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Abstract: Catch-per-unit-effort (CPUE) standardization in fisheries is a critical foundation for con-
ducting stock assessment and fishery conservation. The Pacific sardine (Sardinops sagax) is one of the
economically important fish species in the Northwest Pacific Ocean (NPO). Hence, the importance
of choosing an appropriate CPUE standardization model cannot be overstated when it comes to
achieving a precise relative abundance index for the efficient management of Pacific sardine fishery.
This study’s main aim was to assess and compare the efficacy of three models, specifically the General
Linear Model (GLM), the Generalized Linear Mixed Model (GLMM), and the spatio-temporal GLMM
(VAST), in the CPUE standardization for Pacific sardine fishery in the NPO, with the ultimate goal of
identifying the most appropriate model. An influence analysis was applied to analyze the impact of
individual variables on the disparity among standardized and nominal CPUE, and the main explana-
tory variables influencing standardized CPUE were identified. A coefficient–distribution–influence
(CDI) plot was generated to analyze the impact of the different models on the annual standardized
CPUE. Additionally, a simulation testing framework was developed to evaluate the estimated accu-
racy of the three models. The results indicated that the standardized CPUE and the nominal CPUE
exhibited similar trends between 2014 and 2021 for the three models. Compared to the GLM and
the GLMM, the VAST demonstrates larger conditional R2 and smaller conditional AIC, indicating a
better performance in standardizing the CPUE for Pacific sardines due to its consideration of spatial
and temporal variations. The interaction terms within the three models exert significant influences
on the annual standardized CPUE, necessitating their inclusion in the model construction. CDI
plots indicate that the spatio-temporal influence of the VAST model exhibits a smaller variation
trend, suggesting that the VAST is more robust when standardizing the CPUE for Pacific sardines.
Simulation testing additionally demonstrated that the VAST model displays smaller model root mean
squared error (RMSE) and bias, establishing it as the superior performer for standardizing CPUE.
Our results provide a theoretical basis for the scientific management of Pacific sardines in the NPO
and can be extended to CPUE standardization for other small pelagic fish species worldwide.

Keywords: Sardinops sagax; CPUE standardization; VAST model; model evaluation; Northwest
Pacific Ocean

Key Contribution: This study evaluates and compares the performance of three different models in
standardizing the CPUE for Pacific sardines, obtaining accurate and biologically significant indices
of resource abundance, establishing a foundation for assessing the status of this fishery resource.
Simultaneously, it aims to explore the influence of each explanatory variable on standardized CPUE
and identify its primary drivers.
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1. Introduction

Abundance indices are the bedrock of global fishery stock assessments and fishery
conservation [1]. The catch-per-unit-effort (CPUE) serves as a commonly utilized metric for
revealing relative fluctuations in stock abundance [2]. Currently, the stock assessment of
most fisheries in the world relies heavily on fisheries-dependent data [3]. However, the
nominal CPUE from fisheries-dependent data is likely to be biased and limited, which
may be influenced by factors such as catchability, fishing effort, spatial heterogeneity, and
environmental changes [4]. For instance, fishers may increase their efforts in response
to declining fish populations, leading to higher CPUE values which may not accurately
reflect the true fish abundance. Therefore, the assumption of a proportional relationship
between the CPUE and stock abundance is often criticized in fishery stock assessment [5].
CPUE standardization is a critical step in fisheries’ stock assessment that involves removing
or adjusting for factors that may influence catchability [6]. By standardizing the CPUE,
fisheries’ managers can obtain more accurate information on fish stock status, which has
significant implications for scientific stock assessment and management.

In recent years, many authors have employed various statistical models other than
the traditional General Linear Model (GLM) and Generalized Additive Model (GAM) for
CPUE standardization research [7]. For example, two recruitment indices were constructed
by Hashimoto et al. [8] utilizing pelagic trawl survey data for the Chub mackerel (Scomber
japonicus) employing a delta-GLM model. Hazin et al. [9] standardized the CPUE of
swordfish in the equatorial and southwestern Atlantic Ocean using a Generalized Linear
Mixed Model (GLMM). Thorson et al. [10] introduced a spatio-temporal GLMM (referred to
as VAST) for the purpose of estimating abundance indices for West Coast groundfish species
and found that the model could improve the accuracy of CPUE standardization. The GLM,
GLMM, and VAST models were commonly used methods for CPUE standardization in the
past and have been successfully applied to various fish species [11]. However, these models
have their own advantages and limitations, and there is relatively little research on the
comparative estimation performance between the models [12]. Therefore, selecting CPUE
standardization models with a higher estimation accuracy by comparing their evaluation
performance is crucial for fishery stock assessment and management.

The Pacific sardine (Sardinops sagax) is one of the essential target species for commercial
fishing in the Northwest Pacific Ocean (NPO) [13,14]. Pacific sardines are a short-lived
species, typically living for 6–7 years, and they reach sexual maturity at around one year of
age and spawn in large schools near the surface of the water [15,16]. The Pacific sardine
is a small pelagic fish, feeding primarily on zooplankton such as copepods, krill, and
small fish larvae [17], and it is also a critical prey for larger fish, seabirds, and marine
mammals and plays a vital ecological role in the marine ecosystem. Therefore, sustainable
management and conservation of this species can positively impact the entire marine
food web. Currently, the primary harvesters of the Pacific sardine population in the NPO
are China (including Chinese Taipei), Japan, and Russia. In 2021, China reported an
annual catch of approximately 237,301 tons of Pacific sardines, representing 22.20% of
the global production [18,19]. In addition, the catch percentage of Pacific sardines for
China in the NPO has been increasing year by year [20]. With increasing attention from
global researchers, the North Pacific Fisheries Commission (NPFC) has officially recognized
the Pacific sardine as a priority species, and preliminary fishery stock assessment and
management have been conducted [21].

Recently, the potential impact of climate and ocean environmental changes on Pa-
cific sardine populations has been gathered increasing attention. Several researchers have
suggested that the distribution and population size of Pacific sardines is highly impacted
by environmental conditions. Shi et al. [22] utilized the ensemble distribution model to
examine the population variation for Pacific sardine in the NPO, and they pointed out that
sea surface height (SSH) and sea surface temperature (SST) were critical environmental
variables. Takasuka et al. [23] studied the suitable temperature for the Pacific sardine and
found that 16.2 ◦C is the optimal growth temperature for Pacific sardines. Ito [24] stated that



Fishes 2023, 8, 606 3 of 20

the spawning grounds’ temperature of Pacific sardines in the northern and southern Pacific
coast of Japan were 14–17 ◦C and 17–19 ◦C, respectively. Wada et al. [25] found that the
population size of Pacific sardine has experienced drastic fluctuations, closely related to the
climate and the oceanic environment Therefore, it is necessary to consider environmental
factors when standardizing the CPUE for Pacific sardines. However, currently, research on
Pacific sardines mainly focuses on biology [26,27] and potential habitat distribution [28,29],
and there are few reports on the CPUE standardization for Pacific sardine fishery. Further-
more, it is crucial to accurately grasp the impact of explanatory variables in a model on the
standardized CPUE in CPUE standardization studies [30]. However, previous research has
rarely taken this into account.

Due to the urgent need for stock assessment and management of Pacific sardine fishery,
we used the GLM, GLMM, and VAST models to analyze the CPUE for the Pacific sardine,
gauging the effectiveness of each model to select the most suitable model for standardizing
the CPUE for Pacific sardine fishery. This can obtain an accurate abundance index of Pacific
sardine resources. Additionally, we conducted an influence analysis to appraise the effect
of each variable on standardized indices. Finally, simulation tests were used to assess the
effectiveness of the various models in CPUE standardization. To our knowledge, this study
marks the inaugural endeavor in this field to standardize Pacific sardine CPUE within the
NPO of China, employing an array of standardization models. Our study aims to achieve
the following three primary goals: (1) to assess and compare the performance of three
models in CPUE standardization; (2) to derive accurate CPUE data and provide support
for stock assessment of the Pacific sardine fishery; and (3) to examine how the inclusion of
each explanatory variable affects the standardized CPUE and determine its main drivers.
The results of this investigation can provide technical support for the stock assessment and
management of Pacific sardines in the NPO region.

2. Materials and Methods
2.1. Data Sources

Figure 1 shows the research region, encompassing the geographical range between
30◦ N and 45◦ N latitude and between 143◦ E and 165◦ E longitude, and the study focuses
on the primary fishing season, which occurs from May to November, from 2014 to 2021.
The fishery logbook data, acquired from the Technical Group for Trawl-purse seine Fishery
within the Distant-water Fishery Society of China, included information on date, longitude,
latitude, catch, hauls, and vessel length, with the location data having a spatial resolution
of 0.25◦. No zero catches were included in the dataset (removed approximately 1% of zero
catch data), and the daily vessel catch defined the nominal CPUE.

Based on the references, we selected SST(◦C), SSH (m), and SSTG (◦C/km) as the
environmental factors when constructing the model for Pacific sardines. The SST and SSH,
featuring a monthly temporal resolution and a spatial resolution of 0.25◦, were acquired
from the Copernicus Marine Service. This access took place on the 23rd of November 2022.
The SST and SSH are the monthly average values for this grid. Regarding the SSTG, which
signifies the temperature change across the ocean surface, it can influence the distribution
and behavior of fish species. Additionally, it may affect the distribution of planktonic or-
ganisms, thereby impacting the food sources of fish and other marine organisms. Therefore,
this environmental factor needs to be taken into account in CPUE standardization. In this
study, it represents temperature variations within a 0.25◦ × 0.25◦ grid [31]. The variance
inflation factor (VIF) measures the degree of multicollinearity among explanatory variables
in a regression analysis, which assesses how much the variance of an estimated regression
coefficient is inflated due to multicollinearity in the model. The VIF numbers represent the
extent to which multicollinearity inflates the variance of the estimated regression coeffi-
cients: the larger the value, the higher the degree. According to the VIF test (Table 1), we
found that there is no multicollinearity among the explanatory variables [32,33].
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Figure 1. Sampling locations (black dots) of Pacific sardines in the Northwest Pacific Ocean.

In this study, all data processing and model construction were conducted using R
(V4.0.3). “Spatial 1”, introduced by Hsu et al. [34], was selected as the area stratification
approach for the GLM and the GLMM. Using spatial proximity and average CPUE as the
criteria, Spatial 1 employed the k-medoids algorithm to divide the Pacific sardine CPUE
grids into five area strata. (Figure 2) [35]. Briefly, the k-medoids algorithm clusters dataset
observations into k groups, each led by a representative observation (called a “medoid”). It
selects these medoids by minimizing distances within clusters, ensuring every data point
connects to its closest medoid. This method, using actual observations as the cluster centers,
enhances its resilience to outliers. For more details on the method of partitioning area strata,
please refer to Hsu et al. [34] and Ono et al. [35].
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Figure 2. The distribution (a) and the boxplots of the CPUE data (b) for each area strata. The colors
of each area in Figure (a) are consistent with Figure (b), i.e., the blue represents the area three. The
boxes in Figure (b) represents the middle 50% of the data; the median line indicates the median of
the data, the small circles is very big or small data in CPUE, and the lines extending from the box
represent the data outside the box.
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Table 1. Explanatory variables test.

Explanatory
Variables Year Area Vessel SST SSTG SSH

VIF 1.02 1.01 1.02 1.18 1.06 1.16

2.2. Methods
2.2.1. General Linear Models

The GLM is the most common modeling approach for CPUE standardization, assum-
ing a linear relationship between the response variable and the explanatory factors [36]. In
this study, in addition to the explanatory variables shown in Table 1, interaction terms for
year and spatial location were also considered for inclusion in the GLM. Ln(CPUE) is the
response variable; so, assuming that the response variable follows a normal distribution,
the GLM model is as follows:

Ln(CPUEi) = αYear(i) + αArea(i) + αVessel(i) + αSST(i)SSTi + αSSTG(i)SSTGi + αSSH(i)SSH
i
+ αYear(i)×Area(i) (1)

where CPUEi is the predicted CPUE for the ith data, and α denotes the estimated coefficient
associated with its respective subscript. In the GLM, the year, area, vessel, and year × area
were treated as discrete variables, and the SST, SSTG, and SSH were continuous.

2.2.2. Generalized Linear Mixed Models
The GLMM is a commonly employed model that integrates the advantages of both the

GLM and the LMM, finding extensive application in CPUE standardization studies [37].
The GLMM is an extension of the GLM model that allows for the inclusion of random
variables in the linear predictor for CPUE standardization [38,39]. We fit the GLMM for
Pacific sardine CPUE standardization as defined by the equation presented below:

Ln(CPUEi) = βYear(i) + βArea(i) + βVessel(i) + βSST(i)SST
i
+ βSSTG(i)SSTGi + βSSH(i)SSH

i
+ βYear(i)×Area(i)Yeari × Areai (2)

where CPUEi represents the predicted CPUE for the ith data, and β denotes the estimated
coefficient associated with its respective subscript. We consider year, area, SST, SSTG, and
SSH as fixed effects, and treat the other variables as random effects in the GLMM.

2.2.3. Spatio-Temporal GLMM (VAST)

For our spatio-temporal modeling, the VAST R package (version 3.4.0) was applied.
VAST’s default model framework is founded on a delta-generalized linear mixed model,
which separates the catch probability distribution into the following two discrete elements:
the probability of encounter and the positive catch rate. Since there were no instances
of zero CPUE data in the Pacific sardine dataset, we exclusively considered the positive
catch rate component and assigned an encounter probability of one for all the years. We
employed a lognormal GLMM to estimate the positive catch rate, utilizing linear predictors
and a log-link function. The model also incorporated Gaussian Markov random fields
(GMRFs) to effectively capture and consider both spatial and spatio-temporal effects [40].

It is necessary to define spatial knots in advance for computational convenience in the
VAST. To evaluate correlations for both the spatial and spatio-temporal effects, we utilized
the K-means algorithm to partition all the grid cells into 100 spatial knots, which served as
reference points (Figure 3). Furthermore, the spatial and spatio-temporal random effects of
each grid cell were assumed to originate from the cell’s nearest spatial knot [41], and the
formula of the CPUE for Pacific sardine using logarithms is detailed as follows:

log(pi) = β(ti) + ω(si) + ε(si, ti) + δ(vi) +
n

∑
j=1

γ(j)X(si, ti, j) (3)

where pi is the predicted CPUE of the ith data; the intercept for year ti, denoted as β(ti), is
considered a fixed effect and is assumed to be independent across various years; ω(si) and
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ε(si, ti) are time-invariant spatial variances in location si and time-varying spatio-temporal
variances for location si in year ti, respectively. δ(vi) represents the influence of vessel
vi, and δ(vi) ∼ Normal(0, 1), γ(j) is the jth catchability covariate X(si, ti, j) on location si
during year ti, and the variable n represents the total number of catchability covariates.
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We applied the Laplace approximation as implemented in the Template Model Builder
for parameter estimation [42]. This technique facilitated the integration of random-effect
parameters and the derivation of the marginal likelihood of fixed-effect parameters. These
fixed-effect parameters were subsequently estimated using a maximum likelihood estima-
tion within the R computing environment.

2.2.4. Model Evaluation

In the process of identifying the most suitable models among the GLM, GLMM,
and VAST, we employed a forward approach by incrementally incorporating explanatory
variables into each of the three models. This led to the creation of models with varying
sets of explanatory variables. Subsequently, we utilized the Akaike Information Criterion
(AIC) to make the final selections for the optimal GLM, GLMM, and VAST. AIC values are
indicative of a model’s fit, with smaller values suggesting superior-fitting models.

To compare the performance of different models, the conditional R2 and conditional
AIC (CAIC) were employed, since those metrics provide a more accurate measure of model
complexity [43,44]. An enhanced model performance in a standardized context is indicated
with a higher conditional R2 and a lower CAIC value. The CAIC formula is given below:

CAIC = −2ln(L) + kln(n) (4)

where L denotes the value of likelihood function. In addition, we assessed the normality
of the GLM, GLMM, and VAST using histograms of the residuals and quantile–quantile
normal probability plots (Q-Q plots).
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2.2.5. Standardized CPUE Value

Using the optimal models chosen for the three models, we computed the standardized
abundance indices, and we employed the “predict” function to estimate the CPUE for the
GLM and GLMM models. Following that, we utilized the aggregate function to calculate
the CPUE for each year and area (CPUEYear,Area). Lastly, we determined the area-weighted
annual CPUE using the formula below:

ĈPUEYear =
n

∑
Area=1

SAArea × CPUEYear,Area (5)

where n represents the total number of areas, which amounts to five. The term SAArea
denotes the proportion of the study domain’s surface area allocated to a particular area.

Utilizing the VAST model, which includes an explicit spatial correlation component,
we estimated the Pacific sardine density in every spatial cell across the study region. The
description of the standardized abundance indices for the study area in year t is as follows:

ĈPUEt =
n

∑
s=1

SAs × exp

(
β(t) + ω(s) + ε(s, t) + δ(v) +

n

∑
j=1

γ(j)X(si, ti, j)

)
(6)

where n refers to the number of knots denoted as s; β(t) is the year-specific effect at time t;
ω(s) signifies the spatial effect at knot s, and ε(s, t) stands for the spatio-temporal effect
at knot s during time t. Additionally, SAs represents the surface area associated with the
mesh corresponding to knot s.

2.2.6. The Impact of Predictor Variables on Standardized CPUE

In this study, we calculated the influence value for each variable. Subsequently,
we generated coefficient–distribution–influence (CDI) plots, which encompass coefficient
values, changes in distributions, and annual impacts [30]. These CDI plots served as a
valuable resource for gaining a deeper understanding of the annual influence patterns.

To measure the extent of influence, we determined the normalized coefficient (ρ)
associated with each explanatory variable using the formula below:

ρ = ∑n
i=1 ai/n (7)

where ai signifies the anticipated coefficient associated with the ith observation, and n is
the overall number of CPUE observations.

Calculating the influence value (AIy) for a variable in a specific year involves finding
the average difference between the coefficients linked to all the observations within that
year and the normalized coefficient in a multiplicative GLMM.

δy =
∑m

i=1 ai−ρ

m
(8)

where m represents the number of observations during year y. Given that the log-link
function was utilized, the AIy was calculated using the subsequent formula:

AIy = exp
(
δy
)

(9)

As referenced in Bentley et al. [30], when the value of AIy for a variable is larger than
one, it signifies the variable’s contribution to an increase in the nominal CPUE for that year.
Conversely, if the value is below one, it implies the opposite, and an AIy of one reveals
that the variable had no discernible impact on the difference between the nominal and
standardized CPUE.
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The formula for computing the average influence metric AI for a variable across all
years is as follows:

AI = exp

(
∑m

y=1 δy

m

)
− 1 (10)

where m signifies the number of years under consideration in the analysis.
We employed the year × spatial interaction random-effect CDI plot format, following

the guidance of Bentley et al. [30], for creating CDI plots in both the GLM and GLMM. For
the VAST, the initial set of 100 spatial knots was initially classified into 20 groups, referred
to as “grouped” knots, based on the coefficients of the spatio-temporal random effect, and
for more details, please refer to Hsu et al. [34].

2.2.7. Simulation Testing for Three Models

Simulation testing is a valuable tool for assessing the effectiveness of CPUE standard-
ization models in predicting “true” abundance trends [45,46]. We established a simulation
testing framework under a preferential sampling scenario [47]. Utilizing simulated data for
Pacific sardines, we applied the three models to standardized CPUE data. Following that,
we conducted a comparison between the models’ estimated CPUE values and the “true”
values as part of the assessment of the models’ performance. For a more comprehensive
understanding of the way to calculate the “true” values of CPUE and the preferential
sampling pattern, we recommend consulting the research conducted by Hsu et al. [34] and
Thorson et al. [10].

To assess the models’ performance, we employed a comparison of the computed
indices with area weightings against the “true” indices. The evaluation criteria included
the use of the relative error metric in year y (REy), the root mean squared error (RMSE),
and the bias metric (β).

The formula for calculating REy is as follows:

REy =

(
Îy − Ty

)
Ty

(11)

where Îy represents the estimated CPUE during year y, and Ty represents the true CPUE
during year y.

The calculation of the RMSE was performed according to the formula provided by
Ducharme-Barth et al. [47], as follows:

RMSE =

√√√√∑n
y=1

(
Îy − Ty

)2

n
(12)

where n is the total count of years.
Based on the research by Thorson et al. [10] and Ducharme-Barth et al. [47], the bias

metric, denoted as coefficient β, was applied in the linear model as follows:

Îy = α + β × Ty + εy (13)

εy ∼ Normal
(

0, σ2
ε

)
(14)

where α is the intercept of linear model, and β is the slope to the slope parameter that
relates the “true” CPUE to the estimated CPUE [48].
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3. Results
3.1. Diagnostic and Selection of Three Model

Tables 2–4 illustrate the model decision process for the three models based on the AIC
criterion. The values of the AIC suggest that the most effective models for the GLM and
the GLMM incorporate the following explanatory factors: year, area, vessel, SST, SSTG,
and Year × Area (Tables 2 and 3). As for the VAST, the favored model includes only the
covariate SST (Table 4). Compared to the GLM and the GLMM, the VAST exhibits a higher
conditional R2 and smaller CAIC values (Table 5). Additionally, the histogram of the
residuals and Q-Q plots of the three models, which are based on lognormal distributions,
demonstrate normality, affirming the appropriateness of the assumption regarding the
error distribution for the CPUE standardization in the three models (Figure 4).

Table 2. Selection process of the optimal GLM.

No. GLM Model AIC

1 Ln(CPUE)~Year + Area + Year: Area 9755.40

2 Ln(CPUE)~Year + Area + Year:Area + Vessel 9720.78

3 Ln(CPUE)~Year + Area + Year:Area + Vessel + SST 9722.72

4 Ln(CPUE)~Year + Area + Year:Area + Vessel + SST + SSTG 9708.86

5 Ln(CPUE)~Year + Area + Year:Area + Vessel + SST + SSTG + SSH 9710.58

Table 3. Selection process of the optimal GLMM.

No. GLMM Model AIC

1 Ln(CPUE)~Year + Area + Year: Area 9795.28

2 Ln(CPUE)~Year + Area + Year:Area + Vessel 9765.51

3 Ln(CPUE)~Year + Area + Year:Area + Vessel + SST 9776.61

4 Ln(CPUE)~Year + Area + Year:Area + Vessel + SST + SSTG 9761.08

5 Ln(CPUE)~Year + Area + Year:Area + Vessel + SST + SSTG + SSH 9765.23

Table 4. Selection process of the optimal VAST.

No. Covariates AIC

1 None 8789.27

2 SST 8782.16

3 SST + SSTG 8785.38

4 SST + SSTG + SSH 8787.45

Table 5. Summary of the three models fitted to Pacific sardine CPUE from 2014 to 2021.

Model Conditional R2 CAIC

GLM 0.27 9709.18

GLMM 0.32 9690.90

VAST 0.36 8776.27
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in Q-Q plot represent the consistency between theoretical CPUE and predicted CPUE, and the circles
represent abnormal data.

3.2. The Nominal and Standardized CPUE

An overall upward pattern was noted in both the nominal and the standardized
CPUE for Pacific sardine from 2014 to 2021 (Figure 5). Except for 2015 and 2016, the
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relative standardized CPUE with area weightings of the three models exhibited a similar
trend compared to the nominal CPUE. Specifically, the standardized CPUE showed a
slight decrease from 2014 to 2015. Subsequently, from 2015 to 2018, it increased annually,
followed by a decrease in 2019, and, from 2019 to 2021, there was a substantial growth in
the standardized CPUE (Figure 5). Furthermore, regarding the CPUE values, except for
2020 and 2021, the standardized CPUE values of all three models were higher than the
nominal CPUE. Notably, in 2021, the nominal CPUE (3.79) was significantly higher than the
standardized CPUE values of the three models (GLM: 2.05, GLMM: 2.06, and VAST: 1.94).
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3.3. Influence of Explanatory Variables

Figure 6 depicts the annual influence plots of the explanatory variables. The spatial,
year × spatial, and vessel annual influence values exhibit diverse patterns across the
various models (Figure 6A–C), whereas the SST’s values consistently follow a similar trend
across all the models (Figure 6D). This highlights the crucial role of model selection in
CPUE standardization. In contrast to the GLMM and the VAST, the GLM demonstrates a
wider spectrum of variation in annual influence, indicating that the GLMM and the VAST
are more stable than the GLM in CPUE standardization. The annual relative standardized
CPUE of Pacific sardine was higher than the nominal CPUE from 2014 to 2019 (Figure 5),
which can be attributed to the fact that the annual influence values of the year × spatial and
vessel were mainly below one in the corresponding years. However, the annual influence of
the explanatory variables consistently exceeded a value of one from 2019 to 2021, resulting
in standardized CPUE values lower than the nominal CPUE. The annual influence of the
SST in all three models was concentrated around one, indicating that the effect of the
SST on the difference between the standardized and nominal CPUE is relatively minor.
Notably, the year × spatial overall influence in the GLM and the GLMM, as well as the
spatio-temporal variable in the VAST, surpassed that of other variables (Table 6).

Table 6. Overall influence of the three models.

Model Variable Overall Influence

GLM

Year 0.258
Area 0.173

Year × Area 0.287
SST 0.015

GLMM

Year 0.196
Area 0.204

Year × Area 0.303
SST 0.015
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Table 6. Cont.

Model Variable Overall Influence

VAST

Year 0.217
Area 0.209

spatio-temporal 0.312
SST 0.015

Fishes 2023, 8, x FOR PEER REVIEW 12 of 20 
 

 

  

  

Figure 6. Yearly impact of explanatory factors on the standardized CPUE of Pacific sardine for the 
three models. (A) corresponds to the spatial effect; (B) denotes the interaction between the year 
and the spatial/spatio-temporal random effect; (C) represents the vessel effect, and (D) signifies the 
SST’s effect. The dotted lines is the reference line for each explanatory factors to judge the 
influence on the standardized CPUE. 

Table 6. Overall influence of the three models. 

Model Variable Overall Influence 

GLM 

Year 0.258 
Area 0.173 

Year × Area 0.287 
SST 0.015 

GLMM 

Year 0.196 
Area 0.204 

Year × Area 0.303 
SST 0.015 

VAST 

Year 0.217 
Area 0.209 

spatio-temporal 0.312 
SST 0.015 

Figure 6. Yearly impact of explanatory factors on the standardized CPUE of Pacific sardine for the
three models. (A) corresponds to the spatial effect; (B) denotes the interaction between the year and
the spatial/spatio-temporal random effect; (C) represents the vessel effect, and (D) signifies the SST’s
effect. The dotted lines is the reference line for each explanatory factors to judge the influence on the
standardized CPUE.

3.4. The Influence of Various Models on Yearly Standardized CPUE

Using the same data stratification method (Spatial 1), this study employed three
models for CPUE standardization, allowing us to assess their impact on the standardized
CPUE by examining the CDI plot of the explanatory variables. In Figure 7, the CDI plot for
the year × spatial effect in the GLM is presented, and it demonstrates notable variations
in the annual influence of the year × spatial (right bottom panel). More precisely, during
2015 and 2016, the values of the yearly influence were notably subdued, registering at
only 0.72 and 0.74, respectively. This can be ascribed to the concentration of data primarily
within areas 1, 3, and 5, where the associated coefficients are relatively modest (Figure 7).
Conversely, the yearly influence value for 2021 surged to 1.19, marking a significant
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increase. This notable upswing is linked to the greater quantity of accessible data, primarily
distributed in regions with elevated coefficients. The CDI plot illustrating the year × spatial
interaction random effect in the GLMM is shown in Figure 8. Although the data distribution
across the areas aligns with the GLM, the impact of the year × spatial in the GLMM model
exhibits minimal variation. The lowest influence value was observed in 2015 (0.98), while
the highest was observed in 2019 (1.02). This variation could be ascribed to differences in
model structure between the GLM and the GLMM. Figure 9 displays the CDI plot for the
spatio-temporal random effect in the VAST. In 2014 and 2017, the annual influence values
remained relatively modest, primarily due to the concentration of data within knots with
lower coefficients. In contrast, a higher annual influence value in 2015 was associated with
the year’s elevated coefficients.
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Figure 7. The CDI plot of the year × spatial interaction in the GLM analysis. The top section of the
picture displays the normalized coefficients corresponding to each geographical area. Each year is
represented by a solid color point indicating its coefficient. To enhance graphical visualization, a
small amount of random noise was added to the area coefficient for each year. The lower left portion
of picture displays bubbles that represent the yearly distribution of observed CPUE values across
each area stratum. The size of each bubble corresponds to the number of data records it represents.
The lower right portion of picture displays the yearly influence value of the year × spatial effect.

3.5. Model Evaluation Using a Simulation Test

From Figure 10, it can be observed that the VAST exhibits smaller relative errors
compared to the GLM and the GLMM, and it fluctuates around the zero value, which
indicates that the VAST estimates CPUE values closer to the “true” value. Among the three
models, the GLM model has the most significant relative errors, followed by the GLMM
model (Figure 10). Regarding the RMSE, the VAST model has the smallest RMSE value
(0.093), while the GLM model has the largest value (0.143). The RMSE value for the GLMM
model is 0.126 (Figure 11A). Similarly, the bias metrics values for the three models, from
largest to smallest, were the GLM, the GLMM, and the VAST (Figure 11B), which suggested
that the VAST model demonstrates a superior evaluation performance.
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Figure 8. The CDI plot of the year × spatial interaction random effect in the GLMM. The top section
of the picture displays the normalized coefficients corresponding to each geographical area. Each year
is represented by a solid color point indicating its coefficient. To enhance graphical visualization, a
small amount of random noise was added to the area coefficient for each year. The lower left portion
of picture displays bubbles that represent the yearly distribution of observed CPUE values across
each area stratum. The size of each bubble corresponds to the number of data records it represents.
The lower right portion of picture displays the yearly influence value of the year × spatial effect.
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Figure 9. The CDI plot of the spatio-temporal random effect in the VAST. The top section of the
picture displays the normalized coefficients corresponding to each geographical area. Each year is
represented by a solid color point indicating its coefficient. To enhance graphical visualization, a
small amount of random noise was added to the area coefficient for each year. The lower left portion
of picture displays bubbles that represent the yearly distribution of observed CPUE values across
each area stratum. The size of each bubble corresponds to the number of data records it represents.
The lower right portion of picture displays the yearly influence value of the spatio-temporal effect.
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4. Discussion

Pacific sardine fishery is a traditional fishery in the NPO [49]. Since the 1990s, the
catch of Pacific sardines has experienced significant fluctuations. However, after 2010, the
population of Pacific sardines gradually recovered, leading to an increase in the catch. In
2021, the catch of Pacific sardines exceeded one million tons [50]. With the increase in fishing
scale and economic worth, there has been a growing focus on the stock assessment and
governance of Pacific sardine resources, and the NPFC has prioritized its stock assessment
and management [21]. Therefore, obtaining reliable relative abundance indices is of great
significance for the management of Pacific sardines. The Pacific sardine, known for its
short life cycle and highly migratory behavior, demonstrates continuous fluctuations in
abundance and availability that are influenced by biotic and abiotic environmental factors,
exhibiting a spatial structure [51]. Hence, including spatial autocorrelation as a continuous
covariate in the CPUE standardization model for Pacific sardines appears fitting. This
will improve the model’s capacity to precisely grasp the spatial distinctions in the fish
occurrence patterns, thus reflecting the variations more reasonably [52].

This study assessed the effectiveness of three models—the GLM, the GLMM, and
the VAST—using Chinese Pacific sardine fishery data and marine environmental data
including the SST, the SSTG, and the SSH. The reason for selecting the SST, the SSTG, and
the SSH is that previous research has indicated that the habitat distribution and abundance
of small pelagic fish species, such as the Pacific sardine, are highly sensitive to marine
environmental factors, particularly the SST, the SSTG, and the SSH [53,54]. The SST has
long been considered the most important influencing factor for Pacific sardine resources,
and the CAIC results revealed that the best-performing GLM, GLMM, and VAST models all
included the SST, confirming its significance. Nevertheless, the findings from the influence
analysis revealed that the annual influence values of the SST were distributed around one
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(Figure 6D), suggesting that the factors affecting resource distribution might not always
make a substantial contribution to the disparities between the nominal and standardized
CPUE, aligning with the conclusions of Hsu et al. [34].

Based on the CAIC and the Conditional R2, the VAST demonstrates a better fitting
performance compared to the GLM and the GLMM (Table 5), which was consistent with
the results of Kai [55]. Meanwhile, according to the simulation tests, the VAST model
showed smaller RMSE and model bias, indicating that the bias values were closer to one.
This suggests that the VAST model can better accommodate the spatial variations in the
CPUE data and has a higher assessment accuracy. Ducharme-Barth et al. [47] conducted
simulation tests on the VAST model for CPUE standardization and reached conclusions
consistent with our study. This can be ascribed to three primary factors. To begin with, the
VAST model encompasses both spatial and temporal data variations, accounting for spatial
correlations between sampling locations and temporal correlations across different time
intervals, and allows for a more accurate representation of the complex spatio-temporal
patterns in the data [56]. Additionally, by introducing spatial and temporal random effects,
the VAST can effectively handle the inherent correlations and disparities within the CPUE
data [57]. Lastly, the VAST provides the flexibility to incorporate supplementary covariates
that elucidate the fluctuations in CPUE. This helps in capturing the impacts of pertinent
environmental factors and other significant variables on the standardized CPUE, facilitating
a thorough and precise analysis [58].

From Figure 5, it can be observed that the values of the standardized CPUE surpassed
the nominal CPUE between 2014 and 2019. However, in 2020 and 2021, the opposite
trend was observed. This may be due to the fact that the values of the influence of the
year × spatial or spatio-temporal variables were mostly below one from 2014 to 2019,
whereas, in the following two years, their influence values exceeded one. This also demon-
strates the importance of this explanatory variable in influencing the disparities between
the nominal and standardized CPUE [30]. The yearly relative standardized CPUE shows
a progressive upward trend between 2014 and 2021 (Figure 5), indicating the gradual
recovery of Pacific sardine resources. This pattern corresponds to the noted surge in Pacific
sardine catches in China during recent years. Additionally, these research findings align
with those of Yang et al. [14] and can offer valuable scientific support for the establishment
or adjustment of management regulations in Pacific sardine fisheries. The objective is to
strike a balance between ecological preservation and the concerns of fishers.

CPUE standardization models are applied to mitigate the confounding influences of
external factors and derive an indicator that accurately reflects fish biomass [59]. Therefore,
it is imperative to thoroughly scrutinize the results, instead of merely adopting the CPUE
data generated using the standardization model, in order to grasp the impact of including
each explanatory factor in the standardized CPUE. We conducted an influence analysis for
each explanatory variable of the three models, and the results indicated that, in contrast
to other explanatory variables, the influence of the SST on the disparities among the
standardized and nominal CPUE is relatively minor (Figure 6). The overall influence of
the year × spatial or spatio-temporal variable is the highest (Table 6), which is consistent
with the results of Hsu et al. [34]. From Figure 6, it can be observed that the influence
values of the explanatory variables in the VAST model fluctuate less over time, while, in
the GLM and GLMM models, the influence values of explanatory variables exhibit larger
fluctuations over time. This also demonstrates the robustness of CPUE standardization in
the VAST model.

In this study, the spatial stratification method “Spatial 1” was employed to stratify the
fishery data of Pacific sardines in the NPO [34]. The influence values of the year × spatial
random effect or spatio-temporal random effect in the GLMM and VAST models were con-
sistent with the influence criteria of the relationship between the nominal and standardized
CPUE (Figures 8 and 9), whereas the year × spatial effect of the GLM did not exhibit this
trend (Figure 7). This discrepancy highlights the differences in the data handling capabilities
among the models [60]. We also discovered that the distribution of data had a significant



Fishes 2023, 8, 606 17 of 20

impact on the standardized CPUE. In instances where the data clustered in regions with
high coefficients, the influence value for the respective year was relatively elevated, while
it was diminished when the data dispersed across areas with low coefficients (Figures 7–9).
Based on the existing literature, several approaches, such as the ad hoc approach [61] and
the binary recursive partitioning approach [62], can be used to determine area stratification
in CPUE standardization. Therefore, it is advisable to undertake future studies to examine
the influence of various fishery data stratification approaches on CPUE standardization.
This will impart valuable insights, delivering scientific management recommendations to a
wide audience which includes fishers, managers, and stakeholders.

Our study has provided crucial insights for the stock assessment of Pacific sardine.
It has also established a spatio-temporal model framework for the CPUE standardization
for other small pelagic fish species worldwide, thereby supporting the conservation and
sustainable use of other fish stocks. Importantly, our study once again demonstrated
the impact of the SST on the distribution and abundance of Pacific sardines. However,
we also discovered that explanatory variables with a high explanatory power in CPUE
standardization models may not necessarily have a significant influence on the disparities
between the nominal CPUE and the standardized CPUE. Therefore, this aspect should
be clarified in future research. Our study revealed that the variables of year × spatial or
spatio-temporal exerted the most significant overall impact concerning the standardized
CPUE, indicating their significant role in explaining the disparities between the nomi-
nal and standardized CPUE. Furthermore, it highlighted the advantages of the VAST in
standardizing the CPUE for highly migratory small pelagic fish species, suggesting its
incorporation as a routine CPUE standardization tool. This research will facilitate the
application of accurate biomass indices in stock assessment and ultimately promote the
scientific management and conservation of Pacific sardines.

5. Conclusions

We effectively developed multiple models for Pacific sardine CPUE standardization
and assessed the effectiveness of three models (GLM, GLMM, and VAST). While all three
models displayed parallel patterns in the standardized CPUE when compared to the nomi-
nal CPUE, the VAST method exhibited a lower CAIC and a higher conditional R2, indicating
a better performance in fitting and prediction. This is because the VAST has the capability
to consider and address temporal and spatial correlations and disparities within the CPUE
data, leading to a more precise estimation of spatial and temporal effects. The VAST with
only the SST as a covariate had a smaller CAIC. Influence analysis is an effective method
for comprehending how each explanatory factor affects the disparities between the nominal
and standardized CPUE. We performed a quantitative assessment on how each explana-
tory factor influenced the optimal models for the three models. The results demonstrated
that the interaction terms of the three models exert a more significant influence on the
standardized CPUE. This underscores the importance of thoroughly incorporating these
elements in future research on Pacific sardines in the NPO. Subsequently, we produced
CDI plots representing the year × spatial interaction effect or the spatio-temporal random
effect. These plots illustrated that the VAST model displays an enhanced reliability when
standardizing the CPUE for Pacific sardines. Simulation testing also confirmed that the
VAST model exhibits the highest accuracy (with the smallest RMSE and model bias) in
CPUE standardization. This suggests that the VAST model can be considered a practical ap-
proach for CPUE standardization for this fish species. The findings presented in this study
represent a significant initial stride towards the balanced conservation and eco-friendly
utilization of Pacific sardine resources.
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