
Citation: Gorski, M.; Wodo, W.

Analysis of Biometric-Based

Cryptographic Key Exchange

Protocols—BAKE and BRAKE.

Cryptography 2024, 8, 14.

https://doi.org/10.3390/

cryptography8020014

Academic Editor: Josef Pieprzyk

Received: 28 February 2024

Revised: 28 March 2024

Accepted: 3 April 2024

Published: 6 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Analysis of Biometric-Based Cryptographic Key Exchange
Protocols—BAKE and BRAKE
Maksymilian Gorski and Wojciech Wodo *

Faculty of Information and Communication Technology, Wroclaw University of Science and Technology,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; 259396@student.pwr.edu.pl
* Correspondence: wojciech.wodo@pwr.edu.pl

Abstract: Biometric authentication methods offer high-quality mechanisms to confirm the identity
of individuals in security systems commonly used in the modern world, such as physical access
control, online banking, or mobile device unlocking. They also find their application in cryptographic
solutions, which allow the biometrically authenticated exchange of cryptographic keys between
users and services on the internet, despite the fuzziness of biometric data. Such solutions are
BAKE (biometrics-authenticated key exchange) and BRAKE (biometric-resilient authenticated key exchange)
protocols, upon which our work is based. However, the direct application of fuzzy biometrics in
cryptography, which relies heavily on the accuracy of single-bit secret values, is not trivial. Therefore,
this paper is devoted to analyzing the security of this idea and the feasibility of implementing
biometric AKE (authenticated key exchange) protocols, with an emphasis on the BRAKE protocol. As
the results of our analysis, we discuss BRAKE’s limitations and vulnerabilities, which need to be
appropriately addressed to implement the protocol in modern systems.

Keywords: cryptography; biometrics; key exchange; protocol; fuzzy vault; OPRF; AKE; BAKE; BRAKE

1. Introduction

Over the last few years, there has been a growing interest in the use of biometric
authentication methods in the creation of cryptographic solutions. This is due to the fact
that authentication based on biometric features allows one to confirm the identity of a
given person, with high confidence. This property is especially desirable in real-world
applications that present a need for high-trust authentication to confirm the identity of its
users, such as physical access control and digital electronic banking systems.

A frequently reported problem with modern digital authentication methods is the lack
of confirmation of a specific person’s identity. This is because authentication is usually
based on the value of a secret key held by the user and stored in the persistent memory
of that user’s device. This approach does not directly confirm the identity of the physical
user, only the fact that an individual is in possession of the secret key, which is associated
with that person. In addition, using knowledge of the secret key value as the main au-
thentication factor exposes the lack of confirmation of the user’s intention to participate
in a cryptographic protocol. Thus, in the scenario when the authentication key value is
stolen due to an attack against the user’s device, the adversary can correctly complete
the authentication process on behalf of the victim, which is not possible with the use of
biometric-based authentication methods.

The authors of the BAKE (biometrics-authenticated key exchange) [1] and BRAKE (bio-
metric resilient authenticated key exchange) [2] protocols address this problem by presenting
schemes that allow for the generation of secret authentication keys directly from the bio-
metric modalities of users. These keys are characterized by the lack of the need to store
their values in the persistent memory of devices, as they ought to be used only during the
execution of the protocols and discarded afterward. This allows us to take advantage of

Cryptography 2024, 8, 14. https://doi.org/10.3390/cryptography8020014 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography8020014
https://doi.org/10.3390/cryptography8020014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-0237-2882
https://doi.org/10.3390/cryptography8020014
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography8020014?type=check_update&version=2

Cryptography 2024, 8, 14 2 of 15

the benefits of authenticating a person using their biometric features and provides strong
evidence of their willingness to participate in the protocol. This happens due to the need to
present the biometric modality to the measuring device (e.g., scanner), which is most often
part of the user’s terminal (e.g., mobile device or smartphone).

The development of such solutions is not a trivial task due to the requirement of
successfully including fuzzy biometric data into the cryptographic solutions, which in most
cases require single-bit accuracy of provided and processed secret values. Fortunately, in
recent years, major steps were taken in the context of merging the fields of biometrics and
cryptography to ensure strong authentication methods while preserving users’ sensitive
data and using them as essential parts of cryptographic mechanisms, as shown in [3–5].

However, despite many years of research on combining the use of biometrics-based
methods with cryptographic systems, the protocols presented in [1,2] were of particular
interest to us. These are the only mechanisms that we were able to reach, which focus not
only on creating modular functionalities, combining cryptography with biometrics, as is
the case with fuzzy vault [4], but also on presenting full solutions with the potential to
replace real, currently used protocols. Due to the above-mentioned novelty and the way
various cryptographic functionalities are implemented into the discussed protocols, we
decided to conduct a security analysis of the proposed solutions in this work, focusing
on the BRAKE protocol, as its creators undertook an extensive analysis and detection of
limitations of the BAKE scheme in [2].

Contribution

This work highlights the results of the analysis proposed in the work [2] on BRAKE
protocol, the successor of the BAKE protocol described in [1]. The analysis was devoted to
finding security vulnerabilities (both in design and implementation) and revealed some
flaws in the protocol, particularly the following:

• The protocol’s lack of resistance to the compromise of the evaluator’s secret key, used
as part of the OPRF (oblivious pseudo-random function) primitive in the registration and
verification processes of users. This may lead to the execution of an offline attack on a
specific user’s biometric template and, as a consequence, compromise the asymmetric
cryptography keys used in the authentication process.

• A risk related to the storage of secret values, such as the coefficients of the secret
polynomial f (x) and the secret keys cskt and cskt′ in the persistent memory of the
user’s terminal. This may lead to the successful passing of the user authentication
process, despite the provision of a non-mated biometric characteristic.

• An unauthorized adversary may be able to interrupt already-established communi-
cation sessions between users and the server. This may be conducted by requesting
the server to start a new verification process on behalf of specific users, which may
result in the generation of a new session key and revocation of the previously used
keys, preventing legitimate users from the continuation of the current session.

• An unauthorized adversary may be able to perform a denial-of-service attack on a server
instance by sending to the server a significant number of requests to register new user
identities, using falsified biometric data. This could populate the server’s identity
database with entries for non-existent users.

In order to accurately present the reasoning behind the analysis, it is necessary to
first understand the idea behind the emergence and potential use of the BAKE [1] and
BRAKE [2] protocols. Thus, we also provide brief descriptions of the protocols in the order
they were proposed and published. It is also important to highlight that the latter one—
the BRAKE protocol—has been inspired by the work of BAKE protocol authors, as it takes
into consideration the potential limitations that threaten the declared security of BAKE.

2. BAKE Protocol Overview

According to its creators, the motivation behind the design of the protocol was to
create a mechanism that would allow the use of end-to-end encryption in peer-to-peer

Cryptography 2024, 8, 14 3 of 15

communication between client devices. An important aspect of the resulting mechanism
is the introduction of authentication functionality that is an integral part of the protocol,
using the user’s biometric features for this purpose. Secret values used in the protocol, such
as secret asymmetric cryptography keys, are derived directly from the result of measuring
the user’s biometric modality. The correctness of their calculation depends on the sufficient
proximity of the provided biometric modality to the one provided in the key generation
phase of the protocol.

As part of the BAKE protocol, the AFEM (asymmetric fuzzy encapsulation mechanism) has
been proposed, which is a scheme that describes the order of communication between the
parties during the execution of the protocol. The mechanism is divided into three phases:

• Initialization phase: responsible for the configuration of the protocol and establishing
the values of public parameters used in communication between the parties.

• Key generation phase: where asymmetric cryptography key pairs are generated and
then distributed between the parties.

• Authenticated key exchange phase: where the value of the symmetric session key is
established between the parties.

A breakdown of the steps required to be performed during each phase is depicted
in Figure 1, which is based on the scheme presented by the authors. According to the
assumptions of the use case of the protocol, the initialization and key generation phases
ought to be executed only once for every pair of users. In order to maintain the legibility
of the presented scheme, we present a description of the mathematical notation of the
used parameters:

• λ—security bits of the executed protocol.
• τ—desired level of closeness between the biometric templates provided during the

key exchange phase and the reference template provided in the key generation phase.
• sk, sk′—reference and query asymmetric secret keys, respectively.
• pk—asymmetric public key derived directly from a given secret key.
• s—randomly generated secret message.
• c—encapsulated form of the secret message, s.
• s′—secret message obtained through the decapsulation of the ciphertext, c.
• k—established session key.
• H(·) : {0, 1}∗ → Zq—hash function used as the key derivation function.

The AFEM consists of four PPT (probabilistic polynomial time) algorithms: AFEM.Setup,
AFEM.PubGen, AFEM.Enc, and AFEM.Dec. These PPT algorithms are, respectively, re-
sponsible for the following: the generation and distribution of public parameters to both
parties; the generation of the asymmetric public key from the provided secret key; and
the encapsulation and decapsulation of the message distributed between the communica-
tion participants.

To summarize the process of the protocol execution: after setting up the public pa-
rameters, pp, directly between users or with the help of a TTP (trusted third party) , both
users generate their reference secret keys, sk, based on the biometric features provided.
After the secrets are generated, each user distributes their public key generated using the
AFEM.PubGen algorithm—this step ends the key generation phase. The authenticated key
exchange phase starts with both participants randomly generating an ephemeral message,
s, value, which is then encapsulated during the execution of AFEM.Enc. Next, both par-
ties exchange the ciphertexts, c, of generated messages and again provide their biometric
features to generate query secret keys, sk′. Each user is able to successfully decapsulate
the message, s′, only if the measure of distance between the reference and query biomet-
ric characteristics fits in the τ threshold. Finally, the established session key, k, is locally
calculated by both parties as the output of the hash function.

Cryptography 2024, 8, 14 4 of 15Version March 28, 2024 submitted to Cryptography 3 of 15

Client1 Client2
Init Phase

AFEM.Setup(λ, τ)→ pp
KeyGen Phase

Generate sk1 ∈ SK Generate sk2 ∈ SK
AFEM.PubGen(sk1)→ pk1 AFEM.PubGen(sk2)→ pk2

pk1

pk2

AKE Phase

Choose s1
$← S Choose s2

$← S
AFEM.Enc(pk2, s1)→ c1 AFEM.Enc(pk1, s2)→ c2

c1

c2

Generate sk′1 ∈ SK Generate sk′2 ∈ SK

AFEM.Dec(sk′1, c2)→ s′2 AFEM.Dec(sk′2, c1)→ s′1
Output k1 = H(pk0||pk1||c0||c1||s0||s′1) Output k2 = H(pk0||pk1||c0||c1||s′0||s1)

Figure 1. Scheme of AFEM mechanism based on [1]

2. BAKE protocol overview 90

According to its creators, the motivation behind the design of the protocol was to 91

create a mechanism that would allow the use of end-to-end encryption in peer-to-peer 92

communication between client devices. An important aspect of the resulting mechanism 93

is the introduction of authentication functionality that is an integral part of the protocol, 94

using the user’s biometric features for this purpose. Secret values used in the protocol, 95

such as secret keys of asymmetric cryptography, are derived directly from the result of 96

measuring the user’s biometric modality. The correctness of their calculation depends on 97

the sufficient proximity of the provided biometric modality to the one provided in the key 98

generation phase of the protocol. 99

As part of the BAKE protocol the Asymmetric Fuzzy Encapsulation Mechanism has been 100

proposed, which is a scheme that describes the order of communication between the parties 101

during the execution of the protocol. The mechanism is divided into three phases: 102

• Initialization phase responsible for the configuration of the protocol and establishing 103

the values of public parameters used in communication between the parties. 104

• Key Generation phase in which asymmetric cryptography key pairs are generated and 105

then distributed between the parties. 106

• Authenticated Key Exchange phase in which the value of the symmetric session key is 107

established between the parties. 108

A breakdown of the steps required to be performed during each phase is depicted 109

in the Figure 1 which is based on the scheme presented by the authors. According to the 110

assumptions of the use case of the protocol, the initialization and key generation phases 111

ought to be executed only once for every pair of users. In order to maintain the legibility of 112

the presented scheme, we present a description of the mathematical notation of the used 113

parameters: 114

• λ - security bits of the executed protocol. 115

Figure 1. Scheme of the AFEM mechanism based on [1].

The presented mechanism is based on the Learning with Errors problem and uses
two implementation methods, interchangeably used depending on the type of biometric
modality from which the data are extracted: biometric vectors and biometric vectors
set. Their comprehensive description is illustrated in [1]; thus, we refer the reader to
the source work for more details. However, it is significant to highlight that each of the
proposed implementations includes a definition of the distance function, dis(·, ·), used as a
metric of closeness between the secret keys generated by one party. While working on the
applications of the biometric characteristics in the development of cryptographic solutions,
it is crucial to define metrics that allow one to decide whether the biometric data were
extracted from a specific user, without compromising the features. The correctness of the
BAKE framework is given by the following assumption:

Dec(sk′, Enc(PubGen(sk, s)) = s ⇐⇒ dis(sk, sk′) < τ (1)

By the correctness given in Equation (1), it is easy to conclude that the distance
threshold, τ, determines the upper bound for the acceptable differences between the user’s
secret keys and, in consequence, the differences between fuzzy measurements of biometric
features. A deep security and application analysis of the solutions suggested in [1] was
undertaken in [2]; thus, we will not elaborate on it further in this work.

3. BRAKE Protocol Overview

In contrast to its predecessor, the authors of the BRAKE [2] protocol propose a commu-
nication model that is much more widespread in the context of modern computer networks
than the one proposed in [1]. This is a client–server infrastructure in which a significant
number of users communicate with a centralized server unit that stores the data of all client
identities. An additional variation in the proposed infrastructure is the evaluator instance.
It acts as a trusted third party, independent of the server instance, evaluating the values
provided by clients as part of the implementation of the cryptographic primitive used in the

Cryptography 2024, 8, 14 5 of 15

protocol—an oblivious pseudo-random function. It is worth mentioning that the creators of the
protocol conducted an in-depth analysis of the BAKE protocol, identifying its limitations
and potential security threats. Based on their findings, they proposed a scheme to mitigate
the identified problems, while maintaining the security of the processed biometric data in
accordance with the ISO/IEC 24745 standard.

As in the case of the BAKE protocol, the BRAKE protocol can be divided into two
main phases, differing in the purpose and number of executions:

• Enrolment phase—responsible for creating and uploading a specific user’s biometric
identity to the server instance. During that process, the client provides the server
with a public key derived from the reference biometric template, which can be used to
determine the success of the user’s authentication during the verification phase.

• Verification phase—this is performed each time the client attempts to establish a symmet-
ric key that is used to encrypt the communication within the session. The client is only
able to correctly establish the secret key with the server if the biometric authentication
process is successful.

3.1. Interpretation of Biometric Features

When analyzing the BRAKE protocol, attention should be paid to the form in which
the biometric template provided by the client is represented. The fuzzy vault primitive that
was chosen by the protocol authors requires that the biometric features be represented in
the form of a vector consisting of finite field elements with the order of the selected prime
number, t ∈ Fn

q . The authors presented schemes that meet the requirements for biometric
data extracted from fingerprints, irises, and face scans. A detailed description of the extrac-
tors used is presented in [2]. An unquestionable advantage of BRAKE, compared to BAKE,
is the fact that as long as it is possible to bring the biometric data to the indicated form, the
protocol can be used regardless of the selected biometric modality, which translates into its
high flexibility in the context of implementation.

3.2. Fuzzy Vault Primitive

To ensure secure storage and determine the sufficient proximity of the provided
biometric features, the authors propose implementing a fuzzy vault [4] primitive into their
scheme. It allows one to obfuscate the sensitive biometric features that are stored in the
template, t, into the form of a finite field polynomial, V ∈ Fq[x]. Along with the template,
t, a small degree secret polynomial, f ∈ Fq[x], is locked in a vault. The required minimal
closeness, τ, of the reference and query templates, directly depends on the f degree and is
equal to τ = deg(f) + 1.

The primitive’s naming comes from the fact that secret values are locked in a vault in
the form of a high-degree polynomial, V. It is possible to perform locking and unlocking
operations on the vault, which correspond to the process of hiding and retrieving the secret
values, respectively. Unlocking is possible only by providing sufficiently similar fuzzy
secret values similar to those during the locking process. The way the vault polynomial
is constructed allows it to be publicly distributed due to the difficulty of the unlocking
operation without the appropriate secrets, as the biometric characteristics are used in this
case. The functionalities are defined as follows: lock(t)→ (f , V), unlock(V, t′)→ f ′.

The formal definition of the fuzzy vault primitive is given by the following:

V(x) = f (x) + ∏
∀a∈t

(x− a) (2)

where polynomial V(x) ∈ Fq[x] is considered as the fuzzy vault, f ∈ Fq[x] is a secret poly-
nomial, and ∏∀a∈t(x− a) is a polynomial obtained by the multiplication of polynomials
constructed using all values of the biometric vector, t = [a1, a2, . . . an] ∈ Fn

q . It is also impor-
tant to highlight that without the addition of f , it would be possible to recover the biometric
characteristics as the roots of the multiplied polynomial, which would compromise private
user data.

Cryptography 2024, 8, 14 6 of 15

The metric for assessing the similarity of biometric characteristics during the execution
of the primitive is the intersection of the reference and query templates, |t ∩ t′|. The
f ′(x) = f (x) can be recovered properly only if both vectors, t and t′, share a sufficient
amount of values, noted as the biometric verification threshold, τ. Thus, the correctness of
the primitive is presented as follows:

f ′(x) = unlock(V(x) = lock(t), t′) = f (x) ⇐⇒ |t ∩ t′| ⩾ τ (3)

3.3. Oblivious Pseudo-Random Function Primitive

The oblivious pseudo-random function primitive and its variations were widely analyzed
in [6], so in this work, we limit the primitive’s description to the most important definitional
concepts, which are as follows:

1. Fk : {0, 1}λ × {0, 1}m → {0, 1}n is an oblivious pseudo-random function and k ∈ {0, 1}λ

is a secret key of the evaluator party.
2. Fk(x) is efficiently computable from input x provided by the client and the key, k,

provided by the evaluator.
3. It is not possible to efficiently determine whether the primitive yielded the value,

Fk(x), for the given x and k, or whether a random bit-string of length n was returned.
4. The evaluator has no way of knowing the value of x and the client has no way of

knowing the value of the k key, based on the value yielded by the primitive.

A generic scheme of the OPRF protocol is depicted in Figure 2. However, it is no-
ticeable that the calculation of the value, Fk(x), cannot take place between the client and
the evaluator in a presented form, because no party can handle the actual computation.
Therefore, the calculations need to be performed by the evaluator’s instance. That is why
the input value, x, provided by the client is obfuscated into the form of [r]H(x), where
H : {0, 1}∗ → Gq is a cryptographic hash function, Gq denotes a cyclic group with the
order of the prime number, q, and [r]· denotes the reversible obfuscation operation. In this
situation, the evaluator has no way of learning the value of the input, x.

Client Evaluator

x k

Compute: F(·)(·)

Fk(x)

Return: Fk(x)

Figure 2. Generic scheme of the OPRF primitive execution.

According to the authors of [2], the OPRF primitive was introduced into the BRAKE
protocol in order to hold control over the authentication requests sent from a specific client
by enforcing interactions with every attempt. This feature allows exposing brute force
attacks against the user’s secret data by detecting a large quantity of requests sent on
behalf of a specific client, in a short period of time. The need for interactions should also
prevent the execution of offline attacks against the secret values of the victim (e.g., biometric
template, t, secret polynomial, f , coefficients).

The use of the OPRF primitive in the BRAKE protocol is possible by introducing three
algorithms:

• blind(x) → (B, r)—an algorithm that obfuscates the value of H(f) used as the x
argument provided by the client using a randomly generated value, r ∈ Zq, to the
obfuscated form of B← [r]H(f).

Cryptography 2024, 8, 14 7 of 15

• eval(B, k)→ S—an algorithm that evaluates the value of S← [k]B within the OPRF
primitive on the evaluator’s instance, where k is the secret key known only by the
evaluator;

• unblind(S, r) → U—an algorithm that deobfuscates the value of S—obtained as a
result of the evaluation—into the form of U ← [r′]S, where r′ ∈ Zq is the inverse
element of r′.

The method of using the above mechanisms is shown in Figure 3. The value received
by the client as a result of running the protocol is [k]H(f), in accordance with the equality,
as follows:

U = [r′]S = [r′]([k]B) = [r′]
(
[k]

(
[r]H(f)

))
= [k]H(f) (4)

Client Evaluator
f ∈ Fq[x] k ∈ K

r $← Zq

B = [r]H(f)← blind(H(f))

B

S = [k]B← eval(B, k)

S

U = [k]H(f)← unblind(S, r)
Return: U

Figure 3. Scheme of the OPRF scheme implemented in the BRAKE protocol.

By obfuscating and deobfuscating the value of H(f), the client’s input privacy assump-
tion of the OPRF primitive is fulfilled. Despite the evaluation performed by the evaluator’s
instance, it does not obtain any information about the coefficients of the secret polynomial,
f , as well as the value of the hash function, H(f). Simultaneously, the client is not able to
efficiently determine the value of the key, k, used in the evaluation process based on the
yielded result.

3.4. BRAKE Enrolment Phase

The presented scheme is based on a one-time execution of the enrolment phase, during
which, the client provides a biometric sample, also denoted as a reference template, t. Using
the reference template, an asymmetric cryptography key pair is created. These keys are later
used to establish the session keys between the client and the server in the verification phase.

In Figure 4, we can see the use of each primitive described in Sections 3.2 and 3.3.
First, the biometric vector, t, obtained through the measurement and processing of the
modality, is used to construct a public polynomial, V, using the randomly generated secret
polynomial f of degree deg(f) = τ − 1. This process is followed by the creation of an
asymmetric key pair (cskt, cpkt), of which the public key, cpkt, will be transferred to the
server’s database. The OPRF protocol is executed between the client and evaluator, and
the result of the evaluation process is treated by the client as the value of the private key,
cskt. Next, the algorithm for generating the public key, pkGen(), is carried out, based on
the value of the private key, cskt, known only to the client. The client also has to choose
an identification value, id, which is used in the verification process. A tuple of public
parameters (V, cpkt, id) is sent to the server via an authenticated communication channel,
where it is saved into the server’s database.

Cryptography 2024, 8, 14 8 of 15

Enrolment

Client Server Evaluator

t—reference template ssk ∈ K k ∈ K
id—client’s identifier spk ∈ P

(f , V)←− lock(t)
(B, r)←− blind(f)

B B

S←− eval(B, k)

S S

cskt ←− unblind(S, r)
cpkt ←− pkGen(cskt)

V, cpkt, id

Store:

(V, cpkt, id)

Figure 4. Scheme of the enrolment phase introduced in BRAKE, based on [2].

The enrolment phase, in order to be correctly executed, introduces an additional pkGen()
algorithm, which is used for creating a public key, cpkt, which corresponds to the asym-
metric secret key, cskt, obtained as an outcome of the OPRF result’s deobfuscation. The
key pair created this way is used in the key encapsulation mechanism implemented by the
authors and, according to their assurances, a wide range of solutions can be used for this
purpose, such as elliptic curve Diffie–Hellman, RSA, or CRYSTALS-Kyber.

3.5. BRAKE Verification Phase

The verification phase, as depicted in Figure 5, refers to any attempt to perform the
authenticated exchange of a session key, ρ, with the server. During the phase, the client
provides the measurement of the selected biometric modality, which is represented as
a query template, t′. For successful authentication, the client attempts to reproduce the
asymmetric private key value, cskt′ , such that cskt′ = cskt. The key exchange process is
possible only if the threshold of closeness, τ, of the query template, t′, sufficiently similar
to the reference template, t, is exceeded, which makes the |t ∪ t′| ⩾ τ requirement fulfilled.
In addition to executing the primitives presented in Sections 3.2 and 3.3, this phase also
involves distributing the session key to the client by the server instance. The verification
phase also introduces an ephemeral key generation algorithm KeyGen(), which yields
asymmetric keys that are used for communication channel authentication. The public
ephemeral key, cpke, is also shared with the server as it is used as one of the arguments
for the key derivation function. The session key, ρ, is generated using a key derivation
function, denoted as KDF(), and then encapsulated by the encap() algorithm using the
client’s public key, cpkt, which has been stored in the server’s database since the enrolment
phase. the encapsulated key is delivered to the client and can be correctly decapsulated by
running the decap() algorithm, only if the reconstruction of cskt′ = cskt is successful.

Cryptography 2024, 8, 14 9 of 15

Verification

Client Server Evaluator

t′—probe template ssk ∈ K k ∈ K
id—client’s identifier spk ∈ P
spk ∈ P (V, cpkt, id)

id

V

f ′ ←− unlock(V, t′)

(B′, r)←− blind(f ′)

(cske, cpke)←− KeyGen(1λ) (sske, spke)←− KeyGen(1λ)

B′, cpke B′

(ctx, γ)←− encap(cpkt) S′ ←− eval(B′, k)
ρ←− KDF(cpkt, spk, cpke, spke, γ)

S′, spke, ctx, H(ρ) S′

cskt′ ←− unblind(S′, r)
cpkt′ ←− pkGen(cskt′)

γ′ ←− decap(ctx, cskt′)

ρ′ ←− KDF(cpkt′ , spk, cpke, spke, γ′)

Return: H(ρ′) = H(ρ)

Figure 5. Scheme of the verification phase introduced in BRAKE, based on [2].

3.6. BRAKE Protocol Correctness

The correctness of the protocol is based on the need for the client to obtain the secret
key, cskt′ = cskt, as a result of the fuzzy vault and OPRF primitives. Taking into account how
both keys are generated, it is evident that for their equivalence, it is necessary to recover the
coefficients of the secret polynomial, f ′(x) = f (x), from the polynomial, V(x), sent to the
client at the beginning of the verification phase by the server. Looking at the idea of using the
fuzzy vault primitive, the conclusion is that obtaining f ′(x) = f (x) is possible only when
the vault, V(x), is unlocked correctly, which also requires the user to provide a biometric
template, t′, which meets the condition |t ∩ t′| ⩾ τ. Unlocking the vault can be achieved
by determining the set of pairs {(b, V(b)) : ∀b ∈ t′}, and then finding the most frequently
yielded polynomial, f ′(x), as a result of the Lagrange interpolation on τ-point subsets. This
is possible due to the fact that if b ∈ |t ∩ t′|, then V(b) = f (b). The authors also suggest
using the Guruswami–Sudan decoder [7], treating polynomials as Reed–Solomon codes [8],
allowing the correct decoding of the polynomial V(x) to the form of f ′(x) = f (x).

Considering the above description, it is possible to define the BRAKE protocol correct-
ness as follows:

H(ρ′) = H(ρ) ⇐⇒
ρ′ = KDF(. . . , decap(encap(pkGen(cskt)), cskt′))

= KDF(. . . , γ′) = KDF(. . . , γ) = ρ ⇐⇒ cskt′ = cskt

⇐⇒ f ′(x) = f (x) ⇐⇒ |t′ ∩ t| ≥ τ

(5)

Cryptography 2024, 8, 14 10 of 15

4. Security of BRAKE Protocol Analysis

Due to the fact that a detailed analysis of the security, as well as the possible limitations
of the BAKE protocol, were presented in [2], in this work, we focus on indicating potential
threats resulting from the proposed structure of the BRAKE protocol. We also point out
that the discussion of the BRAKE protocol security was conducted in the original work, but
the included security proofs are not sufficient in the context of the obtained conclusions.

4.1. Threat of Compromising the Evaluator’s Secret Key

The developers of the BRAKE protocol propose an implementation of the evaluator’s
party, in which the same value of the evaluation key, k ∈ K, is used for each eval() operation,
for each individual client. This is motivated by the fact that the use of a larger number of
keys, for instance, assigning each serviced customer a key that corresponds exclusively to
them would require the introduction of a user identification mechanism for the evaluator.
This would also contradict the assumption that the evaluator should obtain no knowledge
about the client being serviced, as covered in Section 3.3. This includes information about
the owner of the evaluated value. This is an accurate observation, but only if there is the
possibility of rotating the key, k, used by the evaluator because it cannot be assumed that
the key is completely resistant to compromise. According to Figure 4, and the use of the
OPRF primitive suggested by the authors’ hashed Diffie–Hellman variant [6], the client’s
public key yielded during the enrolment phase has the following form:

cpkt = pkGen(cskt) = pkGen([k]H(f)) HashDH OPRF−−−−−−−−→ cpkt = pkGen(H(f)k) (6)

The public key representation in Equation (6) directly indicates that in order to success-
fully authenticate the client, the keys cskt′ and cpkt = pkGen(cskt) have to be derived from
the same evaluation key, k, value. Assuming a scenario in which the key, k, is compromised,
the server is required to invalidate all client identities whose public key, cpkt, was generated
using k. As a consequence, all clients whose identities have been revoked are forced to go
through the re-enrolment process. This is due to the fact that for a compromised evaluator
key, k, an adversary can launch an offline attack against the identity of a selected user,
knowing only their identifier, id.

Algorithm 1 depicts our proposition of the offline attack scheme. We also provide a
short semantic description as follows.

To successfully launch an offline attack against a specific user, the adversary, A, must
know the values of the compromised evaluation key, k, as well as the identifier, id, of the
user to be attacked. The first phase of the attack corresponds with impersonating the user of
the identifier, id, and requesting an authentication procedure to the server. After receiving
the victim’s vault, Vid(x), an adversary randomly generates rA ∈ Zq and computes its hash
value, H(rA). It is worth noting that rA can be arbitrarily chosen since the evaluator and
server have no way of checking whether the user’s OPRF input was computed based on
the f ′(x) coefficients or that it had been forged. Also, if the OPRF protocol is suggested by
the BRAKE protocol, the authors hashed Diffie–Hellman, there is no need to obfuscate the
adversary’s input into [r]H(rA), as the evaluator has no mechanism to define whether the
input values were obfuscated or not. The adversary also generates the ephemeral key pair
(cske, cpke)← KeyGen(1λ) and proceeds to the OPRF execution, providing the server with
cpke and the evaluator with H(rA). After the OPRF finishes, A yields ctx, H(ρ), and spke
values, and stores the tuple (Vid(x), H(ρ), ctx, cpke, spke) for further attack execution.

Cryptography 2024, 8, 14 11 of 15

Algorithm 1 Offline attack against the user’s tid template, with compromised k

Require: Victim’s identifier, id, compromised evaluation key, k
1: Send authentication request using id to the server
2: Receive Vid(x) from the server
3: Randomly generate rA ∈ Zq and compute the hash function value H(rA)
4: Generate ephemeral key pair (cske, cpke)← KeyGen(1λ)
5: Execute OPRF evaluation using H(rA) and share cpke with the server
6: Receive ctx, H(ρ) and spke from the server
7: Store: Vid(x), H(ρ), ctx, cpke, spke
8: Randomly generate the set of guess templates TA = {tA1 , tA2 , . . . }
9: for each tAi ∈ TA do

10: Unlock Vid(x) into: f ′Ai
(x)← unlock(Vid(x), tAi)

11: Compute: csktAi
← H(f ′Ai

(x))k

12: Generate public key: cpktAi
← pubGen(csktAi

)

13: Decapsulate pre-shared key: γAi ← decap(ctx, csktAi)
14: Compute: ρAi = KDF(cpktAi

, spk, cpke, spke, γAi)

15: if H(ρAi) = H(ρ) then
16: Return: tA = tAi
17: end if
18: end for

The second phase of the attack focuses on finding the adversarial template, tA, that
satisfies |tA ∩ tid|τ ⩾, which allows for the successful authentication and key exchange on
the behalf of the victim, based on the BRAKE’s correctness given in Equation (5). Firstly, the
adversary generates a set TA = {tA1 , tA2 , . . . } consisting of randomly generated adversarial
guess templates, tAi , where |TA| strictly depends on the adversary’s computing and storage
capabilities. According to the statements presented in [2,5], for fingerprint-based fuzzy vault
implementations, offline attacks pose a significant threat by lowering the number of opera-
tions required for an adversary to obtain a guess template that satisfies |tA ∩ t| ⩾ τ. This is
also the reason why the BRAKE protocol authors decided to eliminate this threat by requir-
ing user interaction with both server and evaluator instances during every authentication
attempt. Since the evaluation key, k, has been compromised and is known to the adversary,
it is possible to locally unlock the vault into f ′Ai

(x) ← unlock(Vid(x),tAi), compute the
secret key, csktAi

← H(f ′Ai
(x))k, and generate the public key, cpktAi

← pkGen(csktAi
). Using

the obtained secret key, csktAi
, the adversary attempts to decapsulate a pre-shared key as

γAi ← decap(ctx, csktAi
). Since all the required values are known to the adversary, the

guess session key is computed into ρAi = KDF(cpktAi
, spk, cpke, spke, γAi) and the attacker

checks for H(ρAi) = H(ρ). If the assumption of non-collision of the used hash function
H(·) is held and the above equality is obtained, it means that the used guess template,
tAi , satisfies the condition |tAi ∩ t| ⩾ τ, and the launched attack is successfully returning
tA = tAi . Using the template tA yielded from Algorithm 1, the adversary can success-
fully impersonate the client of the identifier, id, until their identity is revoked from the
server’s database.

We want to highlight that even modifying the OPRF to use the Updatable OPRF [6]
variation of the primitive for key rotation, k, has no effect and does not prevent the threat
of offline attacks because it is not possible for the server to recover the value of cskt based
on cpkt = pkGen(cskt), which would be needed in order to make the key pair dependent
on the rotated new evaluator’s key value.

As a partial solution to the presented problem, we propose using functionality that
allows the server and evaluator instances to split users into anonymized groups. In this
case, the evaluator is not forced to use only one key, which when compromised, forces all
registered users of the system to rerun the identity registration procedure. The proposed
solution assumes that the evaluator uses different keys for each group, where the users
have been divided. In this way, the evaluator can receive from the server an identifier of

Cryptography 2024, 8, 14 12 of 15

the key to be used in the evaluation process, without gaining any additional information
about the user for whom the evaluation is computed. This solution reduces the impact of
compromising a single evaluation key by reducing the number of users whose identities
must be invalidated. However, it is not an ideal solution, as it still prevents the continued
secure use of identities created using a compromised key. In order to fully mitigate the
threat presented in this section, it would be necessary to entirely change the scheme of
generating asymmetric keys that are the basis for client authentication, but the proposal of
such a solution is not within the scope of this work.

4.2. Threat of Secret Value Storage in Client’s Device

Taking into account the user authentication scheme presented in [2] and depicted in
Figure 5, it is apparent that the element certifying the client’s identity is an asymmetric
cryptography key pair created using fuzzy vault and OPRF primitives. According to the
assumptions presented by the authors of the BRAKE protocol, all secret values (e.g., secret
polynomials, asymmetric key pairs, hash values) should be stored in the volatile memory
of the device, without the possibility of saving into persistent memory. However, the
assumption of honest data processing by the client’s device shown in BRAKE’s threat
model applies to the processing of biometric data only. In a scenario where the client has
successfully completed the authenticated key exchange process but saves the private key,
cskt′ , or the coefficients of the secret polynomial, f ′(x) = f (x), into the device’s memory
before establishing a communication session with the server, they can consistently pass
the authentication process on each attempt, even if a sample template does not meet
the |t ∩ tA| ⩾ τ requirement. Assuming the widespread use of the BRAKE protocol in
services that rely on a client–server communication model, we believe that the threat model
presented in [2] should be expanded to include honest processing and not store any data
type used by the client device, not limiting it to biometric data only. While biometrics
are particularly sensitive due to the serious consequences of their potential compromise,
according to the BRAKE protocol scheme, the possibility of storing any secret data used
in it can lead to equivalent consequences. These consequences may result in the identity
theft of the victim carried out by an adversary. However, service providers cannot control
the devices of clients participating in the protocol to such an extent that they can ensure
none of the secret values used to prove the user’s identity have been stored in the device’s
persistent memory. For this reason, in order to mitigate this threat, it would be appropriate
to consider modifying the BRAKE protocol with a mechanism that allows the server party
to confirm the honesty of the client participating in its execution, including the honest
participation in the OPRF protocol.

4.3. Threat of Client’s Session Revocation

The verification phase of the BRAKE protocol, depicted in Figure 5, assumes the genera-
tion of a new symmetric key, ρ, whenever the server receives a request to verify a specific
individual. This can be the source of a significant threat to the protocol. When a new
session key, ρi, is generated, the previously used session key, ρi−1, is invalidated by the
server instance. This can lead to a situation where an honestly authenticated client’s session
that uses the ρi−1 key is interrupted and revoked by an adversary forcing the generation
of a new ρi key, which claims to be an honest client. At no stage of the presented protocol
is the state of the current session of a specific client, identified by id, checked. As authors
of the protocol [2] have not addressed the above-presented threat, it is possible for an
adversary to carry out an attack that consists of sending a verification request on behalf
of a client with the identifier, id, which results in the revocation of access to the service
by rotating the value of the session key from ρi−1 to ρi. It is worth noting that the only
parameter that an adversary has to possess is the identifier, id, of the client to be attacked.
By performing periodic queries to the server, the adversary is able to invalidate the client’s
session often enough to completely prevent the client with an honestly exchanged session
key from conducting communication with the server.

Cryptography 2024, 8, 14 13 of 15

Mitigating the above problem would require the use of mechanisms that allow for
maintaining multiple sessions for a specific client at the same time. This would also apply
to the use of multiple terminals simultaneously, such as communication with the server
from both a mobile device and a workstation with an apparatus that allows for measuring
and processing biometric characteristics. In addition, it would be important to implement
a mechanism that allows invalidating the currently used session key only when the client
has successfully completed the next authentication process.

4.4. Threat of the Denial-of-Service Attack on the Server

According to the enrolment phase scheme presented in Figure 4, it should be noted
that at the end of its execution, the server does not validate the values received by the
client in terms of confirming that the submitted data were honestly generated, moving
through each step of the scheme. Thus, it is possible to design an attack scenario in which
the adversary generates a falsified dataset, (VA, cpkA, idA), and requests the server to add
it to the identity database. By executing a sufficient number of such requests for various
values of identifiers, idA, it is possible to overflow the server’s database. It should also be
noted that the presented process of client enrolment allows the adversary to overload the
server by sending a significant number of registration requests using falsified data, which
can lead to significant consumption of the server’s computational capability while entering
the data into the mentioned database. This results in the occurrence of a denial-of-service
attack, where honest clients are unable to carry out communication with the server due to
its excessive overload.

A solution to this problem may be to introduce a limitation on the number of requests
that can be forwarded by a specific device. Such a limitation has the effect of protecting
the server instance from processing a significant number of requests received from a
specific device during the denial-of-service attack execution process. An additional safeguard
to mitigate the storage of unwanted, falsified client data in the server’s database is the
application of functionality for validating the (V, cpk, id) dataset provided by the clients.
However, its implementation method is not the subject of this work; hence, it will not be
discussed in more detail within this content.

A denial-of-service attack can also be executed by an adversary during the verification
phase, as part of the threat outlined in Section 4.3. Figure 5 shows that the server generates
an asymmetric key pair (sske, spke), a new session key, ρ, and calculates the values of
ctx and H(ρ) whenever a user authentication request is received. Assuming that all of
the above operations are computationally demanding, with a sufficiently high number
of falsified requests received from the adversary, it is possible to overload the computing
power of the server instance, thereby preventing honest clients from communicating with
the server.

5. Conclusions

This work presents the potential threats regarding the use of the biometric resilient
authenticated key exchange protocol, as proposed in [2], as a result of the analysis conducted
from the perspective of both the security of the protocol’s idealized scheme and the risks
arising from its improper implementation.

It has been shown that the protocol is not immune to the compromise of the secret
key used by the evaluator party involved in the execution of the oblivious pseudo-random
function primitive. This leads to the possibility of launching an offline attack against the
client’s biometric template, which is used as a user authentication factor in the BRAKE
protocol. This threat is particularly significant because the whole idea behind the creation
of the BRAKE protocol was based on the requirement for the aforementioned primitive
to interact with the client during every authentication attempt, which should effectively
prevent this attack from being carried out.

Attention was also drawn to the threat caused by the possibility of a rogue user storing
the secret values in their device’s persistent memory, which could be used in the future to

Cryptography 2024, 8, 14 14 of 15

dishonestly but successfully pass the verification process by using correct authentication key
values, despite the delivery of a non-mated biometric modality. An important conclusion
that emerges from the analysis carried out in Section 4.2 is the very superficial use of
biometric authentication methods in the BRAKE protocol. Indeed, biometric authentication
is not required for the successful key exchange between the server and the client, due to
the confirmation of the client’s identity based on the possession of an asymmetric key
pair corresponding to the keys created during the client registration phase. Thus, one
should strive to create a variation of the BRAKE protocol based primarily on biometric user
authentication, which should be the basis for carrying out an authenticated cryptographic
key exchange, without the possibility of a rogue user circumventing the process, as outlined
in Section 4.2.

Our analysis also focused on the proper way of implementing the BRAKE protocol,
pointing out the need to add mechanisms that allow for proper management of user
sessions, preventing their invalidation by an adversary. It is also important to protect the
server instance from the overload caused by receiving a significant number of requests
that use falsified enrolment data, which can lead to the overflowing of the server’s identity
database. Adversaries may also cause a reduction in the efficiency of serving honest users
as a result of launching a denial-of-service attack, as outlined in Sections 4.3 and 4.4. This
also leads us to the finding for the cybersecurity solution, which should be sustainable [9].
It is important to remember that when analyzing cryptographic protocols, special attention
should be paid not only to the correctness of their assumptions and ideological schemes
but also to the ways in which they can be implemented in real-life systems, to prevent
potential adversaries from launching attacks, addressing not only the possible compromise
of the cryptographic system but also ensuring the reliability of the devices used for their
implementation.

Future Works

The use of biometric authentication methods in cryptographic solutions is a broad and
(in many aspects) unexplored field; hence, we believe that further research into algorithms
and protocols that combine these two fields is indeed very forward-looking, especially
given the high reliability of biometric identity proofs of individuals. However, as out-
lined in the framework of this work, in order to mitigate the significant risks identified in
Sections 4.1 and 4.2, it would be necessary to modify the BRAKE protocol from the ground
up, in terms of how it generates keys based on which users are authenticated, as well
as provide mechanisms to prove their integrity. The strength of protocols based on bio-
metric methods should come directly from the use of proven and well-studied solutions
for biometric user authentication in such a way that it becomes impossible to circum-
vent such an important aspect of the protocol, according to the analysis undertaken in
Sections 4.1 and 4.2.

Author Contributions: Conceptualization, M.G. and W.W.; Methodology, M.G. and W.W.; Valida-
tion, M.G.; Formal analysis, M.G.; Investigation, M.G.; Resources, M.G.; Writing—original draft,
M.G.; Writing—review & editing, W.W.; Supervision, W.W.; Project administration, W.W.; Funding
acquisition, W.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Cryptography 2024, 8, 14 15 of 15

Abbreviations
The following abbreviations are used in this manuscript:

AFEM asymmetric fuzzy encapsulation mechanism
AKE authenticated key exchange
BAKE biometrics-authenticated key exchange
BRAKE biometric-resilient authenticated key exchange
KEM key encapsulation mechanism
OPRF oblivious pseudo-random function
PPT probabilistic polynomial time
TTP trusted third party

References
1. Wang, M.; He, K.; Chen, J.; Li, Z.; Zhao, W.; Du, R. Biometrics-Authenticated Key Exchange for Secure Messaging. In Proceedings

of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, 15–19
November 2021. [CrossRef]

2. Bauspieß, P.; Silde, T.; Poljuha, M.; Tullot, A.; Costache, A.; Rathgeb, C.; Kolberg, J.; Busch, C. BRAKE: Biometric Resilient
Authenticated Key Exchange; Cryptology ePrint Archive, Paper 2022/1408; IEEE: Piscataway, NJ, USA, 2022. Available online:
https://eprint.iacr.org/2022/1408 (accessed on 28 February 2024).

3. Dodis, Y.; Ostrovsky, R.; Reyzin, L.; Smith, A. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy
Data. arXiv 2006, arXiv:cs/0602007. [CrossRef]

4. Juels, A.; Sudan, M. A Fuzzy Vault Scheme; Cryptology ePrint Archive, Paper 2002/093; IEEE: Piscataway, NJ, USA, 2002. Available
online: https://eprint.iacr.org/2002/093 (accessed on 28 February 2024).

5. Tams, B. Unlinkable minutiae-based fuzzy vault for multiple fingerprints. IET Biom. 2016, 5, 170–180. [CrossRef]
6. Casacuberta, S.; Hesse, J.; Lehmann, A. SoK: Oblivious Pseudorandom Functions. In Proceedings of the 2022 IEEE 7th European

Symposium on Security and Privacy (EuroS&P), Genoa, Italy, 6–10 June 2022; pp. 625–646. [CrossRef]
7. Guruswami, V.; Sudan, M. Improved decoding of Reed-Solomon and algebraic-geometric codes. In Proceedings of the 39th

Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280), Palo Alto, CA, USA, 8–11 November 1998;
pp. 28–37. [CrossRef]

8. Reed, I.S.; Solomon, G. Polynomial Codes Over Certain Finite Fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [CrossRef]
9. Sulich, A.; Rutkowska, M.; Krawczyk-Jezierska, A.; Jezierski, J.; Zema, T. Cybersecurity and Sustainable Development. Procedia

Comput. Sci. 2021, 192, 20–28. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3460120.3484746
https://eprint.iacr.org/2022/1408
http://dx.doi.org/10.48550/ARXIV.CS/0602007
https://eprint.iacr.org/2002/093
http://dx.doi.org/10.1049/iet-bmt.2014.0093
http://dx.doi.org/10.1109/EuroSP53844.2022.00045
http://dx.doi.org/10.1109/SFCS.1998.743426
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1016/j.procs.2021.08.003

	Introduction
	BAKE Protocol Overview
	BRAKE Protocol Overview
	Interpretation of Biometric Features
	Fuzzy Vault Primitive
	Oblivious Pseudo-Random Function Primitive
	BRAKE Enrolment Phase
	BRAKE Verification Phase
	BRAKE Protocol Correctness

	Security of BRAKE Protocol Analysis
	Threat of Compromising the Evaluator's Secret Key
	Threat of Secret Value Storage in Client's Device
	Threat of Client's Session Revocation
	Threat of the Denial-of-Service Attack on the Server

	Conclusions
	References

