Implications of Warming on the Morphometric and Reproductive Traits of the Green Crab, Carcinus maenas
Abstract
:1. Introduction
2. Material and Methods
2.1. Literature Review Data
2.2. Field Work Data
2.3. Environmental Data
2.4. Data Analysis
3. Results
4. Discussion
4.1. Morphological Trait
4.2. Reproductive Trait
4.3. Warming Impacts
4.4. Final Considerations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Global Warming of 1.5 °C; An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; 616p. [Google Scholar] [CrossRef]
- Bueno, J.; López-Urrutia, Á. The Offspring-Development-Time/Offspring-Number Trade-Off. Am. Nat. 2012, 179, E196–E203. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, M. Combined effects of temperature and salinity on the zoeal development of the green crab, Carcinus maenas (Linnaeus, 1758) (Decapoda: Portunidae). Sci. Mar. 1993, 57, 1–8. [Google Scholar]
- Rodríguez-Félix, D.; Cisneros-Mata, M.A.; Aragón-Noriega, E.A. Variability of size at maturity of the warrior swimming crab, Callinectes bellicosus (Stimpson, 1859) (Brachyura, Portunidae), along a latitudinal gradient in the Gulf of California. Crustaceana 2015, 88, 979–989. [Google Scholar] [CrossRef]
- Spitzner, F.; Giménez, L.; Meth, R.; Harzsch, S.; Torres, G. Unmasking intraspecific variation in offspring responses to multiple environmental drivers. Mar. Biol. 2019, 166, 112. [Google Scholar] [CrossRef]
- Crothers, J.H. The biology of the shore crab Carcinus maenas (L.). I. The background anatomy, growth and life history. Field Stud. 1967, 2, 407–434. [Google Scholar]
- Carlton, J.T.; Cohen, A.N. Episodic global dispersal in shallow water marine organisms: The case history of the European shore crabs Carcinus maenas and C. aestuarii. J. Biogeogr. 2003, 30, 1809–1820. [Google Scholar] [CrossRef]
- Rewitz, K.; Styrishave, B.; Depledge, M.H.; Andersen, O. Spatial and Temporal Distribution of Shore Crabs Carcinus maenas in a Small Tidal Estuary (Looe Estuary, Cornwall, England). J. Crustac. Biol. 2004, 24, 178–187. [Google Scholar] [CrossRef]
- Thresher, R.E.; Werner, M.; Høeg, J.T.; Svane, I.; Glenner, H.; Murphy, N.E.; Wittwer, C. Developing the options for managing marine pests: Specificity trials on the parasitic castrator, Sacculina carcini, against the European crab, Carcinus maenas, and related species. J. Exp. Mar. Biol. Ecol. 2000, 254, 37–51. [Google Scholar] [CrossRef]
- Young, A.M.; Elliott, J.A. Life History and Population Dynamics of Green Crabs (Carcinus maenas). Fishes 2020, 5, 4. [Google Scholar] [CrossRef]
- Leignel, V.; Stillman, J.H.; Baringou, S.; Thabet, R.; Metais, I. Overview on the European green crab Carcinus spp. (Portunidae Decapoda) one of the most famous marine invaders and ecotoxicological models. Environ. Sci. Pollut. Res. 2014, 21, 9129–9144. [Google Scholar] [CrossRef]
- Kelley, A.L.; de Rivera, C.E.; Buckley, B.A. Cold tolerance of the invasive Carcinus maenas in the east Pacific: Molecular mechanisms and implications for range expansion in a changing climate. Biol. Invasions 2013, 15, 2299–2309. [Google Scholar] [CrossRef]
- Monteiro, J.N.; Pinto, M.; Crespo, D.; Pardal, M.A.; Martinho, F. Effects of climate variability on an estuarine green crab Carcinus maenas population. Mar. Environ. Res. 2021, 169, 105404. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 2008, 59, 30–43. [Google Scholar] [CrossRef]
- Vermeiren, P.; Sheaves, M. Predicting habitat associations of five intertidal crab species among estuaries. Estuar. Coast. Shelf Sci. 2014, 149, 133–142. [Google Scholar] [CrossRef]
- Cohen, A.N.; Carlton, J.T.; Fountain, M.C. Introduction, dispersal and potential impacts of the green crab Carcinus maenas in San Francisco Bay, California. Mar. Biol. 1995, 122, 225–238. [Google Scholar] [CrossRef]
- Pickering, T.R.; Poirier, L.A.; Barrett, T.J.; McKenna, S.; Davidson, J.; Quijón, P.A. Non-indigenous predators threaten ecosystem engineers: Interactive effects of green crab and oyster size on American oyster mortality. Mar. Environ. Res. 2017, 127, 24–31. [Google Scholar] [CrossRef]
- Freitas, V.; Cardoso, J.F.M.F.; Lika, K.; Peck, M.A.; Campos, J.; Kooijman, S.A.L.M.; van der Veer, H.W. Temperature tolerance and energetics: A dynamic energy budget-based comparison of North Atlantic marine species. Philos. Trans. R. Soc. Land B 2010, 365, 3553–3565. [Google Scholar] [CrossRef]
- Kelley, A.L.; de Rivera, C.E.; Grosholz, E.D.; Ruiz, G.M.; Yamada, S.B.; Gillespie, G. Thermogeographic variation in body size of Carcinus maenas, the European green crab. Mar. Biol. 2015, 162, 1625–1635. [Google Scholar] [CrossRef]
- Torres, G.; Giménez, L. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct. Ecol. 2020, 34, 1564–1576. [Google Scholar] [CrossRef]
- Atkinson, D. Temperature and Organism Size—A Biological Law for Ectotherms? Adv. Ecol. Res. 1994, 25, 1–58. [Google Scholar]
- Yamada, S.B.; Dumbauld, B.R.; Kalin, A.; Hunt, C.E.; Figlar-Barnes, R.; Randall, A. Growth and persistence of a recent invader Carcinus maenas in estuaries of the northeastern Pacific. Biol. Invasions 2005, 7, 309–321. [Google Scholar] [CrossRef]
- Mouritsen, K.N.; Geyti, S.N.S.; Lützen, J.; Høeg, J.T.; Glenner, H. Population dynamics and development of the rhizocephalan Sacculina carcini, parasitic on the shore crab Carcinus maenas. Dis. Aquat. Org. 2018, 131, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Lützen, J. Growth, reproduction, and life span in Sacculina carcini Thompson (Cirripedia: Rhizocephala) in the Isefjord, Denmark. Sarsia 1984, 69, 91–105. [Google Scholar] [CrossRef]
- Sneddon, L.U.; Huntingford, F.A.; Taylor, A.C. Weapon size versus body size as a predictor of winning in fights between shore crabs, Carcinus maenas (L.). Behav. Ecol. Sociobiol. 1997, 41, 237–242. [Google Scholar] [CrossRef]
- Aagaard, A.; Warman, C.G.; Depledge, M.H. Tidal and seasonal changes in the temporal and spatial distribution of foraging Carcinus maenas in the weakly tidal littoral zone of Kerteminde Fjord, Denmark. Mar. Ecol. Prog. Ser. 1995, 122, 165–172. [Google Scholar] [CrossRef]
- Dries, M.; Adelung, D. Die Schlei, ein Modell für die Verbreitung der Strandkrabbe Carcinus maenas. Helgol. Mar. Res. 1982, 35, 65–77. [Google Scholar] [CrossRef]
- McVean, A. The incidence of autotomy in Carcinus maenas (L.). J. Exp. Mar. Biol. Ecol. 1976, 24, 177–187. [Google Scholar] [CrossRef]
- Hunter, E.; Naylor, E. Intertidal migration by the sore crab Carcinus maenas. Mar. Ecol. Prog. Ser. 1993, 101, 131–138. [Google Scholar] [CrossRef]
- McGaw, I.J.; Edgell, T.C.; Kaiser, M.J. Population demographics of native and newly invasive populations of the green crab Carcinus maenas. Mar. Ecol. Prog. Ser. 2011, 430, 235–240. [Google Scholar] [CrossRef]
- Reid, D.G.; Abello, P.; Warman, C.G.; Naylor, E. Size-related mating success in the shore crab Carcinus maenas (Crustacea: Brachyura). J. Zool. 1994, 232, 397–401. [Google Scholar] [CrossRef]
- Broekhuysen, G.J. On Development, Growth and Distribution of Carcinides maenas (L.). Arch. Neerl. Zool. 1936, 2, 257–399. [Google Scholar] [CrossRef]
- Naylor, E. Seasonal Changes in a Population of Carcinus maenas (L.) in the Littoral Zone. J. Anim. Ecol. 1962, 31, 601–610. [Google Scholar] [CrossRef]
- Lyons, L.J.; O’riordan, R.M.; Cross, T.F.; Culloty, S.C. Reproductive biology of the shore crab Carcinus maenas (Decapoda, Portunidae): A macroscopic and histological view. Invertebr. Reprod. Dev. 2012, 56, 144–156. [Google Scholar] [CrossRef]
- Souza, A.T.; Ilarri, M.I.; Campos, J.; Marques, J.C.; Martins, I. Differences in the neighborhood: Structural variations in the carapace of shore crabs Carcinus maenas (Decapoda: Portunidae). Estuar. Coast. Shelf Sci. 2011, 95, 424–430. [Google Scholar] [CrossRef]
- Baeta, A.; Cabral, H.N.; Neto, J.M.; Marques, J.C.; Pardal, M.A. Biology, population dynamics and secondary production of the green crab Carcinus maenas (L.) in a temperate estuary. Estuar. Coast. Shelf Sci. 2005, 65, 43–52. [Google Scholar] [CrossRef]
- Bessa, F.; Baeta, A.; Martinho, F.; Marques, S.; Pardal, M.A. Seasonal and temporal variations in population dynamics of the Carcinus maenas (L.): The effect of an extreme drought event in a southern European estuary. J. Mar. Biol. Assoc. UK 2010, 90, 867–876. [Google Scholar] [CrossRef]
- Gillespie, G.E.; Norgard, T.C.; Anderson, E.D.; Haggarty, D.R.; Phillips, A.C. Distribution and Biological Characteristics of European Green Crab, Carcinus maenas, in British Columbia, 2006–2013; Canadian technical report of fisheries and aquatic sciences; Fisheries and Oceans Canada: Nanaimo, BC, Canada, 2015; p. 3120.
- Gillespie, G.E.; Phillips, A.C.; Paltzat, D.L.; Therriault, T.W. Status of the European Green Crab, Carcinus maenas, in British Columbia—2006; Canadian technical report of fisheries and aquatic sciences; Fisheries and Oceans Canada: Nanaimo, BC, Canada, 2007; p. 39.
- Yamada, S.B.; Gillespie, G.E. Will the European green crab (Carcinus maenas) persist in the Pacific Northwest? ICES J. Mar. Sci. 2008, 65, 725–729. [Google Scholar] [CrossRef]
- Best, K.; McKenzie, C.; Couturier, C. Reproductive biology of an invasive population of European green crab, Carcinus maenas, in Placentia Bay, Newfoundland. Manag. Biol. Invasions 2017, 8, 247–255. [Google Scholar] [CrossRef]
- Bergshoeff, J.A.; McKenzie, C.H.; Favaro, B. Improving the efficiency of the Fukui trap as a capture tool for the invasive European green crab (Carcinus maenas) in Newfoundland, Canada. PeerJ 2019, 7, e6308. [Google Scholar] [CrossRef]
- Audet, D.; Miron, G.; Moriyasu, M. Biological Characteristics of a Newly Established Green Crab (Carcinus maenas) Population in the Southern Gulf of St. Lawrence, Canada. J. Shellfish Res. 2008, 27, 427–441. [Google Scholar] [CrossRef]
- Tremblay, M.J.; Thompson, A.; Paul, K. Recent Trends in the Abundance of the Invasive Green Crab (Carcinus maenas) in Bras d’Or Lakes and Eastern Nova Scotia Based on Trap Surveys; Fisheries and Ocean Canada, Bedford Institute of Oceanography: Dartmouth, NS, Canada, 2006; p. 32.
- MacDonald, A.J.; Kienzle, H.M.; Drolet, D.; Hamilton, D.J. Distribution and Habitat Use of the Invasive Carcinus maenas L. (European Green Crab) and the Native Cancer irroratus (Say) (Rock Crab) in Intertidal Zones in the upper Bay of Fundy, Canada. Northeast. Nat. 2018, 25, 161–180. [Google Scholar] [CrossRef]
- Quinn, B.K. Dramatic decline and limited recovery of a green crab (Carcinus maenas) population in the Minas Basin, Canada after the summer of 2013. PeerJ 2018, 6, e5566. [Google Scholar] [CrossRef] [PubMed]
- Rossong, M.A.; Quijón, P.A.; Snelgrove, P.V.R.; Barrett, T.J.; McKenzie, C.H.; Locke, A. Regional differences in foraging behaviour of invasive green crab (Carcinus maenas) populations in Atlantic Canada. Biol. Invasions 2012, 14, 659–669. [Google Scholar] [CrossRef]
- Berrill, M. The Life Cycle of the Green Crab Carcinus maenas at the Northern End of Its Range. J. Crustac. Biol. 1982, 2, 31–39. [Google Scholar] [CrossRef]
- Fulton, B.A.; Warner, R.; Fairchild, E.A. The green crab Carcinus maenas in two New Hampshire estuaries. Part 1: Spatial and temporal distribution, sex ratio, average size, and mass. J. Crustac. Biol. 2013, 33, 25–35. [Google Scholar] [CrossRef]
- Young, A.M.; Elliott, J.A.; Incatasciato, J.M.; Taylor, M.L. Seasonal catch, size, color, and assessment of trapping variables for the European green crab Carcinus maenas (Linnaeus, 1758) (Brachyura: Portunoidea: Carcinidae), a nonindigenous species in Massachusetts, USA. J. Crustac. Biol. 2017, 37, 556–570. [Google Scholar] [CrossRef]
- Griffen, B.D. Linking individual diet variation and fecundity in an omnivorous marine consumer. Oecologia 2013, 174, 121–130. [Google Scholar] [CrossRef]
- Derivera, C.E.; Hitchcock, N.G.; Teck, S.J.; Steves, B.P.; Hines, A.H.; Ruiz, G.M. Larval development rate predicts range expansion of an introduced crab. Mar. Biol. 2006, 150, 1275–1288. [Google Scholar] [CrossRef]
- Klassen, G.; Locke, A. A Biological Synopsis of the European Green Crab, Carcinus maenas; Canadian technical report of fisheries and aquatic sciences; Fisheries and Oceans Canada: Moncton, NB, Canada, 2007; Volume 2818, pp. 1–75.
- Hartnoll, R.G. Reproductive Investment in Brachyura. Hydrobiologia 2006, 557, 31–40. [Google Scholar] [CrossRef]
- Daufresne, M.; Lengfellner, K.; Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12788–12793. [Google Scholar] [CrossRef]
- Forster, J.; Hirst, A.G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 2012, 26, 483–492. [Google Scholar] [CrossRef]
- Manyak-Davis, A.; Bell, T.M.; Sotka, E.E. The Relative Importance of Predation Risk and Water Temperature in Maintaining Bergmann’s Rule in a Marine Ectotherm. Am. Nat. 2013, 182, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, D.J.; Levinton, J.S. Latitudinal Differentiation in Copepod Growth: An Adaptation to Temperature. Ecology 1985, 66, 1397–1407. [Google Scholar] [CrossRef]
- Lehnert, S.J.; DiBacco, C.; Jeffery, N.W.; Blakeslee, A.M.H.; Isaksson, J.; Roman, J.; Wringe, B.F.; Stanley, R.R.E.; Matheson, K.; McKenzie, C.H.; et al. Temporal dynamics of genetic clines of invasive European green crab (Carcinus maenas) in eastern North America. Evol. Appl. 2018, 11, 1656–1670. [Google Scholar] [CrossRef]
- Johnston, I.A.; Bennett, A.F. Animals and Temperature: Phenotypic and Evolutionary Adaptation; Society for Experimental Biology Seminar Series; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Chapelle, G.; Peck, L.S. Polar gigantism dictated by oxygen availability. Nature 1999, 398, 114–115. [Google Scholar] [CrossRef]
- Monteiro, J.N.; Ovelheiro, A.; Ventaneira, A.M.; Vieira, V.; Teodósio, M.A.; Leitão, F. Variability in Carcinus maenas Fecundity along Lagoons and Estuaries of the Portuguese Coast. Estuaries Coasts 2022, 45, 1716–1727. [Google Scholar] [CrossRef]
- Debelius, B.; Gómez-Parra, A.; Forja, J.M. Oxygen solubility in evaporated seawater as a function of temperature and salinity. Hydrobiologia 2009, 632, 157–165. [Google Scholar] [CrossRef]
- Azra, M.N.; Aaqillah-Amr, M.A.; Ikhwanuddin, M.; Ma, H.; Waiho, K.; Ostrensky, A.; Tavares, C.P.d.S.; Abol-Munafi, A.B. Effects of climate-induced water temperature changes on the life history of brachyuran crabs. Rev. Aquac. 2019, 12, 1211–1216. [Google Scholar] [CrossRef]
- Hosono, T. Effect of temperature on growth and maturation pattern of Caprella mutica (Crustacea, Amphipoda): Does the temperature–size rule function in caprellids? Mar. Biol. 2011, 158, 363–370. [Google Scholar] [CrossRef]
- Hartnoll, R.G. Growth in Crustacea—Twenty years on. In Advances in Decapod Crustacean Research, Proceedings of the 7th Colloquium Crustacea Decapoda Mediterranea, Lisbon, Portugal, 6–9 September 1999; Springer: Dordrecht, The Netherlands, 2001; pp. 111–122. [Google Scholar] [CrossRef]
- Groner, M.L.; Shields, J.D.; Landers, D.F.; Swenarton, J.; Hoenig, J.M. Rising Temperatures, Molting Phenology, and Epizootic Shell Disease in the American Lobster. Am. Nat. 2018, 192, 163–177. [Google Scholar] [CrossRef]
- Johnson, D.S.; Crowley, C.; Longmire, K.; Nelson, J.; Williams, B.; Wittyngham, S. The fiddler crab, Minuca pugnax, follows Bergmann’s rule. Ecol. Evol. 2019, 9, 14489–14497. [Google Scholar] [CrossRef]
- Cunningham, S.R.; Darnell, M.Z. Temperature-Dependent Growth and Molting in Early Juvenile Blue Crabs Callinectes sapidus. J. Shellfish Res. 2015, 34, 505–510. [Google Scholar] [CrossRef]
- Aguilar-Alberola, J.A.; Mesquita-Joanes, F. Breaking the temperature-size rule: Thermal effects on growth, development and fecundity of a crustacean from temporary waters. J. Therm. Biol. 2014, 42, 15–24. [Google Scholar] [CrossRef]
- Steele, D.H.; Steele, V.J. The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. XI. Comparison and discussion. Can. J. Zool. 1975, 53, 1116–1126. [Google Scholar] [CrossRef]
- Shakuntala, K.; Reddy, S.R. Crustacean egg size as an indicator of egg fat/protein reserves. Int. J. Invertebr. Reprod. 1982, 4, 381–384. [Google Scholar] [CrossRef]
- Brown, N.P.; Shields, R.J.; Bromage, N.R. The influence of water temperature on spawning patterns and egg quality in the Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 2006, 261, 993–1002. [Google Scholar] [CrossRef]
- Baptista, V.; Costa, E.F.S.; Carere, C.; Morais, P.; Cruz, J.; Cerveira, I.; Castanho, S.; Ribeiro, L.; Pousão-Ferreira, P.; Leitão, F.; et al. Does consistent individual variability in pelagic fish larval behaviour affect recruitment in nursery habitats? Behav. Ecol. Sociobiol. 2020, 74, 67. [Google Scholar] [CrossRef]
- Pinto, M.; Monteiro, J.N.; Crespo, D.; Costa, F.; Rosa, J.; Primo, A.L.; Pardal, M.A.; Martinho, F. Influence of oceanic and climate conditions on the early life history of European seabass Dicentrarchus labrax. Mar. Environ. Res. 2021, 169, 105362. [Google Scholar] [CrossRef]
- De Grande, F.R.; Granado, P.; Costa, T.M. Size-at-age or structure shift: Which hypothesis explains smaller body size of the fiddler crab Leptuca uruguayensis in northern populations? Estuar. Coast. Shelf Sci. 2021, 254, 107358. [Google Scholar] [CrossRef]
- Todd, C.D.; Hughes, S.L.; Marshall, C.T.; MacLean, J.C.; Lonergan, M.E.; Biuw, E.M. Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Glob. Chang. Biol. 2008, 14, 958–970. [Google Scholar] [CrossRef]
Location | Latitude | Source | Sampling Period | Collection Method | Number of Samplings | Number of Individuals | Mean SST | Future STT RCP 4.5 | Future SST RCP 8.5 |
---|---|---|---|---|---|---|---|---|---|
Gullmarsfjord, Sweden | 58°20′ N | [22] | 2000 | NA | NA | NA | 8.7 | 11.2 | 12 |
Limfjord, Jutland, Denmark | 56°20′ N | [23] | 2009–2014 | Pots | 162 | 60,000 | 9.62 | 11.77 | 12.63 |
Isefjord, Denmark | 55°56′ N | [24] | 1979–1982 | Trap | NA | 18,545 | 9.3 | 11.66 | 12.62 |
Clyde Sea, Scotland | 55°44′ N | [25] | NA | NA | 2 | 66 | 9.78 | 11.02 | 11.64 |
Kerteminde Fjord, Denmark | 55°15′ N | [26] | 1992–1993 | Trap | 5 | 1720 | 9.19 | 11.45 | 12.45 |
Schlei, Germany | 54°35′ N | [27] | 1973–1976 | Hand-collected | 10 | 2588 | 9.48 | 11.72 | 12.73 |
Whitby Harbour and Robin Hood’s Bay, UK | 54°29′ N | [28] | 1973 | Trap | 21 | 1023 | 9.78 | 11.67 | 12.48 |
Ynys Faelog, UK | 53°08′ N | [29] | 1992 | Trap | 54 | 841 | 10.9 | 12.24 | 13.04 |
Menai Strait, UK | 53°08′ N | [30] | 1989–1990 | Trap | 20 | 5096 | 10.9 | 12.24 | 13.04 |
Menai Strait, UK | 53°08′ N | [31] | 1988–1991 | Hand-collected | 12 | 1248 | 10.9 | 12.24 | 13.04 |
Den Helder, Netherlands | 52°56′ N | [32] | NA | NA | NA | NA | 10.96 | 12.96 | 13.83 |
Dale Peninsula, UK | 51°42′ N | [6] | NA | NA | NA | NA | 11.7 | 12.91 | 13.78 |
Mumbles Point, UK | 51°34′ N | [33] | 1958–1961 | Trap | 39 | 633 | 11.54 | 12.91 | 13.79 |
Bullens Bay, Ireland | 51°23′ N | [34] | 2006–2008 | Trap | 20 | 589 | 11.81 | 12.88 | 13.71 |
Minho Estuary, Portugal | 41°52′ N | [35] | 2010 | NA | 2 | 99 | 14.71 | 15.66 | 16.57 |
Ria de Aveiro, Portugal | 40°38′ N | Present study | 2018–2021 | Trap | 52 | 9214 | 15.89 | 16.81 | 17.77 |
Mondego Estuary, Portugal | 40°08′ N | [36] | 2003–2004 | Trawl net | 12 | 1804 | 16 | 16.91 | 17.88 |
Mondego Estuary, Portugal | 40°08′ N | [37] | 2003–2007 | Trawl net | 48 | 18,656 | 16 | 16.91 | 17.88 |
Mondego Estuary, Portugal | 40°08′ N | Present study | 2003–2018 | Trawl net | 120 | 82,821 | 16 | 16.91 | 17.88 |
Sado Estuary, Portugal | 38°32′ N | Present study | 2018–2021 | Trap | 67 | 22,294 | 16.4 | 17.24 | 18.25 |
Ria de Alvor, Portugal | 37°08′ N | Present study | 2018–2021 | Trap | 27 | 5259 | 17.19 | 17.91 | 19.81 |
Ria Formosa, Portugal | 37°02′ N | Present study | 2018–2021 | Trap | 77 | 11,806 | 17.87 | 18.69 | 18.95 |
Location | Latitude | Source | Sampling Period | Collection Method | Number of Samplings | Number of Individuals | Mean STT | Future STT RCP 4.5 | Future SST RCP 8.5 |
---|---|---|---|---|---|---|---|---|---|
Coast of British Columbia | 52°20′ N | [38] | 2006–2013 | Trap | 1100 | 10,023 | 9.76 | 12.05 | 13.91 |
Vancouver Island, British Columbia | 49°29′ N | [39] | 2006 | Trap | 10 | 376 | 9.42 | 11.65 | 13.42 |
Pipestem Inlet, British Columbia | 49°01′ N | [19] | 2006–2010 | Trap | 15 | 16,600 | 10.38 | 12.57 | 14.32 |
Barkley Sound, British Columbia | 49°00′ N | [30] | 2008–2009 | Trap | 6 | 1794 | 10.38 | 12.57 | 14.32 |
Vancouver Island, British Columbia | 48°53′ N | [40] | 2006 | Trap | NA | 294 | 10.38 | 12.57 | 14.32 |
Goose Cove, North Harbour, Newfoundland | 47°51′ N | [41] | 2008–2012 | Trap | 22 | 1124 | 4.89 | 7.18 | 9.13 |
Fox Harbour, Newfoundland | 47°19′ N | [42] | 2016 | Trap | 26 | 17,598 | 4.77 | 7.16 | 9.11 |
Basin Head, PEI | 46°23′ N | [43] | 2000–2001 | Trap | 23 | 2826 | 6.32 | 9.04 | 11 |
Bras d’Or Lakes, Nova Scotia | 45°51′ N | [44] | 1999–2000 | Trap | 28 | 4222 | 6.49 | 9.32 | 11.08 |
Chignecto Bay, Nova Scotia | 45°27′ N | [45] | 2013–2014 | Trap | 20 | 1890 | 6.35 | 8.75 | 10.49 |
Clarke Head, Nova Scotia | 45°23′ N | [46] | 2008–2017 | Trap | 68 | 4040 | 6.35 | 8.75 | 10.49 |
Tillamook Bay, Oregon | 45°18′ N | [19] | 2006–2010 | Trap | 15 | 37 | 10.9 | 12.99 | 14.75 |
Netarts Bay, Oregon | 45°14′ N | [19] | 2006–2010 | Trap | 15 | 131 | 10.9 | 12.99 | 14.75 |
Saint Andrews, New Brunswick | 45°02′ N | [47] | 1951 | Trap | 9 | 50 | 6.62 | 9.07 | 10.77 |
Yaquina Bay, Oregon | 44°37′ N | [22] | 1998–2003 | Trap | 20 | 333 | 11.36 | 13.44 | 15.21 |
Yaquina Bay, Oregon | 44°22′ N | [19] | 2006–2010 | Trap | 15 | 196 | 11.36 | 13.44 | 15.21 |
Boothbay Harbor, Maine | 43°49′ N | [48] | 1979–1980 | Scuba divers | 14 | 723 | 9.22 | 11.64 | 13.3 |
Coos Bay, Oregon | 43°15′ N | [19] | 2006–2010 | Trap | 15 | 169 | 10.73 | 12.84 | 14.65 |
Great Bay Estuary, New Hampshire | 43°04′ N | [49] | 2009–2010 | Trap | 144 | 2337 | 9.82 | 12.22 | 13.9 |
Hampton-Seabrook Estuary, New Hampshire | 42°53′ N | [49] | 2009–2010 | Trap | 168 | 35,788 | 9.82 | 12.22 | 13.9 |
Hampton-Seabrook Estuary, New Hampshire | 42°53′ N | [49] | 2009–2010 | Trap | 168 | 35,788 | 9.82 | 12.22 | 13.9 |
Salem Sound, Massachusetts | 42°18′ N | [50] | 2013–2016 | Trap | 36 | 7753 | 10 | 12.17 | 13.75 |
Bodega Bay, California | 38°09′ N | [19] | 2004–2010 | Trap | 21 | 12,095 | 11.62 | 13.59 | 15.3 |
Tomales Bay, California | 38°05′ N | [19] | 2006–2010 | Trap | 15 | 293 | 11.3 | 13.23 | 14.97 |
Loch Lomond Harbor, San Francisco Bay | 37°58′ N | [16] | 1992–1994 | Trap | NA | NA | 11.3 | 13.23 | 14.97 |
Crab Cove, San Francisco bay | 37°46′ N | [16] | 1992–1994 | Trap | NA | NA | 12.2 | 14.08 | 15.83 |
Hayward Shore, San Francisco Bay | 37°39′ N | [16] | 1992–1994 | Seine | NA | NA | 12.2 | 14.08 | 15.83 |
Foster City Lagoon, San Francisco Bay | 37°33′ N | [16] | 1992–1994 | Trap | NA | NA | 12.2 | 14.08 | 15.83 |
Belmont Slough, San Francisco Bay | 37°32′ N | [16] | 1992–1994 | Trap | NA | NA | 12.2 | 14.08 | 15.83 |
Sea Drift Lagoon, California | 37°32′ N | [19] | 2006–2010 | Trap | 15 | 4277 | 12.27 | 14.19 | 15.91 |
Redwood Shores Lagoon, San Francisco Bay | 37°31′ N | [16] | 1992–1994 | Trap | NA | NA | 12.2 | 14.08 | 15.83 |
San Francisco Bay, California | 37°25′ N | [19] | 2004–2010 | Trap | 21 | 213 | 12.2 | 14.08 | 15.83 |
Elkhorn Slough, California | 36°29′ N | [19] | 2004–2010 | Trap | 21 | 426 | 12.63 | 14.46 | 16.21 |
Climate Consequence Cluster | N | CWmax Male | CWmax Female | CWmat Female | EggTime | Fecundity | PLD | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | |
Cluster 1 Low | 6 | 6 | −1.12 | −2.42 | −0.44 | −0.95 | −0.56 | −1.21 | 0.27 | 0.58 | −3070 | −6647 | −2.89 | −6.05 |
Cluster 2 Medium-Low | 5 | 5 | −1.62 | −2.66 | −0.64 | −1.04 | −0.81 | −1.33 | 0.39 | 0.63 | −4449 | −7305 | −5.95 | −9.43 |
Cluster 3 Medium | 19 | 18 | −2.54 | −4.57 | −0.99 | −1.79 | −1.27 | −2.28 | 0.61 | 1.09 | −6985 | −12,543 | −8.76 | −14.94 |
Cluster 4 Medium-High | 15 | 16 | −2.96 | −4.98 | −1.16 | −1.95 | −1.48 | −2.49 | 0.71 | 1.19 | −8122 | −13,686 | −11.84 | −18.31 |
Cluster 5 High | 8 | 8 | −3.28 | −5.67 | −1.29 | −2.22 | −1.64 | −2.83 | 0.78 | 1.35 | −9011 | −15,568 | −19.46 | −30.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, J.N.; Bueno-Pardo, J.; Pinto, M.; Pardal, M.A.; Martinho, F.; Leitão, F. Implications of Warming on the Morphometric and Reproductive Traits of the Green Crab, Carcinus maenas. Fishes 2023, 8, 485. https://doi.org/10.3390/fishes8100485
Monteiro JN, Bueno-Pardo J, Pinto M, Pardal MA, Martinho F, Leitão F. Implications of Warming on the Morphometric and Reproductive Traits of the Green Crab, Carcinus maenas. Fishes. 2023; 8(10):485. https://doi.org/10.3390/fishes8100485
Chicago/Turabian StyleMonteiro, João N., Juan Bueno-Pardo, Miguel Pinto, Miguel A. Pardal, Filipe Martinho, and Francisco Leitão. 2023. "Implications of Warming on the Morphometric and Reproductive Traits of the Green Crab, Carcinus maenas" Fishes 8, no. 10: 485. https://doi.org/10.3390/fishes8100485
APA StyleMonteiro, J. N., Bueno-Pardo, J., Pinto, M., Pardal, M. A., Martinho, F., & Leitão, F. (2023). Implications of Warming on the Morphometric and Reproductive Traits of the Green Crab, Carcinus maenas. Fishes, 8(10), 485. https://doi.org/10.3390/fishes8100485