Coordinated Development of the Marine Environment and the Marine Fishery Economy in China, 2011–2020
Abstract
:1. Introduction
2. Study Design and Methods
2.1. Study Area
2.2. Index Selection
2.3. Research Methods
2.3.1. Data Standardization
2.3.2. Entropy Method
2.3.3. Coupling Harmonious Degree Model
2.3.4. Tobit Model
3. Spatio-Temporal Evolution of Marine-Environment Quality and Fishery-Economy Quality
3.1. Spatio-Temporal Evolution of Fishery Economy Quality
3.2. Spatio-Temporal Evolution of Marine-Environment Quality
4. Coordinated Development of Marine-Environment Quality and Marine-Fishery-Economy Quality
4.1. Temporal Evolution of Coordination between the Marine-Environment Quality and Marine-Fishery-Economy Quality
4.2. Spatial Evolution of Coordination between the Marine-Environment Quality and Marine-Fishery-Economy Quality
5. Factors Affecting Coordination between the Marine-Environment Quality and Marine-Fishery-Economy Quality
5.1. Model Specification
5.2. Descriptive Statistics
5.3. Empirical Results Analysis
6. Countermeasures and Suggestions
6.1. Discussion
6.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, Y.; Barange, M.; Beveridge, M. FAO’s statistic data and sustainability of fisheries and aquaculture: Comments on Pauly and Zeller (2017). Mar. Policy 2017, 81, 401–405. [Google Scholar] [CrossRef]
- Teh, L.S.L.; Bond, N.; Kc, K.; Fraser, E.; Seng, R.; Sumaila, U.R. The economic impact of global change on fishing and non-fishing households in the Tonle Sap ecosystem, Pursat, Cambodia. Fish. Res. 2019, 210, 71–80. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, H. A statistical analysis of China’s fisheries in the 12 th five-year period. Aquac. Fish. 2016, 1, 41–49. [Google Scholar] [CrossRef]
- Kareem, R.O.; Idowu, E.O. Economic Efficiency of Freshwater Artisanal Fisheries in Ijebu Waterside of Ogun State Nigeria. Glob. J. Sci. Front. Res. Agric. Vet. Sci. 2012, 12, 56–59. [Google Scholar]
- Sugiawan, Y.; Islam, M.; Managi, S. Global marine fisheries with economic growth. Econ. Anal. Policy 2017, 55, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Li, S. Incorporation of Fisheries Policy into Regional Blocs?—Lessons from the EU’s Common Fisheries Policy. Fishes 2022, 7, 102. [Google Scholar] [CrossRef]
- Pauly, D. A vision for marine fisheries in a global blue economy. Mar. Policy 2018, 87, 371–374. [Google Scholar] [CrossRef]
- Jiang, X.-Z.; Liu, T.-Y.; Su, C.-W. China’s marine economy and regional development. Mar. Policy 2014, 50, 227–237. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Cheung, W.; Dyck, A.; Gueye, K.; Huang, L.; Lam, V.; Pauly, D.; Srinivasan, T.; Swartz, W.; Watson, R.; et al. Benefits of rebuilding global marine fisheries outweigh costs. PLoS ONE 2012, 7, e40542. [Google Scholar] [CrossRef]
- Srinivasan, U.T.; Cheung, W.W.L.; Watson, R.; Sumaila, U.R. Food security implications of global marine catch losses due to overfishing. J. Bioeconomics 2010, 12, 183–200. [Google Scholar] [CrossRef]
- Wang, P.; Mendes, I. Assessment of Changes in Environmental Factors Affecting Aquaculture Production and Fisherfolk Incomes in China between 2010 and 2020. Fishes 2022, 7, 192. [Google Scholar] [CrossRef]
- Shen, G.; Heino, M. An overview of marine fisheries management in China. Mar. Policy 2014, 44, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, P.; Jin, D. Accounting for marine economic activities in large marine ecosystems. Ocean. Coast. Manag. 2008, 51, 246–258. [Google Scholar] [CrossRef]
- Sun, K.; Zhou, X.; Su, Z.; Zhang, H. Dynamic Assessment and Spatial Differentiation of Sustainable Utilization of Marine Fishery Resources in China. Sci. Geogr. Sin. 2016, 36, 1172–1179. [Google Scholar] [CrossRef]
- Tursi, A.; Maiorano, P.; Sion, L.; D’Onghia, G. Fishery resources: Between ecology and economy. Rend. Lincei 2015, 26, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Lauria, V.; Das, I.; Hazra, S.; Cazcarro, I.; Arto, I.; Kay, S.; Ofori-Danson, P.; Ahmed, M.; Hossain, M.A.R.; Barange, M.; et al. Importance of fisheries for food security across three climate change vulnerable deltas. Sci. Total Environ. 2018, 640–641, 1566–1577. [Google Scholar] [CrossRef]
- Kildow, J.T.; McIlgorm, A. The importance of estimating the contribution of the oceans to national economies. Mar. Policy 2010, 34, 367–374. [Google Scholar] [CrossRef]
- Smith, M.D. The New Fisheries Economics: Incentives Across Many Margins. Annu. Rev. Resour. Econ. 2012, 4, 379–402. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, U.; Li, D.; Akhter, M. Intelligent Diagnosis of Fish Behavior Using Deep Learning Method. Fishes 2022, 7, 201. [Google Scholar] [CrossRef]
- Schuhbauer, A.; Sumaila, U.R. Economic viability and small-scale fisheries—A review. Ecol. Econ. 2016, 124, 69–75. [Google Scholar] [CrossRef]
- Qin, M.; Tao, Q.; Du, Y. Policy implementation and project performance: A qualitative comparative analysis based on 29 National Marine ranchings in China. Mar. Policy 2021, 129, 104527. [Google Scholar] [CrossRef]
- Eegunjobi, R.; Ngepah, N. The Determinants of Global Value Chain Participation in Developing Seafood-Exporting Countries. Fishes 2022, 7, 186. [Google Scholar] [CrossRef]
- Chakraborty, K.; Kar, T.K. Economic perspective of marine reserves in fisheries: A bioeconomic model. Math. Biosci. 2012, 240, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Serpetti, N.; Baudron, A.R.; Burrows, M.T.; Payne, B.L.; Helaouet, P.; Fernandes, P.G.; Heymans, J.J. Impact of ocean warming on sustainable fisheries management informs the Ecosystem Approach to Fisheries. Sci. Rep. 2017, 7, 13438. [Google Scholar] [CrossRef] [Green Version]
- Kao, S.-M.; Tseng, H.-S. Scientific Research and Its Influence in Decision-Making of Tuna Regional Fisheries Management Organizations: Case Studies in the Atlantic Ocean and Indian Ocean. Fishes 2022, 7, 76. [Google Scholar] [CrossRef]
- Garza-Gil, M.D.; Torralba-Cano, J.; Varela-Lafuente, M.M. Evaluating the economic effects of climate change on the European sardine fishery. Reg. Environ. Change 2010, 11, 87–95. [Google Scholar] [CrossRef]
- Voss, R.; Quaas, M.F.; Stoeven, M.T.; Schmidt, J.O.; Tomczak, M.T.; Möllmann, C. Ecological-Economic Fisheries Management Advice—Quantification of Potential Benefits for the Case of the Eastern Baltic COD Fishery. Front. Mar. Sci. 2017, 4, 209. [Google Scholar] [CrossRef] [Green Version]
- HAnnA, S. Economics in the Service of Fisheries Policy and Practice. Mar. Resour. Econ. 2011, 26, 87–94. [Google Scholar] [CrossRef]
- Prellezo, R.; Accadia, P.; Andersen, J.L.; Andersen, B.S.; Buisman, E.; Little, A.; Nielsen, J.R.; Poos, J.J.; Powell, J.; Röckmann, C. A review of EU bio-economic models for fisheries: The value of a diversity of models. Mar. Policy 2012, 36, 423–431. [Google Scholar] [CrossRef]
- Idda, L.; Madau, F.A.; Pulina, P. Capacity and economic efficiency in small-scale fisheries: Evidence from the Mediterranean Sea. Mar. Policy 2009, 33, 860–867. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wu, J.; Wang, T. Index system of urban resource and environment carrying capacity based on ecological civilization. Environ. Impact Assess. Rev. 2018, 68, 90–97. [Google Scholar] [CrossRef]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.J.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef]
- Doyle, M.W.; Havlick, D.G. Infrastructure and the Environment. Annu. Rev. Environ. Resour. 2009, 34, 349–373. [Google Scholar] [CrossRef] [Green Version]
- Sadik-Zada, E.R.; Gatto, A.; Niftiyev, I. E-government and petty corruption in public sector service delivery. Technol. Anal. Strateg. Manag. 2022, 1–17. [Google Scholar] [CrossRef]
- Weaver, P.P.E.; Aguzzi, J.; Boschen-Rose, R.E.; Colaço, A.; de Stigter, H.; Gollner, S.; Haeckel, M.; Hauton, C.; Helmons, R.; Jones, D.O.B.; et al. Assessing plume impacts caused by polymetallic nodule mining vehicles. Mar. Policy 2022, 139, 105011. [Google Scholar] [CrossRef]
- Ovalle, J.C.; Vilas, C.; Antelo, L.T. On the use of deep learning for fish species recognition and quantification on board fishing vessels. Mar. Policy 2022, 139, 105015. [Google Scholar] [CrossRef]
- Juan, W.; Kexin, W. Fishery knowledge spillover effects on tourism economic growth in China—Spatiotemporal effects and regional heterogeneity. Mar. Policy 2022, 139, 105019. [Google Scholar] [CrossRef]
- Todorov, A. Dire straits of the Russian Arctic: Options and challenges for a potential US FONOP in the Northern Sea Route. Mar. Policy 2022, 139, 105020. [Google Scholar] [CrossRef]
- Zhu, W.; Li, B.; Han, Z. Synergistic analysis of the resilience and efficiency of China’s marine economy and the role of resilience policy. Mar. Policy 2021, 132, 104703. [Google Scholar] [CrossRef]
Target Layer | Rule Layer | Weight | Index Layer | Index (Positive/Negative) | Weight |
---|---|---|---|---|---|
Quality of the marine fishery economy | Proportion of marine fishery in fishery economy (%) | positive | 0.0299 | ||
Marine fishery output value (CNY 10,000) | positive | 0.0593 | |||
Marine Fishery industry strength | 0.2440 | Output value of mariculture (CNY 10,000) | positive | 0.0730 | |
(SFI) | Marine fishing output value (CNY 10,000) | positive | 0.0560 | ||
Per capita income of fishermen (CNY) | positive | 0.0258 | |||
Seafood output (10,000 tons) | positive | 0.0605 | |||
Mariculture yield (10,000 tons) | positive | 0.0780 | |||
Marine Fishery economy scale | 0.4043 | Pelagic fishery output (10,000 tons) | positive | 0.1028 | |
(SFE) | Marine fishing yield (10,000 tons) | positive | 0.0636 | ||
Marine aquaculture area (hectares) | positive | 0.0994 | |||
Ownership of marine mobile fishing vessels (total tons) | positive | 0.0695 | |||
Ownership of marine production fishing vessels (tons) | positive | 0.0631 | |||
Marine Fishery production capacity | 0.3517 | Number of marine mobile fishing vessels (units) | positive | 0.0557 | |
(SFP) | Fishery practitioners (persons) | positive | 0.0604 | ||
Total processing amount of seawater products (tons) | positive | 0.1030 | |||
Marine- environment quality | Marine | 0.7853 | Direct economic loss from marine disasters (CNY 100 million) | negative | 0.0281 |
Resource | Relative annual variation in sea level (millimeters) | negative | 0.0970 | ||
Environment | Proportion of nearshore Class I and II water quality (%) | positive | 0.1394 | ||
quality | Coastal wetland area (10,000 hectares) | positive | 0.2916 | ||
(SCQ) | Nearshore and coastal area (square kilometers) | positive | 0.2292 | ||
Marine- Ecological Environment quality (SBQ) | 0.2147 | Direct discharge of marine wastewater (100 million tons) | negative | 0.0403 | |
Chemical oxygen demand (tons/year) | negative | 0.0620 | |||
Petroleum (tons/year) | negative | 0.0286 | |||
Ammonia nitrogen (tons/year) | negative | 0.0282 | |||
Total phosphorus (tons/year) | negative | 0.0556 |
Coordination Grade | RHC | Coordination Grade | RHC |
---|---|---|---|
0 < D ≤ 0.2 | Serious disorder | 0.4 < D ≤ 0.6 | Primary coordination |
0.2 < D ≤ 0.3 | Mild disorder | 0.6 < D ≤ 0.8 | Intermediate coordination |
0.3 < D ≤ 0.4 | Barely coordinated | 0.8 < D ≤ 1 | Senior coordination |
Province/ City | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Mean Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Liaoning | 0.3673 | 0.4043 | 0.4385 | 0.4689 | 0.4613 | 0.4507 | 0.4053 | 0.3936 | 0.3859 | 0.3889 | 0.4165 |
Tianjin | 0.0124 | 0.0181 | 0.0298 | 0.0364 | 0.0360 | 0.0354 | 0.0325 | 0.0331 | 0.0371 | 0.0299 | 0.0301 |
Hebei | 0.0800 | 0.0909 | 0.0928 | 0.0980 | 0.0999 | 0.1126 | 0.1122 | 0.1185 | 0.1179 | 0.1255 | 0.1048 |
Shandong | 0.5271 | 0.6059 | 0.6357 | 0.7072 | 0.7422 | 0.7574 | 0.7264 | 0.7266 | 0.6971 | 0.7022 | 0.6828 |
Jiangsu | 0.1353 | 0.1452 | 0.1645 | 0.1675 | 0.1729 | 0.1717 | 0.1770 | 0.1925 | 0.1657 | 0.1929 | 0.1685 |
Shanghai | 0.0379 | 0.0429 | 0.0465 | 0.0552 | 0.0573 | 0.0585 | 0.0661 | 0.0731 | 0.0821 | 0.0769 | 0.0596 |
Zhjiang | 0.3947 | 0.4455 | 0.4664 | 0.5091 | 0.5233 | 0.4808 | 0.5160 | 0.5528 | 0.5378 | 0.5604 | 0.4987 |
Fujian | 0.4069 | 0.4549 | 0.4848 | 0.5083 | 0.5397 | 0.5651 | 0.5855 | 0.6217 | 0.6407 | 0.6541 | 0.5462 |
Guangdong | 0.3169 | 0.3380 | 0.3486 | 0.3564 | 0.3583 | 0.3651 | 0.3736 | 0.3835 | 0.3855 | 0.3872 | 0.3613 |
Guangxi | 0.1304 | 0.1451 | 0.1525 | 0.1581 | 0.1625 | 0.1756 | 0.1821 | 0.1886 | 0.1874 | 0.1757 | 0.1658 |
Hainan | 0.1428 | 0.1587 | 0.1686 | 0.1789 | 0.1851 | 0.1909 | 0.1855 | 0.1856 | 0.1863 | 0.1786 | 0.1761 |
Mean value | 0.2320 | 0.2590 | 0.2753 | 0.2949 | 0.3035 | 0.3058 | 0.3057 | 0.3154 | 0.3112 | 0.3157 | 0.2919 |
Province/City | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Mean Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Liaoning | 0.5891 | 0.5627 | 0.5686 | 0.6047 | 0.6227 | 0.6146 | 0.6747 | 0.7063 | 0.6964 | 0.6916 | 0.6331 |
Tianjin | 0.3216 | 0.2942 | 0.3046 | 0.3211 | 0.3477 | 0.3441 | 0.3780 | 0.3605 | 0.4150 | 0.4133 | 0.3500 |
Hebei | 0.5776 | 0.5478 | 0.5284 | 0.5167 | 0.5187 | 0.5275 | 0.5559 | 0.5407 | 0.5487 | 0.5433 | 0.5405 |
Shandong | 0.7969 | 0.6594 | 0.6786 | 0.6687 | 0.6801 | 0.7024 | 0.7297 | 0.7271 | 0.7020 | 0.6999 | 0.7045 |
Jiangsu | 0.7461 | 0.6815 | 0.8794 | 0.8520 | 0.8825 | 0.8951 | 0.8996 | 0.8892 | 0.8329 | 0.8669 | 0.8425 |
Shanghai | 0.4299 | 0.3335 | 0.4151 | 0.3424 | 0.3732 | 0.3675 | 0.4147 | 0.4327 | 0.4227 | 0.4112 | 0.3943 |
Zhejiang | 0.3487 | 0.2824 | 0.3509 | 0.3201 | 0.3681 | 0.4030 | 0.4425 | 0.4916 | 0.4397 | 0.4890 | 0.3936 |
Fujian | 0.4301 | 0.3926 | 0.5066 | 0.5197 | 0.4987 | 0.5045 | 0.5610 | 0.5567 | 0.5439 | 0.5781 | 0.5092 |
Guangdong | 0.6382 | 0.6188 | 0.6648 | 0.6533 | 0.7000 | 0.6832 | 0.6292 | 0.6745 | 0.6813 | 0.7147 | 0.6658 |
Guangxi | 0.5280 | 0.4941 | 0.5032 | 0.4878 | 0.5199 | 0.5504 | 0.5238 | 0.5634 | 0.5370 | 0.5213 | 0.5229 |
Hainan | 0.4406 | 0.4097 | 0.4168 | 0.4098 | 0.4441 | 0.4736 | 0.4456 | 0.4872 | 0.4825 | 0.4837 | 0.4494 |
Mean value | 0.5851 | 0.5309 | 5805 | 0.5728 | 0.5980 | 0.6073 | 0.6299 | 0.6487 | 0.6362 | 0.6459 | 0.6035 |
Province/City | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Mean Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Liaoning | 0.4823 | 0.4883 | 0.4997 | 0.5160 | 0.5177 | 0.5130 | 0.5113 | 0.5135 | 0.5091 | 0.5092 | 0.5060 |
Tianjin | 0.1778 | 0.1910 | 0.2183 | 0.2325 | 0.2365 | 0.2349 | 0.2355 | 0.2336 | 0.2491 | 0.2357 | 0.2245 |
Hebei | 0.3278 | 0.3340 | 0.3327 | 0.3354 | 0.3373 | 0.3490 | 0.3534 | 0.3558 | 0.3566 | 0.3613 | 0.3443 |
Shandong | 0.5693 | 0.5622 | 0.5731 | 0.5864 | 0.5960 | 0.6039 | 0.6033 | 0.6029 | 0.5914 | 0.5920 | 0.5881 |
Jiangsu | 0.3986 | 0.3966 | 0.4361 | 0.4346 | 0.4419 | 0.4427 | 0.4467 | 0.4548 | 0.4310 | 0.4522 | 0.4335 |
Shanghai | 0.2527 | 0.2446 | 0.2635 | 0.2622 | 0.2704 | 0.2708 | 0.2877 | 0.2986 | 0.3051 | 0.2982 | 0.2754 |
Zhejiang | 0.4307 | 0.4211 | 0.4497 | 0.4493 | 0.4685 | 0.4691 | 0.4888 | 0.5105 | 0.4931 | 0.5116 | 0.4692 |
Fujian | 0.4573 | 0.4597 | 0.4978 | 0.5069 | 0.5093 | 0.5167 | 0.5353 | 0.5424 | 0.5433 | 0.5545 | 0.5123 |
Guangdong | 0.4742 | 0.4782 | 0.4906 | 0.4912 | 0.5004 | 0.4997 | 0.4923 | 0.5043 | 0.5062 | 0.5128 | 0.4950 |
Guangxi | 0.3622 | 0.3659 | 0.3721 | 0.3726 | 0.3812 | 0.3943 | 0.3929 | 0.4037 | 0.3983 | 0.3890 | 0.3832 |
Hainan | 0.3542 | 0.3570 | 0.3641 | 0.3680 | 0.3786 | 0.3877 | 0.3792 | 0.3878 | 0.3872 | 0.3833 | 0.3747 |
Mean value | 0.3897 | 0.3908 | 0.4089 | 0.4141 | 0.4216 | 0.4256 | 0.4297 | 0.4371 | 0.4337 | 0.4363 | 0.4188 |
Variable | Symbol | Observations | Mean Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|
Coordination level | Cor | 110 | 0.418749 | 0.106973 | 0.177825 | 0.603891 |
Strength of fishery industry | SFI | 110 | 4.679636 | 1.107592 | 1.850000 | 6.370000 |
Scale of the fishery economy | SFE | 110 | 5.003798 | 1.514934 | 1.343961 | 6.652475 |
Fishery production capacity | SFP | 110 | 3.719994 | 1.164299 | 0.826672 | 5.534104 |
Quality of marine resource environment | SCQ | 110 | 4.349157 | 0.399793 | 3.218876 | 5.036952 |
Quality of marine ecological environment | SBQ | 110 | 4.909854 | 1.139169 | 1.609438 | 6.772165 |
Variable | Model 1 Fixed-Effect OLS | Model 2 Random-Effect OLS | Model 3 Hybrid Model Tobit | Model 4 Random-Effect Tobit |
---|---|---|---|---|
SFI | 0.0295 ** | 0.0329 *** | 0.0130 | 0.0330 *** |
(0.00768) | (0.00731) | (0.0202) | (0.00523) | |
SFE | 0.0497 ** | 0.0412 ** | 0.0806 *** | 0.0411 *** |
(0.0198) | (0.0144) | (0.0150) | (0.00863) | |
SFP | 0.0359 * | 0.0240 * | −0.0248 | 0.0238 ** |
(0.0178) | (0.0125) | (0.0223) | (0.0104) | |
SCQ | −0.0122 *** | −0.0129 *** | −0.0130 | −0.0129 *** |
(0.00183) | (0.00189) | (0.0128) | (0.00268) | |
SBQ | −0.0107 *** | −0.0107 *** | −0.0115 | −0.0107 *** |
(0.00172) | (0.00190) | (0.00735) | (0.00163) | |
Constant term | 0.00410 | 0.0788 | 0.160 ** | 0.0788 ** |
(0.101) | (0.0596) | (0.0604) | (0.0382) | |
var(e.y) sigma_u sigma_e | 0.0402 *** | |||
0.000992 ** | (0.00986) | |||
(0.000248) | 0.00958 *** | |||
(0.000692) | ||||
N | 110 | 110 | 110 | 110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Jiang, Y.; Pei, Z.; Han, L.; Shao, H.; Jiang, Y.; Jin, X.; Tan, S. Coordinated Development of the Marine Environment and the Marine Fishery Economy in China, 2011–2020. Fishes 2022, 7, 391. https://doi.org/10.3390/fishes7060391
Liu Y, Jiang Y, Pei Z, Han L, Shao H, Jiang Y, Jin X, Tan S. Coordinated Development of the Marine Environment and the Marine Fishery Economy in China, 2011–2020. Fishes. 2022; 7(6):391. https://doi.org/10.3390/fishes7060391
Chicago/Turabian StyleLiu, Yang, Yiying Jiang, Zhaobin Pei, Limin Han, Hongrun Shao, Yang Jiang, Xiaomeng Jin, and Saihong Tan. 2022. "Coordinated Development of the Marine Environment and the Marine Fishery Economy in China, 2011–2020" Fishes 7, no. 6: 391. https://doi.org/10.3390/fishes7060391
APA StyleLiu, Y., Jiang, Y., Pei, Z., Han, L., Shao, H., Jiang, Y., Jin, X., & Tan, S. (2022). Coordinated Development of the Marine Environment and the Marine Fishery Economy in China, 2011–2020. Fishes, 7(6), 391. https://doi.org/10.3390/fishes7060391