay and man-in-the-middle.

5. New Protocols for Certificate-Less Infrastructure

The canonical way to transform a certificate-based AKE to CL-AKE is to replace the
signature with a CL-SIG. However, the efficiency of the result is sub-optimal due to redun-
dant computation and the extra demand for randomness. For example, to sign a message
with our CL-SIG, an extra randomness is needed for the Schnorr component (line 4 in
Sign(params, ski, m) in Figure 1), and point multiplications are needed for verification.

Our new CL-AKE protocols save the participants from any signature verification.
Reconst-Pk(params,PIDi, Bi) in ΠCL-SIG (Figure 1) ensures that once Alice has a reliable
pkKGC ∈ params, its peer Bob has to use a correct secret key with respect to Bi and pkKGC in
AKE (Figure 2), leading to optimal performance.

5.1. Client Key Registration

Initially, a client is provisioned with the KGC’s public keys ekKGC, pkKGC and its own
encryption/decryption key pairs. A client can then register its key pair to a KGC, which also
knows the client’s encryption key. Details of our new client key pair generation protocol
(Protocol 2) can be found in Figure 3. The security is summarized in the following theorem,
where checkKey for TestForge is defined as checking the discrete log relation sk′i · G = pk′i.

Theorem 2 (Security of Protocol 2). Assuming an authenticated channel, if the public encryption
scheme Πpke is IND-CCA secure and discrete logarithm problem is hard with respect to group G,
then Protocol 2 is secure in the sense of Definition 10 in the random oracle model. More specifically,
for any PPT adversary Areg,

Advreg ≤
(d · ℓ)2

|G| + ϵH1
+ ϵPKE + ϵCL-SIG, (2)
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where d is the maximal number of parties, ℓ is the maximal number of oracles owned by each party,
G is the group and the range of the hash function H(), ϵH is the advantage against the hash function
H(), ϵPKE is the advantage against ΠPKE in the IND-CCA game, and ϵCL-SIG is the advantage
against ΠCL-SIG.

· · · · · · · · · · · · Clienti · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Clientj · · · · · · · · · · · · · · · · · · · · · · · ·
(ski, pki), Bi,PIDi, Ri, paramsi

(
skj, pkj

)
, Bj,PIDj, Rj, paramsj

Choose nonce x $← Z|G|, X = x · G;
M1 : PIDi ,Bi ,X,paramsi−−−−−−−−−−−−→ IF paramsi ̸= paramsj : abort;

IF (PIDi, Bi, X) /∈ IDSet×G×G : abort;
// Reconst-Pk()

Compute pki = Bi +H1(PIDi||PIDKGC||Bi) · pkKGC;
Choose nonce y $← Z|G|, Y = y · G;
W = Bi||Bj||PIDi||PIDj||X||Y||paramsi;
ms = (skj +H(W)y) · (pki +H(W) · X);
KMAC = PRF(ms, W||"MAC");

M2 : PIDj ,Bj ,Y,mTag1←−−−−−−−−−−−− mTag1 = MAC.Tag(KMAC, W||"1");
KAUTH||KENC = PRF(ms, W||"WORKKEY")

IF (PIDj, Bj, Y) /∈ IDSet×G×G : abort;
// Reconst-Pk()

Compute pkj = Bj +H1(PIDj||PIDKGC||Bj) · pkKGC
W = Bi||Bj||PIDi||PIDj||X||Y||paramsi;
ms = (ski +H(W)x) · (pkj +H(W) ·Y);
KMAC = PRF(ms, W||"MAC");
IF MAC.Vfy(KMAC, W||"1",mTag1) ̸= TRUE : abort;

mTag2 = MAC.Tag(KMAC, W||"2")
M3 : mTag2−−−−−−−→ IF MAC.Vfy(KMAC, W||"2)") ̸= TRUE : abort;

KAUTH||KENC = PRF(ms, W||"WORKKEY")
accept accept

Figure 2. Protocol 3: Three-pass certificate-less AKE with mutual authentication.

Proof. We use a sequence of games [36] to argue A’s advantage against Protocol 2. The
term Advi means A’s advantage in Gamei.
Game0. This is the original game, so we have

Advreg = Adv0 (3)

Game1. We add an abort rule in this game. We abort the game if any collision of honestly
generated randomness or any hash collision happens. The abort probability can be bounded

by the term (d·ℓ)2

|G| + ϵH1
. Therefore, we have

Adv0 ≤ Adv1 +
(d · ℓ)2

|G| + ϵH1
. (4)

Once the collisions have all been eliminated, from Corollary 1 we can have

Adv1 ≤ ϵCL-SIG (5)

By combining the (in)equalities (3)–(5), we have (2) in Theorem 2.

5.2. Certificate-Less Authenticated Key Exchange

The certificate-less authenticated key exchange protocol (CL-AKE) with explicit au-
thentication is presented in Figure 2. The correctness is trivial, and the three non-base
point multiplications are for computing pki (or pkj) and ms. Let H : {0, 1}∗ → Z|G| be
a hash function modeled as a random oracle that maps any binary string to an integer in
group Z|G|.
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· · · · · · · · · · · · Clienti · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · KGC · · · · · · · · · · · · ·
(PIDi,Ki, Ri, params, ekKGC, pkKGC) PIDKGC, (dkKGC, ekKGC = dkKGC · G),
(dki, eki = dki · G) (skKGC, pkKGC = skKGC · G),

params, DB := {(PIDv, ekv)}
Choose ai

$← Z|G| and compute Ai = ai · G;

Compute CT1 ← ENC(ekKGC,PIDi||Ai)
CT1−−→ PIDi||Ai = DEC(dkKGC, CT1)

Retrieve (PIDi, eki, Bi) from DB;
IF Bi ̸= ⊥ : abort

// PPKey-Extract()

Choose bi
$← Z|G|

Bi = Ai + bi · G ∈ G;
h = H1(PIDi||PIDKGC||Bi);
si = bi + h · skKGC in Z|G|;
CT2 ← ENC(eki,

// Set-Private-Key,Set-Public-Key
CT2←−− PIDi||PIDKGC||Ai||Bi||si);

PIDi||PIDKGC||Ai||Bi||si = DEC(dki, CT2) Record (PIDi, eki, Bi)
Ti = H1(PIDi||PIDKGC||Bi) · pkKGC;
IF si · G ̸= Bi − Ai + Ti : abort
ski = ai + si in Z|G|
pki = Bi + Ti in G
Store (ski, pki, Bi);

Figure 3. Protocol 2, client key pair registration with msk = skKGC.

Theorem 3 (Security of Protocol 3). If the key pair registration scheme is secure, the GCDH
problem is hard, and PRF and MAC are secure, then Protocol 3 is secure in the sense of Definition 12
in the random oracle model. More specifically, for any PPT adversary Aake,

Advake ≤ Advreg +
(d · ℓ)2

|G| + ϵH1
+ ϵH

+ (d · ℓ)2 · (ϵPRF + ϵMAC + 4 · ϵGCDH), (6)

where d is the maximal number of parties, ℓ the maximal number of oracles owned by each party,
G is the group for CL-SIG, ϵH1

, ϵH the advantages against hash functions H1() and H(), ϵPRF
the advantage against the pseudo-random function PRF, ϵMAC the advantage against MAC, and
ϵGCDH the advantage against the GCDH problem.

Proof. We use another sequence of games to bound A’s advantage against Protocol 3. The
term Advi denotes A’s advantage in Gamei.

Game0. This is the original game, so we have

Advake = Adv0 (7)

Game1. We add an abort rule in this game. If any collision of honestly generated ran-
domness happens, or any hash collision happens, we abort the game. The abort probability

can be bounded by the term (d·ℓ)2

|N | + ϵH1
+ ϵH, Therefore we have

Adv0 ≤ Adv1 +
(d · ℓ)2

|N | + ϵH1
+ ϵH. (8)

Game2. We add an abort rule here. If A successfully forges a key pair and uses in the
first message in the transportation phase, prior to the corruption of any party, abort the
game. This probability is bounded by Advreg. Thus, we have

Adv1 ≤ Adv2 + Advreg (9)
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Game3. We add an abort rule here. Let the challenger first guess A’s target (i, s) and
its peer (j, t). If the guess is wrong, abort the game. Thus, we have

Adv2 ≤ (d · ℓ)2 · Adv3 (10)

Game4. We replace PRF() with a random oracle RF(). Distinguishing Game4 from
Game3 implies the existence of another adversary against the security of PRF(). We
now have

Adv3 ≤ Adv4 + ϵPRF (11)

Game5. We add an abort rule here. If A successfully forges an MAC.Tag1 or MAC.Tag2
in the second or the last message in the transportation phase, prior to the corruption of the
target party or its peer, abort the game. This probability is again bounded by ϵMAC . Thus,
we have

Adv4 ≤ Adv5 + ϵMAC (12)

We use fresh··(πs
i ) to mark four (sub-)cases when the freshness of πs

i still holds, i.e.,
A’s attack is non-trivial.

• freshLL(π
s
i ) : A has never queried both Corrupt(i) and Corrupt(j).

• freshEE(π
s
i ) : A has never queried both RevealEph(πs

i ) and RevealEph(πt
j).

• freshEL(π
s
i ) : A has never queried both RevealEph(πs

i ) and Corrupt(j).
• freshLE(π

s
i ) : A has never queried both Corrupt(i) and RevealEph(πt

j).

It is straightforward to see that if none of the cases exist in Game5, then A’s attack is
trivial. Let Advfresh..

5 denote A’s advantage in Game5 when fresh··(πs
i ) holds. We have from

the union bound

Adv5 ≤ Adv
freshLL(π

s
i )

5 + Adv
freshEL(π

s
i )

5 + Adv
freshLE(π

s
i )

5 + Adv
freshEE(π

s
i )

5 (13)

We rewrite the computation of ms as

ms = skj · pki︸ ︷︷ ︸
LL

+ H(W)2y · X︸ ︷︷ ︸
EE

+ skjH(W) · X︸ ︷︷ ︸
EL

+H(W)y · pki︸ ︷︷ ︸
LE

, (14)

Observe that each of the four products on the right-hand side of (14) corresponds to
one of the four fresh cases, and each fresh case allows a different strategy of embedding
the GCDH. Let Game5

freshLL(π
s
i ) Game5

freshEE(π
s
i ) Game5

freshEL(π
s
i ) and Game5

freshLE(π
s
i ) be the

game Game5 when one of the four cases exist.
Game5

freshLL(π
s
i ). We claim that

Adv
freshLL(π

s
i )

5 ≤ ϵGCDH (15)

We show how to construct a GCDH solver S to prove (15). S chooses a random value
K∗ in the key space and program the random oracle PRF(·, W||"MAC") with K∗, where
W = Bi||Bj||PIDi||PIDj||X||Y||paramsi and all the variables are from the target session. Let
(G, A, B) be S ’s GCDH challenge. S sets (pki, pkj) to (A, B), aborts the game when

1. A queries the random oracle with a ms at the place of any PRF queries,
2. andODDH(g, A, B, Z) = TRUE where Z = ms−H(W)2x ·Y−H(W)x · pkj −H(W)y ·

pki.

In other words, if the game aborts, S finds a solution to the GCDH instance.
As freshLL(π

s
i ) guarantees that neither ski nor skj would be asked byA, S can generate

all other randomness including (x, y) freely and simulate all the other Corrupt(), RevealEph()
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and RevealKey() queries perfectly forA. The probability of aborting the game is thus upper
bounded by ϵGCDH.

On the other hand, if Game5
freshLL(π

s
i ) simulated by S does not abort, then A has never

queried the random oracle with the correct value to compute the target session key. Due to
the property of random oracle, A has zero advantage in distinguishing the random key K∗.

Game5
freshEE(π

s
i ). S embeds (A, B) into (X, Y) , and aborts when ODDH(g, A, B, Z) =

TRUE where Z = H(W)−2 · (ms− skj · pki − skjH(W) · X− skiH(W) ·Y). This abort means
a GCDH solution of (A, B) has been found.

Adv
freshEE(π

s
i )

5 ≤ ϵGCDH (16)

Game5
freshEL(π

s
i ). S embeds (A, B) into (pkj, X) , and aborts whenODDH(g, A, B, Z) =

TRUE where Z = H(W)−1 · (ms− ski · pkj −H(W)2y · X− skiH(W) ·Y). This abort means
a GCDH solution of (A, B) has been found.

Adv
freshEL(π

s
i )

5 ≤ ϵGCDH (17)

Game5
freshLE(π

s
i ). Similar to the previous case, if S embeds (A, B) into (Y, pki), it can

also find a GCDH solution when the game aborts.

Adv
freshLE(π

s
i )

5 ≤ ϵGCDH (18)

Now, we can conclude from the arguments above and (13) that

Adv5 ≤ 4 · ϵGCDH. (19)

By combining the (in)equalities (7)–(19), we have proved (6).

6. Integration into TLS and Performance Evaluation

Since our solution is already asymptotically better than other provably secure ones (see
Table 1), we only demonstrate its performance in real-world scenarios and compare with the
original certificate-based TLS (TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, henceforth
TLS-DHE).

The two standard ways to integrate the Protocol 3 in Figure 2 are via the certificate
type RawPublicKey [37] and via the PSK identities [38] (We merged mTag1 and mTag2
with the finish-messages in the TLS handshake.). When RawPublicKey is chosen, the
TLS server sends M1 in the (Server) Certificate message, and the TLS client sends M2
in the (Client) Certificate message. When PSK identities is used, the TLS server sends
M1 in the ServerkeyExchange.psk_identity_hint field, and the TLS client sends M2 in the
ClientKeyExchange.psk_identity field.

6.1. Set Up

Opting for the PSK identifiers, we insert the encoded PID, the EC group ID and auxil-
iary information into it. We implement Protocol 3 with the BouncyCastle
library and OpenSSL (https://www.bouncycastle.org/ and https://www.openssl.org/,
accessed on 8 September 2022) on the server, which runs Ubuntu 18.04.6 on 11th Gen
Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz CPU with 16.0 GB RAM. Each client node is
emulated with mbedTLS (https://github.com/Mbed-TLS/mbedtls) (accessed on 9 Septem-
ber 2022) on a STM32F107VCT6 (https://www.st.com/resource/en/datasheet/stm32f107
vc.pdf) (accessed on 4 December 2023) board with 32-bit MCU and 64/256 KB Flash, which
corresponds to a Class 2 constrained device [7]. For a fair comparison, we use the widely
deployed EC curve NIST P-256 and a two-level certificate chain, i.e., the direct issuer of
TLS certificates is trusted by both TLS peers.

https://www.bouncycastle.org/
https://www.openssl.org/
https://github.com/Mbed-TLS/mbedtls
https://www.st.com/resource/en/datasheet/stm32f107vc.pdf
https://www.st.com/resource/en/datasheet/stm32f107vc.pdf
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6.2. Results
6.2.1. Computational Cost

Besides using absolute time, we measured the time consumption for the elementary
functions with the base-point multiplication as a unit. We consider only the point multipli-
cation, signature signing and verification to be elementary operations. Here, the cost of
point addition, arithmetic operations and hash functions are ignored, as they are relatively
negligible compared to the above operations.

We use tBPM to denote the time for computing one base point multiplication (BPM)
and use tBPM as a unit.

• A non-base point multiplication (PM) costs 6 tBPM. This difference comes from the
optimization of base-point multiplication [39].

• A signing costs 2.5 tBPM and verification 8.5 tBPM. This 6 tBPM difference comes
exactly from the extra non-base point multiplication in the verification. Signing with
ECDSA also needs extra operations in the integer group, so it is slower (2.5 tBPM) than
a simple base-point multiplication (1 tBPM).

While the TLS with certificates needs 26.5 tBPM, this work needs only 19 tBPM, saving
at least 28% local computation time for the cryptographic core. Details are provided in
Table 4.

Table 4. Computation cost. BPM: base-point scalar multiplication, PM: point scalar multiplication.
Columns 2 to 4: number of operations on each side.

BPM (1 tBPM) PM (6 tBPM) Sign (2.5 tBPM) Vrfy (8.5 tBPM) Total

TLS-DHE. 1 1 1 2 26.5 tBPM

Protocol 3 TLS 1 3 0 0 19 tBPM

6.2.2. Communication Cost

In this part, we compare the communication cost between this work and TLS-DHE. We
measure the communicated messages using the tool Wireshark (https://www.wireshark.
org/) (accessed on 8 September 2022), and count the size of all TLS handshake messages
(see Table 5). For one full handshake, TLS-DHE consumes about 2430 bytes , while this
work consumes only about 840 bytes. That means our work reduces 65% of the payload.

Table 5. Communication cost comparison in bytes. ∗ : Server Response includes Server Hello, Server
Certificate, Server Key Exchange, Certificate Request and Server Hello Done.

Operation DataTLS-DHE DataProtocol3

Client Hello 309 106

Server Response ∗ 1092 421

Client Certificate 733 0

Client Key Exchange 119 266

Certificate Verify 128 0

Change Cipher Spec 50 50

Total ≈2430 ≈840 (35%)

6.2.3. Resource Consumption on the Constrained Client

The execution time is 2.09 s for Protocol 3 in the LAN setting (1 Gbps with 0.1 ms
latency), saving 70% of the time compared to TLS-DHE with certificates.

Meanwhile, it is 13.8 KB for TLS-DHE, the maximal RAM consumption during key
registration and Protocol 3 is 4.09 KB, making a considerable 70% reduction in RAM
consumption. Whereas TLS-DHE consumes more than 150 KB, the binary of Protocol 3

https://www.wireshark.org/
https://www.wireshark.org/
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consumes 48.32 KB in maximum in flash, i.e., a good reduction of 67% in storage can also
be seen.

7. Conclusions and Future Work

Without using bilinear pairings, we construct practical certificate-less signature, key
registration, and authenticated key exchange protocols with integration to TLS. To the
best of our knowledge, our AKE protocols have the lowest number of point-multiplication
among DH-based CL-AKE, while enjoying strong security in the eCK model.

We believe that the construction of practical post-quantum-secure CL-AKE can be
pursued as meaningful future work, to design general compilers that can transform CL-SIG
with two-way-reconstructable PK to CL-AKE, and to analyze the possible equivalence of
game-based and universally composable security formalization [4].
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software, L.L.; formal analysis, L.D. and Y.L.; data curation, L.L.; writing—original draft preparation,
L.D.; writing—review and editing, Y.L. and L.L.; visualization, L.D. and L.L. All authors have read
and agreed to the published version of the manuscript.
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Appendix A. Proof of EUF-CMA Security of ΠCL-SIG

Appendix A.1. Multiple-Forking Lemma

We recall the multiple-forking lemma introduced by Boldyreva et al. [35].

Lemma A1 (Multiple-Forking Lemma, Lemma C.5 in [35]). Let α ∈ Z+ be a fixed integer. Let
n ≥ 1 be an odd integer and S a set with no less than two elements. Let B() : {0, 1}∗ × Sα →
Z2 × {0, 1}∗, (x, (s1, · · · , sα)) 7→ (I, J, Σ) be a randomized algorithm, where I and J are integers
with 0 ≤ J ≤ I ≤ α. The multiple-forking algorithmMFB,n associated to B and n is defined as in
Figure A1 where x ∈ {0, 1}∗.

Let IGen be a non-deterministic algorithm that takes no input and returns a binary string. Let

accMf = Pr[I ≥ 1, J ≥ 1 : x $← IGen; (s1, · · · , sα)
$← Sα;

(I, J, Σ) $← B((x, (s1, · · · , sα))); ]

frkMf = Pr[b = 1 : x $← IGen; (b,RessultMF)
$←MFB,n(x)]

Then

frkMf ≥ accMf ·
(
accMfn

α2n − n
|S|

)
(A1)

accMf ≤ n+1√
α2n · frkMf + n+1

√
n · α2n

|S| (A2)

This lemma allows forks to happen at two distinct positions I and J. When n = 1,
this lemma collapses to the generalized forking lemma [40], allowing forking at only
one position.
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AlgorithmMFB,n(x)

1 : Initialize an empty array RessultMF[0, · · · , n];

2 : Choose random coins ρ for B, (s1, · · · , sα)
$← Sα;

3 : (I, J, Σ0)← B((x, (s1, · · · , sα)); ρ);

4 : if (I = 0 OR J = 0) : return (0,RessultMF);

5 : (s1
1, · · · , s1

α)
$← Sα; (I1, J1, Σ1)← B((x, (s1

1, · · · , s1
α)); ρ);

6 : if ((I1, J1) ̸= (I, J) OR s1
I = sI) : return (0,RessultMF);

7 : i← 2;

8 : while (i < n) :

9 : (si
1, · · · , si

α)
$← Sα; (Ii, Ji, Σi)← B((x, (s1, · · · sJ−1, si

J , · · · , si
α)); ρ);

10 : if ((Ii, Ji) ̸= (I, J) OR si
J = si−1

J ) : return (0,RessultMF);

11 : (si+1
1 , · · · , si+1

α )
$← Sα;

12 : (Ii+1, Ji+1, Σi+1)← B((x, (s1, · · · sJ−1, si
J , · · · , si

I−1, si+1
I , · · · , si

α)); ρ);

13 : if ((Ii+1, Ji+1) ̸= (I, J) OR si+1
I = si

I) : return (0,RessultMF);

14 : i← i + 2;

15 : for i = 0 to n :

16 : RessultMF[i]← Σi;

17 : return (1,RessultMF; )

Figure A1. The multiple-forking algorithmMFB,n associated to B, n in Lemma A1. We useMFB,3

in the proof of Lemma A2.

Appendix A.2. Proof of Theorem 1

Here we prove Theorem 1 via proving Lemma A2 and Lemma A3. We use CL-SIG
adversaries to constructing DLP solvers and analyze with Lemma A1.

Lemma A2 (ΠCL-SIG security against Type 1 adversary). If there exists an efficient Type I
adversary against ΠCL-SIG with advantage AdvCL-SIG,1, then there exist a forger S with advantage
AdvSIG against the Schnorr signature scheme, and a DLP solverD with advantage AdvDLP such that

AdvA,CL-SIG,1 ≤ d · AdvSIG + 4
√
(qH1

+ qH2)
6 · AdvDLP

D,G

+ 4

√
3 · (qH1

+ qH2)

|G| +
d2 + q2

H1
+ 2 · q2

H2
+ 2

|G| , (A3)

where d is the maximal number of clients with distinct identifiers, qH1
and qH2 are number of queries

to random oracle H1 and H2, respectively.

Proof. We define the following events in the CL-SIG security experiments against a Type I
adversaries A, i.e., with ReplacePK() but without KGC corruption. Let AdvA,I,CL-SIG be the
advantage of A.

• E1 : A outputs a forgery (m, pki,PIDi, σ), where Verify(params, pki,PIDi, σ) = TRUE,
pki has not been replaced, and m has not been queried to the signing oracle O(ski, ·).

• E2 : A outputs a forgery (m, pk′i,PIDi, σ), where Verify(params, pk′i,PIDi, σ) = TRUE,
and pk′i ̸= pki is an adversarial public key for PIDi.

It is easy to see that

AdvA,CL-SIG,1 ≤ Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2] (A4)

To bound AdvA,I,CL-SIG, we first prove that

Pr[E1] ≤ d · AdvSIG, (A5)
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where d is the maximal number of parties, and AdvSIG is the advantage that any PPT
adversary against the Schnorr signature scheme. We construct an adversary S against
Schnorr signature from A. The simulator S associates its challenge public key pki and
the signing oracle O(ski, ·) to party i. The master public-secret key (pkKGC, skKGC) and all
other honest key pairs are generated by S . Signing and other key queries are handled
faithfully for all PIDj, j ̸= i. For i, S prepares Bi, the partial private key si and the user
secret ai as follows.

• chooses random hi in the range of H1, compute Bi = pki − hi · pkKGC.
• program the random oracle H1 such that H1(PIDKGC||PIDi||Bi) = hi.

• If A queries for si, randomly choose a bi
$← Zq and compute si = bi + hi · skKGC.

• If A queries for ai, randomly choose a ai
$← Zq.

When A outputs a forgery (PIDi, pki, m, σ = (σ′, Bi)), S outputs a forgery m, σ′ to its
own challenger. Note that A cannot query both ai and si, if it does not fail trivially. So the
simulation is indistinguishable from a real execution. The loss factor d is from guessing of
the challenged party i. This completes the proof of (A5).

To bound Pr[E2], first, we define an algorithm B relying on a ΠCL-SIG forger A that on
inputs (params, X) and s1, · · · , sα ∈ S, returns a triple (I, J, Σ) consisting of two integers
0 ≤ J < I ≤ α and a string Σ. Details follow.

1. B gets a DLP challenge (G, G, X) and a KGC identifier PIDKGC.
2. B sets up the KGC public key pkKGC ← X, the KGC identifier PIDKGC, CL-PKC

parameters params ← (G, G,PIDKGC, pkKGC). B also initializes two empty lists LH1
and LH2 to simulate the random oracles. Another empty list LaPK of replaced public
keys is initialized by B. B set up a flag bad← FALSE.

3. Preparation of simulated signing keys {
(
skj, Bj

)
} for {PIDj}d

j=1,j ̸=PIDKGC
.

• Choose random skj
$← Z|G|, compute pkj ← skj · G.

• Choose random hj in the range of H1(), compute Bj = pkj − hj · pkKGC. If any skj
collision happens, set bad = TRUE.

• Program the random oracle OH1
() such that H1(PIDKGC||PIDj||Bj) = hj, i.e., set

LH1
(PIDKGC||PIDj||Bj)← hj.

4. B sends params to A, chooses some randomness for A, and prepares to answer the
random oracle queries and others.

5. Answer to H1(s) queries, where s has the form PIDKGC||PIDk||Bk.

If LH1
(s) is defined, return LH1

(s) to A. Otherwise, pick up H $← Z|G|, define
LH1

(s)← H, and return H.
6. Answer to H2(R||m).

If LH2(R||m) is defined, return LH2(R||m) to A. Otherwise, pick up W $← Z|G|, define
LH1

(R||m)←W, and return W.
7. Answer to PPKey-Extract(PIDj)

• If pkj is not replaced, choose a bj
$← Zq, compute sj = bj + hj · skKGC, record and

return sj to A.
• Otherwise, return ⊥.

8. Answer to ReplacePK(PIDj, pkj) queries. Record (PIDj, pkj) in LaPK and return “OK”
to A.

9. Answer to getPrivateKey(PIDj). Return skj if pkj is not replaced, and ⊥ otherwise.
10. Answer to SIG.Sign(PIDj, m) queries.

• If (PIDj, pkj) /∈ LaPK, retrieve the simulated signing key skj.

– Choose r $← Z|G|, compute R← r · G, choose hm
$← Z|G|.

– If LH2(R||m) is defined, set bad = TRUE.
– Set LH2(R||m)← (hm, β), where β = r− hm · skj, and return (R, β) to A.
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• Otherwise, return ⊥ to A.

We also count signing queries as H2() queries.
11. If A submits a forgery (PIDi, pk∗i , m∗, σ∗), B parse σ∗ as (σ′, B∗i ) and parse σ′ as (R, β).

• B searches for h1 = LH1
(PIDi||PIDKGC||B∗i ), and h2 = LH2(R||m∗). If h1 or h2 is

not defined, set bad = TRUE.
• If pki ̸= B∗i + LH1

(PIDKGC||PIDi||B∗i ) · X, set bad = TRUE.

If bad = FALSE, then B finally outputs (I, J, Σ = β||h1||h2). Otherwise B outputs
(0, 0,⊥).

Table A1. Variables in the proof.

Variable Meaning

LaPK a list of public keys registered by the adversary

LH1 a list to simulate the random oracle H1(·)
LH2 a list to simulate the random oracle H2(·)

We then use the multiple-forking algorithm MFB,3 associated to B and n = 3 to
construct a DL solver D as in Figure A2. Note that we do not require exact bi = b′i and
ai = a′i, but (ai + bi) ≡ (a′i + b′i) mod Z|G| for the first fork. This critical forking point
is observable by B in LH1

for the H1(· · · ||Bi) query, as Bi = (ai + bi) · G is unique in G.
Simlilarly, the second fork can be observed for H2()-queries on R||m∗.

Algorithm D(G, G, X)

1 : PIDKGC
$← [d];

2 : (b,RessultMF)
$←MFB,3(G, G, X,PIDKGC);

3 : if (b = 0) : return 0;

4 : Parse RessultMF[0] as (β0, h1, h2),RessultMF[1] as (β1, h′1, h′2),

5 : RessultMF[2] as (β2, h̃1, h̃2),RessultMF[3] as (β3, ĥ1, ĥ2);

6 : return
(
(β0 − β1)(h2 − h′2)

−1 − (β2 − β3)(h̃2 − ĥ2)
−1

)
(h1 − h̃1)

−1 ∈ Z|G|

Figure A2. The DLP solving algorithm D fromMFB,3.

We now show that D solves the DLP for X in G. If b = 1, then there exist coins ρ for B,
with j > k ≥ 1 and s1, · · · , sα, s1

j , · · · , s1
α, s2

k , · · · , s2
α, s3

j , · · · , s3
α, ∈ Z|G| with h1 = h′1 = sk ̸=

s2
k = h̃1 = ĥ1, h2 = sj ̸= s1

j = h′2 and h̃2 = s2
j ̸= s3

j = ĥ2. More specifically,

(1) in the execution of B(params, s1, · · · , sα; ρ), A outputs a valid forgery (PIDi, pki, m,
((R, β0), Bi)), with h1 = LH1

(PIDKGC||PIDi||Bi) = sk, h2 = LH2(R||m) = sj.
(2) in the execution of B(params, s1, · · · , sj−1, s1

j , · · · , s1
α; ρ), A outputs a valid forgery

(PID′i, pk′i, m′, ((R′, β1), B′i)), with h′1 = LH1
(PIDKGC||PIDi||B′i) = sk, h′2 = LH2(R||m)

= s1
j , PID′KGC||PID

′
i||B′i = PIDKGC||PIDi||Bi, and R′ = R.

(3) in the execution of B(params, s1, · · · , sk−1, s2
k , · · · , s2

α; ρ), A outputs a valid forgery

(P̃IDi, p̃ki, m̃, ((R̃, β2), B̃i)), with h̃1 = LH1
(P̃IDKGC||P̃IDi||B̃i) = s2

k , h̃2 = LH2(R̃||m̃)

= s2
j , and B̃i = Bi.

(4) in the execution ofB(params, s1, · · · , sk−1, s2
k , · · · , s2

j−1, s3
j , · · · , s3

α; ρ),A outputs a valid

forgery (P̂IDi, p̂ki, m̂, ((R̂, β2), B̂i)), with ĥ1 = LH1
(P̂IDKGC||P̂IDi|| B̂i) = s2

k , ĥ2 =

LH2(R̂||m̂) = s3
j , P̂IDKGC||P̂IDi||B̂i = P̃IDKGC||P̃IDi||Bi, and R̂ = R̃.

From (1) and (2), we have pki = pk′i = Bi + h1 · X, β0 · G = R + h2 · pki, and
β1 · G = R + h′2 · pk

′
i Since h2 ̸= h′2, (h2 − h′2) is well-defined. So we have

(β0 − β1)(h2 − h′2)
−1 · G = Bi + h1 · X (A6)
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Similarly, from (3) and (4), we have

(β2 − β3)(h̃2 − ĥ2)
−1 · G = Bi + h̃1 · X (A7)

Solving for X in (A6) and (A7), as (h1 − h̃1) is well-defined, we finally have{(
(β0 − β1)(h2 − h′2)

−1 − (β2 − β3)(h̃2 − ĥ2)
−1

)
(h1 − h̃1)

−1
}
· G = X (A8)

Therefore, the output of D when b = 1 as in Figure A2 is the DLP solution of X.
Let qH = qH1

+ qH2 , where qH1
and qH2 are the number of A’s H1() and H2() queries,

respectively. Let bad|E2 be the event that B outputs (0, 0,⊥) when E2 happens. Then
we have

Pr[bad|E2] ≤
d2 + q2

H1
+ 2 · q2

H2
+ 2

|G| (A9)

Let IGen be the algorithm that calls Setup(1κ) for (params,msk) and returns
params = (G, G, pkKGC,PIDKGC). Let

accMf = Pr

[
I ≥ 1∧ J ≥ 1 : params

$← IGen(1κ); s1 · · · sα
$← Z|G|;

(I, J, σ)
$← B(params, s1 · · · sα);

]

By applying (A2) in Lemma A1 for n = 3 we have

Pr[E2] ≤ accMf + Pr[bad|E2]

≤ 4
√

q6
H · frkMf + 4

√
3 · qH
|G| + Pr[bad|E2]

≤ 4
√
(qH1

+ qH2)
6 · AdvDLP

D,G + 4

√
3 · (qH1

+ qH2)

|G| + Pr[bad|E2], (A10)

where AdvDLP
D,G is the advantage of D against DLP in G. By combining (A4), (A5), (A9) and

(A10), we get (A3) in Lemma A2.

Lemma A3 (ΠCL-SIG against Type II adversary). If there exists an efficient Type II adversary
against ΠCL-SIG with advantage AdvCL-SIG,2, then there exists a forger S with advantage AdvSIG
against the Schnorr signature scheme, such that

AdvA,CL-SIG,2 ≤ d · AdvSIG (A11)

where d is the maximal number of clients with distinct identifiers.

Proof. Similar to the previous proof, we define two events such that

AdvA,CL-SIG,2 ≤ Pr[E3 ∪ E4] ≤ Pr[E3] + Pr[E4] (A12)

• E3 : A outputs a forgery (m, pki,PIDi, σ), where Verify(params, pki,PIDi, σ) = TRUE,
pki is the original public key of party PIDi, and m has not been queried to the signing
oracle O(ski, ·).

• E4 : A outputs a forgery (m, pk′i,PIDi, σ), where Verify(params, pk′i,PIDi, σ) = TRUE,
and pk′i ̸= pki is an adversarial public key for PIDi.
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If A does not fail automatically, then we construct an simulator S ′ almost identical to
S for event E1 in Lemma A2, and S ′ can answer the extra getKeyKGC() with the simulated
msk. So we have

Pr[E3] ≤ d · AdvSIG (A13)

The Type 2 adversary cannot replace public keys, so we have Pr[E4] = 0.

We use the advantage AdvSIG of attacking Schnorr signature scheme in Theorem 4.1
in [40] to finish the proof.

Lemma A4 (Security of Schnorr Signature, from Theorem 4.1 in [40]). If there exist an efficient
adversary against the Schnorr signature scheme ΠSIG with advantage AdvSIG, then there exists
a DLP solver U with advantage AdvDLP

U ,DLP, such that

AdvSIG ≤ 2
√
(qH2 + qSIG + 1) · AdvDLP

U ,G + 2

√
(qH2 + qSIG + 1) · (qSIG + 1)

|G| , (A14)

where qH2 is the number of random oracle queries for hash function H2 : {0, 1}∗ → Z|G|, and qSIG
the number of signing queries.

By plugging (A14) into (A3) and (A11) and using union bound, we finally arrive at
Theorem 1.
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