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Abstract: In South America, knowledge of major spawning sites is crucial for maintaining migratory
fish populations. In this study, we aimed to understand the spatio-temporal distribution of fish
eggs in the upper São Francisco River using high sampling frequency and DNA metabarcoding
identification. We evaluated the possible effects of the non-molecular identification of eggs and
decreased sampling frequency on the determination of spawning sites and major breeding periods.
Collections were carried out every three days from November 2019 to February 2020. We found that,
if we had assumed that all of the free and non-adhesive sampled eggs belonged to migratory species,
as is usual in the literature, this assumption would have been wrong for both the spawning sites and
the breeding periods. Moreover, any decrease in the frequency of sampling could dramatically affect
the determination of the major spawning rivers, and the spawning events of some of the migratory
species may not have been detected. Therefore, without the proper identification and adequate
sampling frequency of eggs, important spawning sites may be overlooked, leading to ineffective or
inappropriate conservation measures.

Keywords: DNA metabarcoding; neotropics; South America; São Francisco River; spawning sites

Key Contribution: Studies with ichthyoplankton without molecular identification of eggs and with
low sampling frequency may not detect important spawning events. This can lead to the incorrect
identification of spawning sites and inadequate conservation strategies.

1. Introduction

In South America, large migratory fish species are important for commercial and sport
fisheries because of their size and abundance [1]. These species are also impaired by river
fragmentation by damming because they exhibit complex upstream and downstream move-
ments and require different habitats in order to complete their reproductive cycles [2–4].
Moreover, a lack of connectivity hinders access to spawning sites, and the formation of
large reservoirs directly interferes with egg and larvae drift [5], which would normally be
carried to floodplains during floods [6].
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Considering the high degree of fragmentation in South American basins and the many
new hydroelectric projects planned [7], knowledge of the major spawning sites in each
basin is crucial for the establishment of appropriate measures for maintaining migratory
fish populations [8]. Thus, studies of the early life stages of fish have become increasingly
common [9], especially those focusing on the ichthyoplankton of migratory species. These
studies have investigated spawning periods and sites, spawning intensity e.g., [10,11],
factors related to reproductive success, and the species-specific characteristics of those
processes [12].

One of the major methodological challenges in these studies is the correct taxonomic
identification of ichthyoplankton. In the case of larvae, despite the high diversity and
high rates of endemism [13], taxonomic keys are available for some neotropical river
basins [8,9,14], enabling the identification of family or genus. The identification of eggs,
on the other hand, has been more limited. Because having free and non-adhesive eggs
is a trait associated with migratory species [15], some authors have considered that, in
conventional ichthyoplankton sampling, these eggs would predominantly originate from
species that exhibit migratory behavior, e.g., [16,17]. Other studies have distinguished
between migratory and non-migratory species by using information on the size of the
perivitelline space [6,8,9], which is wider in the former. Nonetheless, these traits have
been shown to have low accuracy in discriminating between those two species groups [18],
which is particularly concerning, given that the presence of eggs is the most accurate
indicator of the spawning location.

New genetic tools have shown promise as a means of enabling the improved identifica-
tion of ichthyoplankton, especially by enhancing the taxonomic resolution of sampled eggs.
High-throughput sequencing (HTS) platforms associated with DNA barcoding (i.e., DNA
metabarcoding) allow for the identification of multiple species from environmental bulk
samples. This methodology has tremendous potential for monitoring and assessing environ-
mental quality [19] has been referred to as DNA-based next-generation biomonitoring, or
“Biomonitoring 2.0” [20]. As such, non-invasive methods ensure a rapid and cost-efficient
biodiversity assessment of many difficult-to-identify organisms, such as ichthyoplankton
samples, which is particularly important when dealing with the megadiverse neotropical
ichthyofauna [21].

Another key aspect of ichthyoplankton studies is related to the periodicity of sampling,
because neotropical migratory species usually have a single spawning event during the
breeding season [22], and the number of spawning events for each species is unknown
for most of them. Many neotropical ichthyoplankton studies have been conducted either
bi-weekly [23,24] or monthly [25,26]. Studies at a greater sampling frequency are less
common but indicate that some spawning events occur over only a few days [4,16].

Therefore, we sought to understand the spatio-temporal distribution of fish eggs in the
upper São Francisco River by using a high sampling frequency and DNA metabarcoding
identification. We evaluated the possible effects of the non-molecular identification of
eggs on the determination of potential spawning sites and on the main breeding periods
of migratory species. We also determined how a decreased sampling frequency affected
the determination of the major spawning sites in the basin and the identification of the
spawning sites of each migratory species.

2. Materials and Methods
2.1. Study Area

Our study comprised the São Francisco River basin upstream of Três Marias Reservoir,
Brazil. There, the São Francisco River mainstem has a lotic segment of approximately
400 km and a draining an area of 26,680 km2. Some local tributaries, such as the Pará
River, are recognized feeding sites, whereas the Samburá and Bambuí Rivers and the São
Francisco River headwaters are important spawning sites for migratory species [4]. The
average annual precipitation in the São Francisco Basin is 1036 mm, and the Köppen climate
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is classified as Cwa, which is characterized by an October-to-March rainy season [27]. Fish
spawning is concentrated between November and February [4,28].

We selected six sampling sites for ichthyoplankton sampling. Once the ichthyoplank-
ton was transported over a long stretch of river, each point represented its respective
upstream river. One site was located in the Samburá River (SAM), one site in the Bambuí
River (BAM), and one site in the Pará River (PAR), always near their mouths. Three
sites were located along the São Francisco River mainstem (upstream of the Samburá
River mouth—SFS; upstream of the Bambuí River mouth—SFB; and upstream of the Pará
River mouth—SFP), (Figure 1). The distribution of the sites aimed to encompass all major
tributaries of the upper basin, as well as intermediate stretches of the São Francisco River.
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Figure 1. Map of the study area, showing the locations of the sampling sites in the upper São
Francisco River, Minas Gerais, Brazil.

2.2. Methods

Migratory fish in the São Francisco and Paraná River basins do not spawn in flood-
plains. Instead, spawning often occurs in shallower and smaller-sized tributaries, as in
the case of our study region [4]. The ichthyoplankton is then passively transported to
the floodplains, where they arrive as larvae at the end of yolk sac absorption. Because
spawning occurs in such shallow and turbulent rivers, no differences in their distribution in
the water column are expected. In fact, even in deep South American rivers, no differences
in ichthyoplankton abundance have been observed between samples taken at the surface
and those at the river bottom [29]. In the same study, the authors reported differences in
ichthyoplankton abundance between sampling hours; however, those also varied with
distance from the collection site to the spawning region. Therefore, defining the ideal time
is not straightforward, but has been resolved below.

Because the focus of this work was to assess the risks of not considering the genetic
identification of eggs for defining spawning sites and times, as well as the effects of reducing
the sampling frequency, we took care to replicate the sampling design commonly used
in studies of this nature. Therefore, we maximized the sampling frequency (every three
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days at all points), a collection effort that is rare in Brazil, but that prevented sampling
the same point multiple times per day. That was a choice that had to be made because
of our available budget for both field collections and genetic analyses—a budget already
much higher than the majority of ichthyoplankton studies in Brazil. Therefore, samples
were taken only near the surface and at sunset, because no differences in egg abundance
are expected at different depths [29], especially in shallow rivers, and because spawning
occurs in the late afternoon and evening, near sunset [30].

The collections were carried out from 1 November 2019 to 29 February 2020, every three
days, in the late afternoon, at all six points, resulting in 41 samples per point (246 samples
in total). Because the hatching time of migratory fish in the São Francisco basin is always
<24 h [31], the 3-day collection interval ensured that each sample represented a potentially
independent spawning event. A conical net (40-cm diameter) with a flow meter attached
was positioned at the location with the greatest current velocity for 10 min at a depth of
0.5 m. The collected material was placed in 600-mL plastic jars with absolute ethanol and
taken to the laboratory for screening via a Bogorov plate and a stereomicroscope.

All samples with fish eggs were analyzed using the DNA metabarcoding method,
which allows the determination of multiple species from a single sample through high-
performance DNA sequencing (Illumina). DNA was extracted using the salting-out method
adapted from [32]. The DNA was quantified on a NanoDrop 2000 spectrophotometer
(Thermo Scientific, Cleveland, OH, USA), and then the samples were normalized to
100 ng/µL. Because our focus was to locate spawning rivers, larvae were not considered.

A 655 bp fragment of the 5′ end of the mitochondrial COI gene was amplified via
PCR using a combination of different primers (F1 and FishR1), modified from sequences
already published in the literature. The original sequences received a tail (Illumina pre-
adapter) complementary to the adapter used in a subsequent second PCR. This reaction
was performed with a water sample to monitor possible contamination (negative control),
as well as a positive control. The PCR products were then purified with magnetic beads
(Agencourt AMPure XP®—Beckman Coulter).

After purification, a PCR was performed with Nextera Index kit® adapters (Illumina
Inc., San Diego, CA, USA) to amplify the amplicon set from the previous step. In this
reaction, adapters compatible with the Illumina next-generation sequencing system (P5 and
P7) were used as primers. A single index combination (specific sequences associated with
the Illumina adapter) was used for the subsequent identification of each sample, because
all points will form a single sequencing set. The amplification product was evaluated on a
1.5% agarose gel.

The samples were successfully amplified in the PCR because they showed the expected
band pattern for the COI fragment (655 bp COI + 60 bp adapter + 64 bp index = 780 bp).
No amplification was observed for the negative control, indicating no contamination in the
reactions. The PCR products were then, again, purified with magnetic beads (Agencourt
AMPure XP®—Beckman Coulter), quantified on a Nanodrop, and normalized to 20 ng/µL.

All samples were pooled together, and this pool was purified using a Zymoclean™
Large Fragment DNA Recovery kit (Zymo Research) to remove spurious fragments from the
desired-sized fragment (655 bp COI + 60 bp adapter + 64 bp index = 779 bp). Using real-time
PCR, performed with a KAPA Biosystems Quantification Kit (Illumina, São Paulo, Brazil)
reagent, the pool was quantified, diluted to a concentration of 2 nM, and again quantified
to confirm the final concentration. The final solution was denatured and loaded onto the
MiSeq® equipment (Illumina) using a Miseq v3 300-cycle sequencing kit (2 × 150 bp), with
a final concentration of 16 pM.

The bioinformatic analysis was performed using a custom pipeline written in R (R
Core Team, 2022) and DADA2 [33] and Phyloseq [34] packages, as well as the cutadapt pro-
gram [35]. Briefly, the demultiplexed sequencing reads were downloaded from Basespace
(Illumina). An initial quality control step was carried out where reads with undetermined
bases (Ns), or a Q-score of <20, were removed. Then, primer sequences were detected and
removed. The remaining reads were submitted to dereplication determination of ASVs
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(amplicon sequencing variants) and chimera removal, using DADA2 core functions. The R1
and R2 reads were analyzed as complementary datasets and used independently of ASV
determination, as the amplicon span hinders read merge by overlap. These ASVs were
submitted to a first round of taxonomic classification, performed with a Bayesian classifier
integrated into the DADA2 package, using a custom database built from 114,425 vertebrate
sequences, available on BOLD (https://www.boldsystems.org/ accessed on 10 August
2022). A second round of taxonomic classification was performed using a similarity search
in the NCBInt (nucleotide database) with a local implementation of the BLASTn [36], with
thresholds of sequence coverage > 80% and sequence identity > 80%. The taxonomy iden-
tification obtained from these complementary classifications was manually curated for
each ASV and sample, considering the BLASTn similarity and coverage values and the
distribution in the basin of the identified species or close taxa.

Previous work using the DNA metabarcoding approach on ichthyoplankton bulk
samples was able to successfully detect alpha diversity at the species level and has provided
good estimates of the relative abundance of the larvae [37]. Thus, we used the relative read
abundance (RRA) to estimate the species abundance for each bulk sample. The RRA of
each ASV on each sample was obtained by dividing the ASV absolute abundance by the
total absolute abundance of the sample.

The total density of eggs in each sample was calculated by standardizing the abun-
dance per 10 m3 of filtered water [6]. The density of eggs from migratory species was also
estimated per sample based on their relative read abundance (RRA) in each sample. For
both estimates (total and migratory species), periods with abundance peaks were visually
compared, and their congruence was tested by Pearson correlation. Species were classified
as migratory according to Sato and Godinho [38].

To evaluate the beta diversity patterns of sampling rivers and dates, we performed a
non-metric multidimensional scaling (NMDS) analysis. The input data consisted of the taxa
abundance of each ichthyoplankton pool as input variables and estimated distances were
calculated with Bray–Curtis dissimilarity using the function metaMDS of the R-package
vegan [39].

The importance of each river as a spawning ground was evaluated by comparing
densities by ANOVA or Kruskal–Wallis, depending on their distribution, considering the
total number of eggs, and considering only the estimated number of eggs from migratory
species. This evaluation was performed for the entire dataset and for simulations of six-
and fifteen-day sampling intervals. In the case of the six-day interval, these were produced
considering a start date of November 1st or 4th. For the 15-day interval, scenarios were
simulated with collections starting on November 1st, 4th, 7th, 10th, and 13th.

To evaluate the effect of sampling frequency, for the three sampling scenarios (three-,
six-, and fifteen-day intervals), the number of migratory species with recorded spawning in
each river and the number of spawning rivers for each migratory species were compared
by ANOVA.

3. Results

A total of 48,465 fish eggs were collected from the upper São Francisco basin and
71% of the samples contained fish eggs. After DNA metabarcoding analysis, a total of
14,817,732 raw paired DNA reads were obtained for the 149 egg pools, with an average of
49,724 reads per pool. After quality control, error correction, dereplication, and chimera
removal, 11,995,008 reads remained, with an average of ~80,500 DNA sequences per pool,
corresponding to a total of 507 unique ASVs of 230 bp on average. This enabled the
identification of 35 fish taxa, including 7 migratory species (Appendix A). Seven taxa were
identified to genus level and three to family.

The majority of the identified ASVs (63.5%) were associated with a single species,
mandi Pimelodus pohli. The migratory species, Prochilodus argenteus, P. costatus, Megaleporinus
obtusidens, and Leporinus taeniatus, accounted for 2.92%, 2.88, 2.26%, and 0.9% of the
detected DNA sequences, respectively. The other migratory species found (Pseudoplatystoma

https://www.boldsystems.org/
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corruscans, Brycon sp., and Megaleporinus reinhardti) represented <0.01% each. Despite the
dominance of a single species, considerable variation in the ichthyoplankton composition
was observed between the sampling points and among the different samples from each
river (Figure 2).
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When comparing the total egg densities, the SFB site stood out, having both the
greatest averages and the greatest peaks of egg densities (Figure 3A) (KW = 2.47; p = 0.01).
However, when considering only migratory-fish-egg abundances, the Bambuí (BAM) and
Samburá (SAM) River sites indicated the greatest reproductive activity (Figure 3B) (F = 4.76;
p < 0.001).
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the upper São Francisco River from samplings every three days (dot = mean; box = standard error;
whisker = range).

When considering the total egg densities, the largest spawning events occurred be-
tween the second half of November and the first week of January. However, when con-
sidering only the abundance of the migratory fish eggs, the largest reproductive events
occurred in the first half of November and from the second half of January to the first half
of February (Figure 4), and both of these evaluations were not congruent (r = 0.05; p = 0.47).

For the total egg density, both of the six-day sampling simulations pointed to sig-
nificant differences among the sites (F = 4.74; p < 0.001) but produced different results
regarding the importance of each river for fish spawning. Whereas, in one simulation, the
SFB site remained the most important breeding site, in the other, the BAM and SFS sites
had similar migratory-fish-egg densities (Figure 5A). The two six-day interval simulations
for estimating migratory-egg densities were not able to capture differences among the sites
(F = 1.34; p = 0.24). In addition, in one simulation, the Bambuí River (BAM) stood out,
whereas, in the other, Samburá River (SAM) was the most important breeding location
(Figure 5B).
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Even more divergent results were observed for the 15-day sampling intervals. For
the total egg density, in only two simulations did the SFB site remain the most important,
whereas, in the other three, the densities were more similar between the Bambuí (BAM),
Samburá (SAM), and upper São Francisco River (SFS) sites (Figure 6A). For migratory fish,
the importance of the Bambuí River (BAM) was shown in only one simulation, and in only
two out of five simulations for the Samburá River (SAM) (Figure 6B). In all of these cases,
the differences between the points were not statistically significant.
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Figure 6. Total egg density (A) and estimated density of eggs from migratory species (B) per sampling
site in the upper São Francisco River, considering sampling every 15 days. Different colors represent
each of the five simulations (dot = mean; box = standard error; whisker = range).

Regarding the spawning grounds for migratory species, an increase in the sampling
interval directly interfered with the quality of the information about the importance of the
sampled sites (F = 8.88; p < 0.001). For all of the sites, increasing the sampling interval from
three to six days prevented the identification of some species, and, for four sites, a fifteen-
day interval resulted in a total non-recording of migratory species (Figure 7). Similarly, a
progressive increase in the sampling interval decreased the number of spawning rivers
identified for each migratory species (F = 14.26; p < 0.001), and four of them (Brycon sp., P.
corruscans, P. costatus, and M. reinhardti) may not have their reproductive event recorded in
the basin if sampled only every 15 days (Figure 8).
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Figure 7. Number of migratory species with spawning recorded for each sampling point, considering
intervals of 3, 6, or 15 days between collections.
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Figure 8. Number of spawning sites inferred for each migratory species, considering sampling
intervals of 3, 6, or 15 days.

4. Discussion

We determined the spatio-temporal distribution of fish eggs in the upper São Francisco
River using high frequency sampling and DNA metabarcoding identification. The molec-
ular identification of eggs and high frequency sampling was necessary to obtain reliable
data. For instance, our results showed that, if we had assumed that all of the sampled
eggs belonged to migratory species, this assumption would have been wrong for both
the spawning sites and the breeding periods. Moreover, the six- and fifteen-day sampling
intervals dramatically affected the determination of the major spawning rivers in the upper
basin, and the spawning events of some migratory species were not detected.

The DNA metabarcoding identification was able to determine the presence of eggs
from seven migratory fish species. Of those known to occur in the basin [40], only the
eggs of dourado (Salminus franciscanus) were undetected. Most of the eggs were identi-
fied to species level; however, the absence of complete genetic databases limited some
identifications to genus or family levels only [21]. As expected, eggs from species with
parental care, such as Loricariidae and Cichliformes [41], or with internal fertilization,
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such as Auchenipteridae [42] and Poeciliidae [43], were not recorded. However, eggs
from rheophilic species that do not undertake long migrations predominated in the sam-
ples, especially Pimelodus pohli. This species performs fractional spawning and reproduces
throughout the year, with spawning peaks occurring between November and February [44].

The identification of ichthyoplankton through morphological characteristics obser-
vation is highly complex, especially during the embryonic phase, when there is great
morphological similarity among species [6,45]. Even considering the differences in the
perivitelline space of the eggs, which tends to be larger in migratory species than in seden-
tary species [6], the distinction between the groups is imprecise [18]. Given this challenge,
it is common for eggs to only be quantified and evaluated collectively. Although these
analyses can contribute to a general understanding of reproductive dynamics, the use of
such methods to evaluate the reproductive patterns of a specific group is inadequate. In
this study, higher egg densities from migratory species were recorded in the Samburá and
Bambuí Rivers, two recognized spawning rivers based on previous telemetry studies [4].
The importance of these two São Francisco River tributaries for migratory species would
be greatly underestimated if all of the sampled eggs were presumed to be from migra-
tory species. Similarly, non-molecular identification would point to spawning periods
that would lead to different interpretations regarding the main environmental factors that
trigger the reproductive process.

In addition to the method of identification, sampling frequency is another key factor
that directly affects the detection of reproductive patterns. This factor was particularly
evident in the significant temporal and spatial variation observed in ichthyoplankton
composition. Ichthyoplankton studies conducted in neotropical rivers have commonly
adopted biweekly or longer sampling intervals, e.g., [24,25,46–48]. Incomplete identification
becomes even more critical when we consider the fish monitoring programs developed
by the hydroelectric sector. In most cases, these studies are conducted with quarterly or
biannual frequency [49], resulting in sporadic collections that may or may not be outside of
the reproductive period of migratory species. The minimum ichthyoplankton sampling
protocol [50], a reference used by environmental agencies to guide the environmental
regulation of hydropower plants, recommends monthly collections over a period of one
year for surveys and for monthly collection to be carried out for at least four months in
the reproductive season for monitoring. Our results indicate that the greater the sampling
interval, the lower the chances of recording important reproductive events. Migratory
species exhibit spawning that is highly synchronized with environmental variables [4,11,24],
and they exhibit reproductive homing [51], with fidelity to a single spawning site. Therefore,
an inadequate sample frequency leads to the erroneous conclusion that a river or region
is not important as a spawning site for some migratory species. An error such as this
would result in inadequate management and conservation measures, because having
quality data is essential for us to understand the impact of existing or new dams on
migratory fish populations [8]. In the upper São Francisco River, the spawning of four
out of the seven migratory species would have gone undetected if the sampling had
been conducted biweekly or monthly. Among those species is Surubim Pseudoplatystoma
corruscans, the largest-sized species in the basin, which is currently listed as endangered [52],
and Prochilodus argenteus, which comprises half of the fisheries in some stretches of the São
Francisco River basin [38,53].

5. Conclusions

Most South American river basins, which harbor an enormous biodiversity of fish,
are already highly fragmented [54]. In these systems, free-flowing river segments are
refuges for migratory species, some of which are rare and/or threatened [11,24,47,48,55].
In this context, the identification of critical habitats, especially spawning sites, is essential
for taking appropriate conservation measures. We have found that, without the proper
identification and adequate sampling frequency of eggs, important spawning sites will be
overlooked, leading to ineffective or inappropriate conservation measures. Therefore, it is
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necessary to improve the ichthyoplankton surveys and monitoring programs conducted in
environmental impact studies related to aquatic ecosystem projects. Given the importance
of molecular techniques to improve species identification accuracy, it is crucial to provide
incentives and support in order to make them more financially accessible.
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Appendix A

Table A1. Relative abundance (ASV %) of fish species identified by DNA metabarcoding in ichthy-
oplankton samples from the upper São Francisco River. Migratory species and parental care are also
indicated [22,31,36,56,57].

Fish Species ASV % Migratory
(Y/N) Parental Care (Y/N)

ORDER CLUPEIFORMES
Family Engraulidae

Anchoviella vaillanti (Steindachner, 1908) 0.06 N N
ORDER CHARACIFORMES

Family Crenuchidae
Characidium fasciatum Reinhardt, 1867 <0.01 N N
Characidium zebra Eigenmann, 1909 0.07 N N

Family Parodontidae
Parodon hilarii Reinhardt, 1867 <0.01 N N

Family Serrasalmidae
Myleus micans (Lütken, 1875) 0.01 N N
Myleus sp. <0.01 N N
Myloplus sp. <0.01 N N
Serrasalmus sp. <0.01 N Y

Family Anostomidae
Leporellus vittatus (Valenciennes, 1850) 0.86 N N
Leporinus piau Fowler, 1941 0.04 N N
Leporinus taeniatus Lütken, 1875 2.26 Y N
Megaleporinus obtusidens (Valenciennes, 1837) 0.90 Y N
Megaleporinus reinhardti (Lütken, 1875) <0.01 Y N
Schizodon knerii (Steindachner, 1875) 1.94 N N
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Table A1. Cont.

Fish Species ASV % Migratory
(Y/N) Parental Care (Y/N)

Family Curimatidae
Curimatidae sp. <0.01 N N

Family Prochilodontidae
Prochilodus argenteus Spix and Agassiz, 1829+ 2.92 Y N
Prochilodus costatus Valenciennes, 1850 + 2.88 Y N

Family Bryconidae
Brycon sp. <0.01 ? N

Family Characidae
Astyanax scabripinnis (Jenyns, 1842) 0.02 N N
Bryconamericus sp. 0.26 N N
Piabina sp. 0.11 N N
Psalidodon fasciatus (Cuvier, 1819) 0.08 N N
Tetragonopterus chalceus Spix and Agassiz, 1829 <0.01 N N

ORDER SILURIFORMES
Family Cetopsidae

Cetopsidae sp. 0.05 N N
Family Doradidae

Doradidae sp. <0.01 N N
Family Heptapteridae

Cetopsorhamdia iheringi Schubart and Gomes, 1959 0.57 N N
Imparfinis sp. <0.01 N N

Family Pimelodidae
Bergiaria westermanni (Lütken, 1874) 4.84 N N
Pimelodus fur (Lütken, 1874) 1.29 N N
Pimelodus maculatus Lacepède, 1803 11.54 N N
Pimelodus pohli Ribeiro and Lucena, 2006 63.54 N N
Pseudoplatystoma corruscans (Spix and Agassiz, 1829) 0.01 Y N

ORDER GYMNOTIFORMES
Family Sternopygidae

Eigenmannia sp. <0.01 N N
ORDER PERCIFORMES

Family Sciaenidae
Pachyurus sp. 3.89 N N
Plagioscion squamosissimus (Heckel, 1840) <0.01 N N
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