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Abstract: The snail Bellamya purificata is recognized as a potential bio-remediation species, and is
commonly employed in polyculture to enhance resource utilization efficiency and realize culture
environment regulation. In order to enrich the microbiome studies on elucidating the ecological
effects of snail B. purificata farming, we assessed the effect of B. purificata farming activities, at varying
stocking densities, on the algal and fungal communities in sediment. Four experimental groups were
established in our study, each corresponding to a different stocking density: 0, 234.38, 468.75, and
937.5 g/m2, represented as CON, LD, MD, and HD, respectively. High-throughput sequencing based
on ITS and 23S ribosomal RNA (rRNA) genes was employed to analyze the variations in algal and
fungal communities under B. purificata farming activities at different stocking densities. B. purificata
farming activities had no significant effect on the alpha diversities of fungal and algal communities,
but significantly altered the compositions of fungal and algal communities in sediments, especially
B. purificata farming activity at low stocking density. B. purificata farming activities at low stocking
density could significantly increase the relative abundances of fungal genera Paraconiothyrium and
Penicillium compared with the CON group. The promoting effect diminished with increasing density.
B. purificata farming activities at low or medium stocking density also could enhance the relative
abundances of algal genera Microchloropsis, Scenedesmus, and Auxenochlorella. Hence, B. purificata
farming activity at low stocking density might be the optimum density to enhance resource utilization
efficiency and minimize environmental pollution.

Keywords: Bellamya purificata cultivation; aquaculture; algal community; fungal community; sediment

Key Contribution: The findings of this study provide valuable insights into the impacts of B. purificata
farming activities at different stocking densities on the algal and fungal communities in sediment
and contribute a broader understanding for the snail B. purificata’s ecological effects and serve as a
valuable theoretical reference for the rational application and development of B. purificata farming.

1. Introduction

Global aquaculture production approached a record high of 122.6 million tons valued
at USD281.5 billion in 2020, with China contributing nearly 70% to the total world aquacul-
ture output [1]. The development of aquaculture has contributed to ensuring global food
security and meeting the increasing demand of the growing world population for high-
quality proteins [1,2]. Along with rapid development, the aquaculture industry is facing
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several pressing challenges. Aquaculture ecosystems, including ponds, lakes, reservoirs,
and rivers, play a vital role in maintaining the quality of aquatic products and ensuring
food security supply. However, traditional aquaculture always pursues maximizing yield
and benefits through blindly increasing stocking densities and feeding amounts, which
in turn lead to a low utilization of resource, large amounts of residual organic waste, and
various environment issues in its own and surrounding aquatic ecosystems [3–8].

To address this issue for sustainable aquaculture, integrated multi-trophic aquaculture
(IMTA) has been studied and developed in recent years, which represents an innovative
approach to aquaculture that aims to optimize resource utilization and minimize negative
impacts on the environment [9–13]. IMTA refers to the polyculture of multiple species from
different trophic levels in a mutually beneficial relationship, where waste products from
one species serve as nutrients for others [9]. The snail Bellamya purificata is recognized as a
potential bio-remediation species, and commonly employed in polyculture to enhance the
resource utilization efficiency and realize the culture environment regulation [14–16]. The
snail B. purificata is a highly representative freshwater snail and is widely distributed across
ponds, lakes, reservoirs, rivers, and other aquatic ecosystems in China, which has a natural
preference for inhabiting silt and consuming organic debris and algae in its surrounding
environment [17,18]. There have been some studies on the ecological effects of B. purifi-
cata in aquaculture or water purification processes [14,19,20]. The snail B. purificata can
enhance organic matter degradation within sediment and promote material circulation at
the sediment–water interface, in addition to purifying the culture water [14,19,20]. We have
attempted to explore the mechanisms or pathways of B. purificata’s ecological effects from a
microbiological perspective by determining the bacterial communities in sediments [21].
However, fungi and algae are also important components of microorganisms, although the
biomass of bacteria may be ten times that of fungi in the sediment [22].

Fungi and algae play a vital role in material circulation and biogeochemical processes
in the aquatic ecosystem. Algae serve as crucial primary producer and food chain driver
in aquatic ecosystems [23]. Fungi and algae can provide insight into dynamic variations
in ponds, lakes, reservoirs, rivers, and other aquatic ecosystems through the algae’s and
fungi’s structural, functional, and physiological features [23–26]. A previous study has
revealed that different farming practices and farming species markedly affect the fungal
communities in sediments [27]. Xu [25] first reported the dynamic variations of fungal
community and diversity in the integrated rice–crab farming system to better understand
and optimize the farming ecosystem. Even so, there is still a lack of studies focusing on the
fungal and algal communities In aquaculture ecosystems, particularly the influences of B.
purificata farming activities on the fungal and algal communities. We believe that enriching
the content of microbiome studies to demonstrate the snail B. purificata’s ecological effects
is crucial for the rational application and development of B. purificata farming.

Hence, we performed high-throughput sequencing based on ITS and 23S ribosomal
RNA (rRNA) genes in sediment to assess the effects the B. purificata farming activities with
different stocking densities on the fungal and algal communities. The findings of this study
would lead to a broader understanding of the snail B. purificata’s ecological effects and
serve as a valuable theoretical reference for the rational application and development of B.
purificata farming.

2. Materials and Methods
2.1. Experiment Design

The experiments were conducted at the Freshwater Fisheries Research Center of the
Chinese Academy of Fishery Sciences (120.250479◦ E, 31.51581◦ N; Wuxi, China). The
experimental snail and sediment were collected from aquaculture ponds located at the
Dapu aquaculture facility (119.939129◦ E, 31.316981◦ N; Wuxi, China). Before commencing
the experiment, a period of 14 days was allotted for the B. purificata snails to acclimatize
to the controlled laboratory environment by placing them in a glass tank. To ensure
homogeneity and consistency, the sediment used in the experiment underwent drying,
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grinding, sieving, and mixing according to the pre-processing steps implemented in the
previous studies [28–30]. Twelve glass tanks (80 × 40 × 45 cm) were employed in the
experiment. All the glass tanks were covered with sediment to a depth of 7 cm on the
bottom, filled with aerated and filtered tap water, and then left to be precipitated and
stabilized for 14 d before the experiment. For the experiment, four separate groups,
including one control group and three treatment groups, were established according to
four different stocking densities and each group with three replicates. The four different
stocking densities were 0, 234.38, 468.75, and 937.50 g/m2, respectively. The corresponding
groups were abbreviated as CON, LD, MD, and HD, respectively. After acclimation, healthy
snails with an average wet weight of 2.53 ± 0.01 g were collected and randomly distributed
between glass tanks. During the experiment period, the commercial feed (Zhejiang Haida
Feed Co., Ltd., Shaoxing, China) was utilized as the experimental diet. The snails were
fed every day at 4:00 pm, with the amount approximating 2% of their individual body
weights. The experimental conditions were maintained at a constant water temperature of
26.5 ± 0.5 ◦C and a dissolved oxygen (DO) level of about 6.5 mg/L. One-third of the water
in each glass tank was changed every two days. The experimental lighting condition was
a natural light/dark cycle. The experimental period lasted for 80 days, during which all
snails were observed to be in good health with no mortalities recorded.

2.2. Sample Collection

At the end of the experiments, sediment samples were collected using plastic tubes
with a diameter of 2 cm from ten randomly chosen sampling points in each glass tank.
The sediment samples were taken from the surface sediment layer, which was between
0–1 cm deep. To maintain consistency, all the sediment samples from each identical glass
tank were mixed thoroughly. Sediment samples designated for the analysis of fungal
and algal communities were promptly stored at −80 ◦C to preserve their integrity for
further analysis.

2.3. PCR Amplification and Sequencing

The DNA of fungi and algae in the sediment samples was extracted using the E.Z.N.A.®

soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) according to the manufacturer’s pro-
tocol. The quality and concentration of DNA were evaluated using 1.0% agarose gel
electrophoresis and a NanoDrop® ND-2000 spectrophotometer (Thermo Scientific Inc.,
Waltham, MA, USA), and subsequently, the DNA was stored at −80 ◦C until further use.
Specific primers were designed and synthesized to amplify the ITS1-ITS2 and 23S rDNA
regions using an ABI GeneAmp® 9700 PCR thermocycler (ABI, CA, USA). The ITS1-ITS2
region was amplified with primer pairs ITS1 (5′–CTTGGTCATTTAGAGTAAGTAA–3′)
and ITS2 (5′–GCTGTGTTCATCGATGC–3′). The 23S rDNA region was amplified with
two forward primers (A23SrVF1: 5′–AGACARAAAAGACCCTATG–3′ and A23SrVF2: 5′–
CARAAAGACCTATTGMAGCT–3′) and two reverse primers (A23SrVR1: 5′–AGATCAGC
CTTTATCC–3′ and A23SrVR2: 5′–TCAGCCTGTTATCCTAG–3′) [31].

PCR amplification for ITS1-ITS2 region was carried out three times in 20 µL reaction
mixtures consisting of 2 µL of 10× Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of forward primer
(5 µM), 0.8 µL of reverse primer (5 µM), 0.2 µL of rTaq Polymerase, 0.2 µL of BAS, 10 ng of
template DNA, and double-distilled H2O to the final volume. PCR amplification for the
23S rDNA region was carried out three times in 20 µL reaction mixtures including 4 µL
of 5× FastPfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of forward primer (5 µM), 0.8 µL of
reverse primer (5 µM), 0.4 µL of FastPfu Polymerase, 0.2 µL of BAS, 10 ng of template
DNA, and double-distilled H2O to the final volume. The PCR amplification was performed
using the following cycling conditions: initial denaturation at 95 ◦C for 3 min, followed
by 30 cycles of denaturing at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s and extension
at 72 ◦C for 45 s, and single extension at 72 ◦C for 10 min, and end at 10 ◦C. The PCR
product was extracted with a 2% agarose gel. The extracted PCR product was then purified
and quantified by the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City,
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CA, USA) and Quantus™ Fluorometer (Promega, WI, USA) following the manufacturer’s
protocol, respectively.

Purified amplicons were pooled in equimolar amounts and subjected to paired-end
sequencing on an Illumina MiSeq PE300 platform/NovaSeq PE250 platform (Illumina, CA,
USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). Raw sequencing
reads were deposited into the NCBI Sequence Read Archive (SRA) database (Accession
Number: PRJNA993837).

2.4. Data Processing

The raw FASTQ files underwent de-multiplexing through an in-house perl script.
Subsequently, raw FASTQ files were subjected to quality filtering using fastp version 0.19.6
and merged using FLASH version 1.2.7 [32,33]. The optimized sequences were clustered
into operational taxonomic units (OTUs) using UPARSE 7.1 with a 97% sequence similarity
level [34]. The most abundant sequence for each OTU was chosen as a representative
sequence. To ensure accuracy, the OTU table was manually filtered, and chloroplast
sequences were eliminated from all samples. In order to mitigate the effects of sequencing
depth on the alpha and beta diversity measure, the number of ITS DNA and 23S rDNA
sequences from each sample were rarefied to 44,639 and 13,331, respectively. The taxonomy
of each OTU representative sequence was analyzed using RDP Classifier version 2.2 against
the ITS DNA and 23S rDNA database (Unite ITS 8.0 and NT v20210917) with a confidence
threshold of 0.7, respectively [31,35].

2.5. Statistical Analysis

Bioinformatic analysis for the sediment samples was conducted by the Majorbio Cloud
platform (https://cloud.majorbio.com (accessed on 1 December 2022)). Alpha diversity
indices including the observed richness (Sobs), Shannon, Simpson, Chao1, and ACE were
calculated using Mothur v1.30.1 [36]. The Sobs, Chao1, and ACE were used for accessing
the richness of the fungal and algal communities, while Shannon and Simpson were
employed to evaluate the diversity. Higher values of these indices indicate higher richness
or diversity. One-way ANOVA followed by the Tukey–Kramer post hoc test was used to
confirm differences in the alpha diversity indices of fungal and algal communities within
sediment between CON, LD, MD, and HD groups. Subsequently, for the beta diversity,
the Bray–Curtis distances among different samples were calculated and the principal
coordinate analysis (PCoA) based on Bray–Curtis distances was conducted to reveal the
differences in the fungal and algal communities between different groups. The Adonis test
accompanying the PCoA analysis was performed to further determine the differences in
the fungal and algal communities between different groups. The community bar plot was
conducted to demonstrate the relative abundances of the dominate phyla and genera in the
fungal and algal communities. The phylum or genus in the fungal and algal communities
with a relative abundance greater than 1% would be defined as a dominant phylum or
genus. One-way ANOVA followed by the Tukey–Kramer post hoc test was used to confirm
differences in the relative abundances of all the phyla and genera within fungal and algal
communities. All analyses and related figures were completed using the vegan and ggplot2
packages in R v. 4.0.3 (R Core Team, Vienna, Austria).

3. Results
3.1. Overview of Fungal and Algal Communities in Sediment

In the present study, 2295 distinct OTUs were obtained from the sediment samples
through Illumina sequencing technology based on the fungal ITS gene, and subsequentially
assigned into 12 phyla and 259 genera. As shown in Figure 1, there were 124 OTUs and
11 genera unique to the CON group, 515 OTUs and 108 genera unique to the LD group,
262 OTUs and 20 genera unique to the MD group, and 336 OTUs and 17 genera unique to
the HD group. Moreover, the LD group exhibited 834 OTUs and 143 genera not included
in the CON group, which were far more than those exhibited by MD and HD groups.

https://cloud.majorbio.com
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We also obtained 1391 algae-related OTUs based on the 23S rRNA gene, which were
assigned into 44 phyla and 333 genera. As shown in Figure 2, there were 205 OTUs and
36 genera unique to the CON group, 156 OTUs and 21 genera unique to the LD group,
140 OTUs and 19 genera unique to the MD group, and 119 OTUs and 22 genera unique to
the HD group. Compared with the CON group, the LD group owned 286 unique OTUs
and 53 unique genera, the MD group owned 268 unique OTUs and 48 unique genera, and
the HD group owned 248 unique OTUs and 53 unique genera.
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3.2. Alpha and Beta Diversities of Fungal Community in Sediment

Alpha diversity indices including Sobs, Shannon, Simpson, ACE, and Chao1 were
calculated to evaluate the diversity and richness of the fungal community in sediment. As
shown in Figure 3, no significant differences in the Sobs, Shannon, Simpson, ACE, and
Chao1 between the CON, LD, MD, and HD groups were observed according to the results
of one-way ANOVA followed by the Tukey–Kramer post hoc test (p > 0.05). For the beta
diversity, PCoA analysis was conducted to investigate the differences in fungal community
based on Bray–Curtis distances. As shown in Figure 4a, PC1 and PC2 explained 25.39% and
18.94% of the total variation in the fungal community within sediment, respectively. The
CON, LD, MD, and HD groups were not obviously separated, as they all have overlapping
areas. The result of the Adonis test also indicated no significant differences between the
CON, LD, MD, and HD groups (p > 0.05).
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3.3. Alpha and Beta Diversities of Algal Community in Sediment

According to the results of one-way ANOVA followed by the Tukey–Kramer post hoc
test, there were no significant differences in Sobs, Shannon, Simpson, ACE, and Chao1
between the CON, LD, MD, and HD groups as shown in Figure 5 (p > 0.05). For the beta
diversity, as shown in Figure 4b, the first two PCs in the PCoA analysis explained 34.17%
and 16.41% of the total variation in the algal community within sediment, respectively.
The LD group was obviously separated from the other three groups as revealed by the
PCoA results. The result of the Adonis test also confirmed the PCoA results and indicated
a significant difference between the CON, LD, MD, and HD groups (p < 0.05).
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3.4. Composition of Fungal Community in Sediment

There were in total 12 phyla and 259 genera assigned from 2295 distinct OTUs in
the sedimentary fungal community in the present study. The dominate phyla and genera
(relative abundance > 1%) in the fungal community are shown in Figure 6. Similar with
previous studies, most fungi could not be effectively annotated at either the phylum or
genus level and has been represented as unclassified_k_Fungi in Figure 6 [27,37]. Exclud-
ing the unclassified fungal taxa, the dominate phyla were Ascomycota, Rozellomycota,
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Basidiomycota, and Chytridiomycota, and the dominate genera were Scutellinia, unclassi-
fied_p_Rozellomycota, unclassified_p_Chytridiomycota, and Apiotrichum in the present study.
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As shown in Figure 7, the relative abundances of genera Paraconiothyrium and Penicil-
lium were significantly different among the CON, LD, MD, and HD groups (p < 0.05). The
relative abundance of Paraconiothyrium in sediment of LD groups was significantly higher
than that of CON group (p < 0.05). However, no significant differences in the relative abun-
dance of Paraconiothyrium between the LD, MD, and HD groups were observed (p > 0.05).
The relative abundance of Penicillium in the LD groups was significantly higher than in the
CON, MD, and HD groups (p < 0.05).
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3.5. Composition of Algal Community in Sediment

There were a total of 44 phyla and 333 genera in the algal community in the present
study. The dominate phyla and genera (relative abundance > 1%) in the algal community
were shown in Figure 8. The dominate phyla ranked in descending order of relative abun-
dance were Verrucomicrobia, unclassified_d_unclassified, Chlorophyta, Cyanobacteria,
Ignavibacteriae, Firmicutes, unclassified_d_Bacteria, unclassified_d_Eukaryota, Bacillario-
phyta, Candidatus_Woesebacteria, unclassified, Proteobacteria, and Oomycota. There were
23 dominate genera. Excluding the unclassified algal genus, the top 5 dominate genera
were Pedosphaera, Prosthecobacter, Desmodesmus, Synechococcus, and Opitutus.
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Through One-way ANOVA, there were 1 phylum and 6 genera that were significantly
different among the CON, LD, MD, and HD groups. As shown in Figure 9, the relative
abundance of phylum Streptophyta in the sediment of the LD group was significantly
higher than that of MD group (p < 0.05). However, the CON, LD, and HD groups showed
similar relative abundances of Streptophyta (p > 0.05). The relative abundance of genus
Nibricoccus in the HD group was significantly higher than in the MD group (p < 0.05).
The LD and MD groups exhibited significantly higher relative abundances of Scenedesmus
compared with the CON group (p < 0.05), but the relative abundance of Scenedesmus in the
HD group was similar with that in the CON group (p > 0.05). The relative abundance of
Microchloropsis in the LD group was significantly higher than that in the CON, MD, and
HD groups (p < 0.05). The relative abundance of Auxenochlorella in the CON group was
significantly lower than that in the MD group (p < 0.05), and no significant differences
among the LD, MD, and HD groups were observed (p > 0.05). The relative abundance of
Choricystis in the LD group showed a significant decreasing trend with increasing stocking
density, while the relative abundance of Chthoniobacter showed a significant increasing
trend with increasing stocking density and reached a maximum in the MD group (p < 0.05).
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4. Discussion
4.1. Fungal Community in Sediment Affect by B. purificata Farming Activities

Fungal community, as well as algal and bacterial communities, play a significant role
in the biogeochemical cycle of aquatic ecosystems. Fungi have diverse morphological struc-
tures, complex community structures, and strong metabolic capabilities, the physiological
and biochemical characteristics of which are affected by the surrounding environment [38].
In the present study, most fungi could not be well annotated, which could be attributed
to the relatively limited DNA sequences in the existing fungal databases compared to the
total amount of fungal DNA sequences [39,40]. The phyla Ascomycota, Rozellomycota,
Basidiomycota, and Chytridiomycota were the dominate phyla in the present study, rank-
ing among the top 5 in relative abundance, respectively. Fan [39] analyzed the fungal
community in sediment from tilapia (Oreochromis niloticus) cultural ponds and reported
the Basidiomycota, Ascomycetes, and Chytridiomycota as the dominate phyla. Zhang
et al. [27] investigated dozens of fish, crab, and crayfish ponds and the dominant fun-
gal phyla observed in these ponds were predominantly Ascomycota, Chytridiomycota,
Rozellomycota, and Basidiomycota. Wang et al. [41] and Zhao et al. [42] also revealed the
Ascomycetes and Basidiomycota as the dominant phyla in Poyang Lake and Hongze Lake.
These similar results indicate that the present indoor simulation experiment could well
simulate the real state of the fungal community in the cultural ecosystem.

B. purificata farming activities at different stocking densities had no obvious impacts
on the fungal community diversity in the sediment, which was different with the variations
in fungal community diversity under tilapia farming activities reported in a previous
study [39]. Fan [39] pointed out that the fungal community in the cultural pond was not
only sensitive to temperature and climate, but also to the external nutrient inputs. The
accumulation of organic waste, including feed residues and faces, in sediment significantly
affect the fungal community [39]. However, the snail B. purificata is a typical species which
has been proven to play an important role in organic matter degradation in sediment [19].
Snails promote the degradation of organic matter, reduce the accumulation of organic
matter in sediment, and enhance material cycling at the sediment–water interface [19].
Hence, the snail B. purificata might have the potential to maintain the consistency in
sedimentary organic matter content between different groups by ingestion and promoting
the degradation and recycling of organic matter, thereby avoiding the obvious impact
derived from organic matter accumulation on the fungal community. Meanwhile, the
unaffected fungal community also revealed that bioturbation by the snail B. purificata could
not directly alter the fungal community in sediment, although B. purificata bioturbation
could significantly change the physico-chemical properties of the sediment [19]. As the
relevant physicochemical properties within the sediment were not measured in our study,
this inference needs to be explored in further studies.

Although the overall impact of B. purificata farming activities on the fungal community
in sediment is not significant according to the results of alpha and beta diversity, B. purificata
cultivation affected several specific genera. B. purificata cultivation in the low stocking
density (LD) group significantly increased the genera Paraconiothyrium and Penicillium. The
genus Paraconiothyrium is widely distributed worldwide with diverse host habitats and
has potential applications as a producer of antibiotics [43]. Paraconiothyrium can suppress
the activity of harmful fungi such as Sclerotinia sclerotiorum in the soil, thus reducing the
infection caused by pathogenic microorganisms [43]. The genus Penicillium, as a saprophytic
fungus, is widely distributed in soil and sediment [44,45]. The secondary metabolites of the
Penicillium are various compounds with antibacterial and antioxidant activities, which can
inhibit the growth of pathogenic bacteria as well as plant-pathogenic fungi [44–50]. Hence,
the significantly increased Paraconiothyrium and Penicillium in the LD group indicated
that B. purificata farming activity at a low stocking density may effectively promote the
enrichment of Paraconiothyrium and Penicillium in sediment, thereby inhibiting pathogenic
microbe activity, improving the performance of cultured aquatic animals, and establishing
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more sustainable aquatic food production [51]. However, this promoting effect diminished
with the increasing density.

4.2. Algal Community in Sediment Affect by B. purificata Farming Activities

Algae play a significant role in autochthonous primary production, providing the
basis for littoral secondary production, and act as crucial regulators of nutrient dynam-
ics within aquatic ecosystems [52,53]. Despite their importance, variations in the algal
community within the aquaculture ecosystem has received relatively little attention [52].
In the present study, B. purificata farming activities imposed a more pronounced effect
on the algal community in sediment relative to the fungal community. In particular, B.
purificata farming activity at a low stocking density had a stronger overall effect on the algal
community than that at medium and high stocking densities according to the results of the
PCoA. As reported in a previous study, phyla such as Chlorophyta and Cyanobacteria, were
dominated in the algal community of the East Sea [54]. Similarly, the relative abundance of
phyla Chlorophyta and Cyanobacteria were also dominated in the present study, both of
which ranked among the top 5 in relative abundance without unclassified taxa.

Similar to the effects of B. purificata farming activities at different stocking densities
on the fungal community’s diversity, B. purificata farming activities also had no obvious
impacts on the algal community’s diversity in the sediment. However, there has been
limited research on the interactions and effects of culture species with algal communities
in sediments. The dynamics of algal communities are associated with various physical
and chemical factors in the aquaculture environment, among which inorganic nutrients
such as nitrogen and phosphorus are fundamental substances required for the growth and
reproduction of algae [55,56]. B. purificata can enhance the organic matter degradation
within sediment and promote material circulation at the sediment–water interface, which
may facilitate the growth of algae [14,19,20]. On the other hand, B. purificata prefers to
ingest organic debris and algae in its surroundings [17,18]. Hence, we hypothesized that
the non-significant impacts were likely to be attributed to a combined effect of promoting
algal growth by bioturbation and inhibiting the algal community by ingestion.

Moreover, in the present study, the algal genera Microchloropsis, Scenedesmus, and
Auxenochlorella were significantly enhanced in the LD or MD group relative to those in
the CON group. The algal genus Microchloropsis adapts to different nutritional conditions
and can effectively utilize nitrate and organic nitrogen [57,58]. The genus Scenedesmus is
capable of removing nitrate and phosphate from the surrounding environment [59]. In
addition, the genus Auxenochlorella is an early-appearing single-celled eukaryotic green
algae, which is an efficient primary producer in ecosystems and capable of removing
ammonium [60,61]. The significantly increased relative abundances of Microchloropsis,
Scenedesmus, and Auxenochlorella in the LD or MD groups might result from the enhanced
degradation of organic matter in sediment and the improved cycling of nutrients at the
sediment–water interface caused by B. purificata snail farming. Talib et al. [62] have in-
vestigated mitigating eutrophication in lakes through nutritional control and biological
manipulation and discovered that the significant increase in the abundance of the harmless
genus Scenedesmus is an important phenomenon during the process of reducing eutroph-
ication levels. Meanwhile, the importance of Scenedesmus and Auxenochlorella has been
confirmed and they are widely employed in wastewater treatment and environmental reg-
ulation [59–61]. This revealed that the enhanced degradation of organic matter in sediment
and the improved migration of nutrients from sediment to the overlying water caused
by B. purificata bioturbation would not induce an increase in the relative abundance of
harmful algae. Instead, it increased the relative abundance of harmless algae that have an
environmental regulatory significance.
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5. Conclusions

B. purificata farming activities had no significant effect on the alpha diversities of
fungal and algal communities, but significantly altered the compositions of fungal and algal
communities in sediments, especially B. purificata farming activity at a low stocking density.
B. purificata farming activities at a low stocking density could significantly increase the
relative abundances of fungal genera Paraconiothyrium and Penicillium, thereby inhibiting
pathogenic microbe activity and improving the performance of cultured aquatic animals.
B. purificata farming activities at low or medium stocking densities could also enhance
the relative abundances of harmless algal genera Scenedesmus and Auxenochlorella, which
are widely employed in wastewater treatment and environmental regulation. Therefore,
the low stocking density (234.38 g/m2) in the present study might be the most optimum
density from the perspective of fungal and algal communities. Implementing B. purificata
cultivation at a low stocking density might lead to more sustainable aquatic food production.
The findings of this study might contribute to better understanding for the ecological effects
of snail B. purificata farming and serve as a valuable theoretical reference for the rational
application and development of B. purificata farming.
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