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Reproductive Success Dynamics Could Limit Precision in
Close-Kin Mark–Recapture Abundance Estimation for Atlantic
Goliath Grouper (Epinephelus itajara)
Michael D. Tringali

Fish and Wildlife Research Institute, FL Fish and Wildlife Conservation Commission, 100 Eighth Avenue S.E.,
Saint Petersburg, FL 33701, USA; mike.tringali@myfwc.com

Abstract: Extra-Poisson variance in annual reproductive success can affect the precision of abundance
estimates made using ‘close-kin’ mark–recapture procedures. However, empirical evaluation of that
variance in natural marine populations can be daunting. Here, a scaling method was used to extend
a discrete-time, age-structured model, facilitating investigation of annual and lifetime reproductive
success dynamics in Epinephelus itajara. Life tables were synthesized from fishery assessment vital
rates and life history measures. For model scaling, a precise empirical estimate of effective population
size for the studied population was utilized as the independent variable, and model sensitivity to
an informative range of adult abundance was evaluated. The potential for sex reversal to impact
reproductive success dynamics was also investigated, albeit in the absence of selective fishing pressure
and potential compensatory or depensatory responses. Close-kin relationships in a genetic sample
of ~300 adults collected from spawning sites in the Florida Atlantic included numerous full-sibling
pairs and multi-sibling families, which is unusual for long-lived, iteroparous marine populations
with broadly dispersed larvae. The highly overdispersed reproductive success dynamics modeled for
this population and its atypical kinship distribution could have ramifications for planned close-kin
mark–recapture analyses. The low observed effective size also has conservation implications. Both
issues warrant continued genetic monitoring.

Keywords: reproductive success variance; effective population size; kinship structure; selective
sweepstakes

Key Contribution: A discrete-time, age-structured model is now available for researchers to investi-
gate annual and lifetime reproductive success dynamics in natural populations. The model requires
either an independent estimate of generation effective size or annual estimates of the effective number
of breeders, and a dynamic tally of abundance representative of any pre-reproductive cohort.

1. Introduction

Because they can now be implemented at useful scales, genetic-based capture–mark–
recapture, GCMR, and close-kin mark–recapture, CKMR, are growing in popularity as
tools for fishery stock assessment and other resource management. In GCMR, encounter
histories and estimations of adult abundance, NA, or total abundance, NA+J , are developed
directly from paired classifications of the ‘identity’ relationship, IDPs [1,2]. However, in
CKMR, NA estimation is based on parent–offspring pairs, POPs, or half-sibling pairs, HSPs,
with either (or both) relationship(s) providing a proxy system for marked and recaptured
individuals [3,4]. When model assumptions, including requirements regarding variance,
Vk, in annual reproductive success, ARS, are satisfied, the major practical benefit of CKMR
is that adequate precision is achievable with relatively sparse sampling. Quadratic gains
in efficiency accompany the multiple-comparisons format. Other practical benefits of
the proxy system are that the onuses of ‘tagging effects’ (e.g., mortality associated with
hooking, handling, and barotrauma) and certain behavioral effects (e.g., trap-happy or
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trap-shy animals) are bypassed, although individual heterogeneity in capture probabilities
can arise in other ways.

The parameter Vk is a Wright–Fisher (Poisson) variance and thus ARS is considered to
be overdispersed when its value exceeds the mean number of offspring, k, produced per
parent during the breeding seasons for which it is measured. Depending on the empirical
circumstances, high levels of overdispersion, ψ� 1, in ARS, where ψ = Vk/k, can lead to
estimation bias or reduced precision in CKMR models [5]. Potential impacts depend on
true population abundances, the nature of sampling, and the types of familial relationships
upon which proxies are built. For example, in HSP applications, if pairs of offspring
from the same year class are compared, the probability of encountering sibling matches
(littermates) is expected to increase with very high levels of ψ, and corresponding estimates
of adult abundance could be biased downward. For this reason, CKMR studies based on
HSPs are usually designed to avoid and exclude any within-year class proxy comparisons.
Although there is no directional bias in the estimate, when CKMR is based on either POPs
or cross-year-class HSPs, the standard errors on NA estimates can become elevated when ψ
is very high. It is this potential loss of precision that is the concern herein.

Poisson variance in family sizes also occurs on lifetime scales, with V∗k in lifetime
reproductive success, LRS, being overdispersed when it exceeds the mean of number off-
spring, k

∗
, produced during the reproductive lifespans, τ, of breeders in the population

(i.e., ψ∗ = V∗k /k
∗
> 1). Based on a precursor to the genetic model introduced below,

it has been found that variance in LRS was somewhat overdispersed (60 < ψ∗ < 185)
for red drum (Sciaenops ocellatus) and southern bluefin tuna (Thunnus maccoyii), respec-
tively (M. Tringali and S. Lowerre-Barbieri, unpublished data), even though their ratios
of (generation) effective population size, Ne, to spawning stock abundance are quite high
(i.e., Ne/NA > 0.1). The annual metrics Vk and ψ have not been modeled for those species.
However, for broadcast spawning marine fishes with high and indeterminate fecundity,
especially those with high spawning frequencies and protracted spawning seasons [6], it
is reasonable to expect that Vk will exceed k to some degree in annual cohorts. Given the
above procedural caveats for CKMR, it would seem that obtaining information regarding
the magnitude of ψ and its effects on close-kin distributions should be a prerequisite for
use of this method.

The Florida Fish and Wildlife Conservation Commission, FWC, is currently evaluating
analytical approaches that involve non-lethal genetic sampling-and-release as means of
abundance estimation for the Atlantic Goliath Grouper (Epinephelus itajara; [7]), hereafter,
‘goliath grouper’ (Figure 1). Goliath grouper is the largest member of the subfamily
Epinephelinae in the Atlantic Ocean, reaching lengths of up to 3 m and weighing as much
as 400 kg [8]. It is a long-lived, slow-growing marine fish that occupies mangrove and
estuarine habitats for up to seven years before relocating as adults to nearshore and offshore
reef environments [9]. Reproductive maturity reportedly occurs at ages 6–7 for females
and ages 4–6 for males [10]. The oldest known goliath grouper was 37 years old [10] and
was collected from waters of the Florida Gulf of Mexico. Adults tend to be solitary and
territorial but aggregate to spawn during summer months [11].

As with many large-bodied reef fishes, goliath grouper populations are vulnerable to
overfishing owing to relatively slow maturation, spawning aggregation behavior, a limited
and increasingly degraded juvenile habitat, and high fishery desirability [12,13]. Relevant
reproductive characteristics of this species are summarized in Table 1. The species was
once considered to be critically endangered by the International Union for Conservation
of Nature, IUCN, and is thought to be overfished throughout most of its range [14,15].
However, populations in coastal waters of the Southeastern United States have shown signs
of recovery, in large part owing to an exclusive-economic-zone-wide fishing moratorium
instituted in 1990 [16]. As a result, the species was downlisted to vulnerable status by the
ICUN [17]. While the apparent improvement in goliath grouper populations is encouraging,
more information is needed regarding spawning stock abundance. Preliminary genetic
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sampling and background modeling is underway by the FWC to evaluate the application
of CKMR to spawning stocks along the east and west coasts of Florida.
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Figure 1. Atlantic Goliath Grouper (Epinephelus itajara) from the Florida Atlantic. Photo-credit: Walt
Stearns, South Florida Underwater Photography Society.

Table 1. Reproductive life history traits and measures for the modeled population.

Traits and Measures Atlantic Goliath Grouper Reference

Age at maturity xα= 6–7 years (f ); 4–5 years (m) [10]

Longevity xω= 37–38 years; possibly truncated [18]

Reproductive lifespan τ= 30–31 years (f ); 32–33 years (m) τy = xωy − xαy

Spawning habitat Rocky reefs/artificial reefs/wrecks; depths of 15–50 m [19]

Spawning season August through mid-October [9,11]

Spawning mode Broadcast spawning in small groups or aggregations [11,20–22]

Reproductive strategy Possibly diandric protogynous (C. Koenig, pers. comm.)

Mean batch fecundity ~50 × 106 [23]

Maximum body weight 310 kg [12]

Maximum body length 244 cm [12]

Female spawning frequency unknown –

Spawning site fidelity 84% return at 1-year interval; 78% at 2-year interval [11]

Pelagic larval duration 30–80 d [24]

Settlement habitat Mangrove leaf litter [9,18]

Juvenile habitat Mangrove forests bordering rivers and islands [9]

To support this evaluation, I extended a discrete-time, age-structured, deterministic
model [25] with a data-informed prediction of the model’s Poisson scaling factor, φ, to
obtain information on the mean and variance of both annual reproductive success, ARS,
and lifetime reproductive success, LRS. Model initialization utilized vital rates and life
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history measures obtained or synthesized from the most recent Southeast Data, Assessment,
and Review (SEDAR) 47 Final Stock Assessment Report [18] and exploratory values of
NA. To predict φ, the model extension relied on a precise empirical genetic estimate of
Ne from the Florida Atlantic goliath grouper population. This Ne estimate was based on
a single-sample linkage disequilibrium analysis of multilocus genotypes derived from
33 variable microsatellite DNA loci.

Conditions and circumstances that potentially influence population vital rates (e.g., fish-
ing mortality, compensation, and depensation) and other life history variables (e.g., sex
reversal, age truncation, and early maturation) warranted attention during modeling. Be-
cause of the supposition that age classes are truncated [18], goliath grouper survival rates
were modeled herein under the lowest posited scenario for maximum age, xω . Sex change
is a common reproductive strategy among groupers [26] and there is increasing evidence
(C. Koenig, pers. comm.) that goliath grouper may share a diandric protogynous strategy
with the closely related giant grouper, E. lanceolatus [27]. Therefore, possible impacts of
diandric sex change on reproductive success dynamics were quantified under varying
female-to-male transition rates and patterns.

The population genetic data used to estimate Ne were also used to infer close-kin
relationships directly, adopting a de novo empirical Bayes inference approach. The results
for modeled reproductive success metrics were interpreted synoptically and within the
context of the inferred close-kin relationships. Both analyses were used to evaluate the
conformance of those metrics to CKMR assumptions and other aspects of abundance
estimation for goliath grouper. The very low estimated values of Ne for the Florida Atlantic
population also motivated a precautionary consideration of prospects for genetic security
and reproductive resiliency in the face of erratic environmental conditions and other
population stressors.

2. Materials and Methods
2.1. Model Formulation

Parameter notations used for the model are provided in Box 1.

Box 1. Parameter notations used for the hFHM. Accents for these notations are described in the text.

Nx Number of individuals of age x alive at a given time
NA Number of potential adult breeders in a population

NA+J Total number of individuals (adults and juveniles) in a population
T Length of a generation in years (see definition in text)
Ne Generation effective population size (for age-structured populations)
Nb Effective number of breeders producing a single-year class
k
∗ Mean lifetime reproductive success of breeders during a generation

V∗k Lifetime variance in reproductive success among breeders in a population
k Mean reproductive success of breeders in one time period (e.g., annually)

Vk Variance in the number of newborns produced by all breeders in one time period (e.g., annually)
bx,y Mean fecundities at age x and sex y; bx,y is scaled to constant NA+J , with the quantity becoming

.
bx,y

Bx,y Mean number of newborn births produced by breeders of age x and sex y
sx,y Probability of survival from age x to age x + 1 for sex y
lx,y Cumulative survival through age x and sex y, where l1 = 1 and lx,y = lx,y−1sx,y−1 for x > 1
xα Age at maturity
xω Maximum age
φx,y Poisson scaling parameter for birth rate at age x and sex y in a given time period; φx,y = Vk,x,y/Bx,y

ψ Dispersion parameter for annual reproductive success; ϕ = Vk/k
ψ∗ Dispersion parameter for lifetime reproductive success; ϕ∗ = V∗k /k

∗

For diploid organisms with overlapping generations, k
∗

should roughly equate to
k
∗ ≈ 2 when per capita births equal deaths in the population over the timescale of a few

generations. Reproduction is considered to be successful when parents produce offspring
that survive to reproductive age [28]. Ignoring second-order terms and assuming equality
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in male and female dynamics, the generation effective sizes, Ne, of such populations can be
quantified by Hill’s [29] equation as follows:

Ne ≈ 2k
∗

NηT/[V∗k + 2] (1)

where Nη is the number of newborn individuals in a given year class η, T is the length of
the generation time, and V∗k is the variance in LRS that applies to the newborn cohorts (new
year classes). This formula, although given by Hill in terms of family size variance, also
applies as an inbreeding effective size in random mating populations of a constant size [30].

Using the standard discrete-generation formula for inbreeding effective size [31], the
effective number of breeders, Nb, for a given year class is as follows:

Nb =
[
kNA − 2

]
/
[
k− 1 + Vk/k

]
(2)

remembering that k and Vk are the mean and variance, respectively, in the number of
newborns produced by all potential male and female breeders in one time period (herein,
annually) that survive to reproductive age. Separating the variance into male and female
components yields the following:

Nb = 4/
[[

Vk, f + k f

(
k f − 1

)
/k f

(
k f NA, f − 1

)]
+
[
Vk,m + km

(
km − 1

)
/km

(
kmNA,m − 1

)]]
(3)

where f and m subscripts denote female and male contributions, respectively. As a point of
interest, the left and right bracketed terms in the denominator in Equation (3) represent
sampling probabilities for shared maternity and paternity, respectively, for any pair of
randomly selected offspring in the cohort. Expressions for estimating effective number
of breeders can also be derived in terms of the sampling probabilities for HSPs and full
sibling pairs, FSPs [5,32].

In a very useful innovation, Waples et al. [25] integrated Hill’s [33] and Crow and Den-
niston’s [31] statistical formulations with a demographically oriented approach advanced
by Felsenstein [34]. Their hybrid Felsenstein–Hill model, hFHM, which adopts properties
of the well-known Leslie matrix [35], can be applied to gonochoristic or sex-changing
organisms, and does not assume equality in male and female dynamics. Breeders of age
x and sex y produce an average of Bx,y offspring that survive to age x + 1 with an annual
probability sx.y or perish. Waples et al. [25] defined the age-/sex-specific Poisson scaling
factor φx,y as the ratio of the variance to the mean reproductive success in one spawning
season (i.e., annually) for breeders of a given age and sex (φx,y = Vx,y/Bx,y). In essence, φx,y
quantifies the magnitude of ‘within-age’ effects for a given sex. When Poisson expectations
for reproductive success of same-age same-sex breeders are random, each age and sex
can be viewed as a mini-Wright–Fisher ideal population, such that φx,y ≈ 1 and values
of φx,y > 1 represent the degrees to which annual variance in reproductive success is
overdispersed relative to respective mean birth rates.

As in Hill’s equation, the hybrid model assumes dynamic stability in age structure
and population size over several generation intervals as well as independent probabilities
of survival and reproduction [33]. Geographic closure is assumed for population dynamics
(i.e., no appreciable effect on birth and death rates owing to immigration or emigration in
the modeled demographic unit); see Waples and England [36] and Ryman et al. [37], for
additional considerations.

With life table input and an independent estimate of Ne, sex-specific measures of the
reproductive success metrics k

∗
, V∗k , Nb, k, and Vk can be obtained from the hFHM through

a novel use of the program AgeNe ([25]; Ecological Archives E092-126-S1). For a given life
table, AgeNe evaluates the above parameters using a three-step sum of squares approach.
Initial model conditions are set with requisite user input for age-specific (proportional) sex
ratio, SRx,y, and values of xωy , N1, and φx,y (here, the demographic clock is set by defining
Nh as the number of fertilized gametes (hatched eggs) that enter the system as a discrete
annual cohort and N1 as the number of ‘newborn’ offspring in their first year of life, which,
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in fishery terms, would be analogous to the number of young-of-the-year fish (traditionally,
fishery biologists define young-of-the-year cohorts as age-0 or age-0+; linking ages thus
represents a practicality, as AgeNe does not accept sub-one values as input for age)). For
the parameter Nη , it has been pointed out [6,38] that any year class from age-one, x1, to
age-at-maturity, xαy , can be adopted to evaluate the sensitivities of model parameters to
changes in Ne/NA and Nb/NA. Likewise, the model calibrated value of φx,y is not affected
by this cohort choice. Thus, for convenience, I evaluated parameter values of interest at N1.

Values of N1 will usually be unknown, as is the case for the studied population, but
can be estimated from a partial life table (sx,y, xαy, xωy, and SRx,y) when either an empirical
estimate of NA is available or a plausible exploratory range of NA is specified. Investigators
might have empirical knowledge of that range from fishery acoustic surveys [39], phys-
ical tagging [40], or GCMR/CKMR [2,3]. Lacking such information for goliath grouper,
values of N1 were tallied in a partial life table given initial exploratory values for NA (see
Supplementary File S1) and used as input for various model constructions.

For simplicity, I assumed that the scaling factor φx,y was constant over all ages and
between sexes; subscripts in that case were dropped. Not surprisingly, true values of φ,
while critical to the modeling and investigation of reproductive success dynamics, are
rarely known for iteroparous marine fish populations. Therefore, I developed a method
to predict φ through an extension of the hFHM and by relying on a generally available
data source—population genotype data. To distinguish it from the standard model, the
predictive model is denoted as scFHM. With functionality rooted in the hFHM, the scFHM
has flexibility to accommodate constant or variable values for age- or sex-specific survival,
age- or sex-specific fecundity, and age-specific sex ratio. During prediction, empirical
estimates of Ne or Nb, when available, can be used as independent variables to solve

model-generated functions for
→
φ . For this purpose, a precise empirical estimate of Ne was

obtained from population genotypes, as described below.

For the scFHM, tallied values of
→
N1 along with requisite life table information were

first used to initialize the hFHM. A series of calibration points were evaluated in separate
model runs for a given set of conditions to generate paired data—i.e., {

..
Ne at

..
φ}—for use in

prediction. Best-fit predictive functions were obtained via logistic regression. For curve
fitting, a minimization process was used to identify a single curve that best described the
data—i.e., parameter values of the curve were adjusted until the lowest possible residual
sum of square error was observed. Goodness-of-fit for linear regressions was assessed via

F-statistics and R2 values. Predicted values,
→
φ , from resultant functions were then carried

back into the hFHM to scale final estimates of V̂k, k̂, N̂B, and V̂∗k . It is noted that, when

empirical estimates of ŃB are available instead of Ńe, {
..
NB at

..
φ} can be calibrated instead to

infer V̂k, k̂, N̂e, and V̂∗k . The entire process is summarized in Figure 2.

2.2. Tissue Collections

Study tissues from Florida Atlantic specimens were procured from colleagues at the
Florida State University, FSU, Coastal Marine Laboratory. Tissue collections occurred
during 2011 to 2013 within Florida Atlantic coastal waters (Figure 3) and consisted of fin
clips and fin rays. Tissues were stored in 95% ethanol until processing. Fish were aged by
FSU biologists using sampled fin-rays and methods described in Murie et al. [41]. Fish sizes,
ages, collection dates, and GPS collection coordinates were available for most specimens;
primary collection data appear in Table S2 of Supplementary File S2.
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Figure 3. Locations of sampling events off the Florida Atlantic coast for Epinephelus itajara. Sizes
of site markers reflect the numbers of specimens collected during the event (annual scales differ).
Sampling was concentrated during spawning seasons at known spawning sites. Ten opportunistically
sampled specimens from the Florida Keys are not shown.

2.3. Genealogical Inference

Population genotype data were based on fragment-size analyses of 36 microsatellite
DNA markers. Molecular procedures, including marker description, laboratory quality
assurance, and quality control protocols, and standard diversity analyses are described in
Supplementary File S2. Because classification of close kin involved multiple paired compar-
isons of categorical relationships, R, from a natural population of unknown abundance
and for which sampling probabilities (i.e., priors) of the categorical relationships of interest
were unknown, I developed a de novo empirical Bayes inference model for the task. The
flexible approach allowed paired evaluation of all genotypes over a heuristically valid
ensemble of r = 9 plausible categorical relationships (Appendix A). Given the sufficiency
in cumulative likelihoods from the locus number and allele polymorphism (Appendix B),
the sampling priors of these nine relationships can be reasonably approximated from the
population genotype data via an optimization algorithm and employed as mixing weights
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to greatly improve the classification accuracy (Appendix C). With a Bayes maximum a pos-
teriori (MAP) classifier (Appendix D) and a base model calibrated with reasonably accurate
mixing weights, marginal posterior expectations yield reliable predictive distributions and
belief measures.

It must be noted that genotypes from independently segregating genetic loci cannot
distinguish half-sibling relationships from those of avuncular and grandparent–grandchild;
therefore, the acronym is hereafter denoted as HSP+.

2.4. Empirical Estimation of Effective Population Size

The single-sample linkage disequilibrium, LD, analysis option in NeEstimator V2.1 [42]
was used to generate raw estimates of generation effective population size, Ñe, for the
sampled population. Estimates were formulated from the squared correlation of alleles
at independently segregating gene loci [43,44]. LD analysis is based on the principle that,
in closed finite populations in approximate drift–mutation–recombination equilibrium,
associations between alleles among selectively neutral gene loci are a function of the
generation of an effective population size. For this analysis, the moment-based genetic
index is Equation (4) [43,44]:

E
(

r2
)
≈ 1

3Ne
+

1
ng

(4)

Rewriting Equation (4) and including the sampling bias adjustment of Waples [45],
Ñe was obtained in NeEstimator from expected levels of allele association across loci, r2,
as follows:

Ñe = 1/
(

3
(

r2 − 1/ng

))
(5)

Because ng varies among loci, its harmonic mean was used in Equation (5). Missing
data were tabulated for each run and potential effects of low-frequency alleles on estimates
were mitigated by adopting a nominal type I error rate (Pcrit) value of 0.01 [44]. Parametric
95% and pseudo-jackknife confidence intervals [46] were recorded for all runs. Finally, raw
estimates from NeEstimator were adjusted in silico using correction factors for physical
linkage among loci [47] and mixed-age sampling [48], as described in Supplementary File S2,
yielding a bias-adjusted estimate of Ńe for modeling and conservation assessment.

Waples [49] described a systemic tendency for Ñe to be imprecise for the LD proce-
dure when there is either insufficient sampling of individuals, loci, or both. Owing to
stochastic effects in genetic drift and sampling error, mean values of the moment-based
index approach theoretical expectations for large values of ng and K̂, where K̂ is the
number of pairwise comparisons among k independent alleles. Statistical precision for the
goliath grouper estimate was evaluated by examining the coefficient of variation, CV, on
Ńe as follows:

CVŃe
=
√

2/K̂
[

1 +
3Ne

ng

]
. (6)

Because Ne in the numerator of the above expression denotes the true value, I con-
servatively used the upper confidence interval (CI) of the Ńe estimate in its place. The
harmonic mean value of ng was also used for the calculation, and K̂ was adjusted for
missing data.

2.5. Life Table Synthesis

Data used to develop sx,y were extracted from the SEDAR 47 Final Stock Assessment
Report [18]. The maximum age modeled here was xω = 37 years. Male and female Von
Bertalanffy growth function parameters were L∞ = 2221 mm total length, K = 0.0937 year−1,
and x0 = −0.6842 year. Natural mortality rates, Mx, were estimated using the Hoenignls
method [50], as described in the SEDAR 47 report, and sx = e−(Mx). Whereas Bul-
lock and Smith [23] estimated batch fecundity for two goliath grouper females to be
38,922,168 ± 1,518,283 and 56,599,306 ± 1,866,130 oocytes, robust age-specific estimates
are unavailable. Thus, for fecundity estimation, the gonad weight-at-total-length relation-
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ship was established as GWL = a + bL, where a = −36132.7 and b = 24.5 [18]. Relative
fecundity, brel , which is the mean number of eggs per gram of fish weight, was taken as
21,312 eggs/g [18]. Females were assumed to reach maturity at age 6, and female fecundity-
at-age, bx, f , was estimated to be bx, f = ρx(a + bL)brel , where ρx, f = proportion mature at
age x/100. Owing to the absence of data for male fecundity, female values were adopted
for males aged ≥6 years. For males aged 4 and 5 years, the approximation bx,m ≈ ρx,m
was used.

The quantity bx,y was scaled to constant NA+J (for which k
∗
= 2) using cumulative

survival, lx,y, through age x and sex y, where l1 = 1 and lx,y = lx−1,ysx−1,y for x > 1 [25],

with the scaled quantity denoted as
.
bx.y. Finally, Bx,y, which is the estimated mean num-

ber of newborn births produced by all breeders of age x and sex y, was calculated as
Bx,y =

.
bx.yNx,y. The effects of sex change were modeled in two ways. First, a fixed

female-to-male ratio,
↔
SRx, of 1:1 was adopted for ages one to four and a simple lin-

ear function for female-to-male sex reversal was applied to the remaining age classes,
such that SRx, f = 0.0061x + 0.5242 for x ≥ 5 years. Alternatively, a logistic function

SRx, f = 0.754 + ((0.503− 0.754)/
(

1 + (x/8.840)4.734
)

for x ≥ 5 years was surveyed to
generate female age-specific sex ratios. The s-shape of the logistic function mimics the case
where younger adult males transition at a greater rate than older males. For both functions,
SRx,m = 1− SRx, f .

For goliath grouper, empirical age-composition data were not sufficiently developed
for a direct estimate of T [18], but the generation length has been previously reported to
be T ≈ xα + ((xω − xα)/2 ≈ 21.5 years, where xα ≈ 6 years and xω ≈ 37 years. Here, I
used a sex-specific measure of T that better accommodates the dynamic factors modeled,
reflecting the average age of the parents of all newborn individuals in the modeled
population. Estimates of Ty were computed during the course of hFHM runs via the life
table equation:

Ty = ∑xωy
xαy

[
xBx,y/N1

]
(7)

2.6. scFHM Runs

For base-model calibration (predictive scaling), exploratory values of ŇA = {10,000, 35,000}

were combined with model-dependent input values of šx, x̌α,y, and x̌ω,y to determine
→
N1.

The above ŇA values were spatially explicit, intended to encompass adult goliath grouper
residents of Florida Atlantic coastal waters. The calibration set used for predicting the Poisson
scaling factor was φ̌ = {1, 25, 50, 150, 300, 750, 1500, 3000, 7500, 11,500, 15,000, 30,000, 75,000}.

Predictions of
→
φ were performed using point estimates and upper and lower CIs of Ńe.

In total, three biologically varying model constructions comprising six scFHM runs
(78 hFHM runs) were implemented for the predictive phase (Table 2). For the base model, a
gonochoristic reproductive strategy and a 1:1 sex ratio was assumed (M1). This model was
then modified to accommodate the first diandric protogynous scenario (M2), incorporating
the linear pattern of SRx,y. Finally, the base model was modified to accommodate the
second diandric protogynous scenario (M3), incorporating the logistic pattern of SRx,y.

Following the prediction of
→
φ , 18 scFHM runs were implemented to establish levels of ψ,

ψ∗, and related parameters for the population. Each of these runs were scaled with the

predicted values of
→
φ for point estimates and upper and lower CIs of Ńe.
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Table 2. Model construction.

Model Reproduction Sex Ratio NA N1

M1A gonochoristic 1:1 10,000 (fixed) 81,575 (tallied)

M1B gonochoristic 1:1 35,000 (fixed) 285,526 (tallied)

M2A diandric linear increase in SRx,m with age 35,000 (fixed) 284,300 (tallied)

M3A diandric logistic increase in SRx,m with age 35,000 (fixed) 281,930 (tallied)

M2B diandric linear increase in SRx,m with age 35,150 (resultant) 285,526 (fixed)

M3B diandric logistic increase in SRx,m with age 35,446 (resultant) 285,526 (fixed)

3. Results

The total number of genotypes resolved for this Florida Atlantic study population was
ng = 300. Standard measures of genetic diversity are reported in Supplementary File S2.
In total, nD = 45,451 pairwise relationships were classified (including two intentionally
replicated genotypes), a value that also represents the total probability mass of the empirical
sampling probability distribution for r. The optimized IR was {IDP, 3.00; POP, 2.66; FSP,
33.68; HSP+, 88.39; FCP, 25.56; HFCP, 27.16; SCP, 46.84; HSCP, 373.44; URP, 44,850.27},
which represents the expected number of each categorical relationship pair given the data.
Among those classified, 68 pairs of interest satisfied MAP50 assignment criteria (3 IDPs,
3 POPs, 35 FSPs, and 27 HSP+s). A parent–offspring triad consisting of two full siblings
and a parent was inferred. Eight multiple-sibling families and an additional POP were
inferred. The largest multiple-sibling pedigree consisted of six individuals that formed
three FSP and six HSP+ relationships. Another 28 single-sibling families were credibly
inferred, consisting of 15 FSPs and 13 HSP+s. Posterior probabilities of several additional
pairs fell short of the MAP50 criterion, but their relationships were indicated by other robust
familial assignments.

Fin-ray-based ages were assigned for 264 of the 302 specimens. The age composi-
tions of all sampled specimens and members of classified close-kin pairs are depicted in
Figure 4A. Most specimens, including those inferred to have paired familial relationships,
were between the presumptive ages of 8 and 11 years at the time of their sampling. The
minimum observed age was 4 years and the maximum observed age was 19 years. Age
differentials between close-kin pairs appear in Figure 4B. FSPs differed in age by as much
as 5 years, with the highest percentage (10 of 26) differing by only 1 year. HSP+s differed
by as much as 11 years, with most differing by 2 years.

3.1. Effective Population Size Estimate

One genotype from each classified IDP was culled from the dataset prior to the
estimation of Ne, yielding ng = 299 for this analysis; the harmonic mean sample size was
ng = 289.1. Discounting monomorphic loci, there were 222 single-locus genotypes with
missing data out of the (299 × 33) 9867 scored, yielding an overall genotyping efficiency of
98%. Accounting for missing data, the number of possible pairwise comparisons between
k independent alleles was K̂= 43,456. At Pcrit= 0.01, a raw estimate of Ñe = 402.5 was
observed, with CI = 359.3 to 455.2. Upon bias adjustment for mixed-age sampling and
physical linkage, Ńe = 658.8 (CI = 588.1 to 745.0). The estimated CVŃe

was 0.059, which was
very low primarily owing to the large K̂.
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3.2. Demographic Results

Life tables for all calibration models are provided in Supplementary File S3. Base

model tallied values of
→
N1 were 81,575 and 285,526 for ŇA values of 10,000 and 35,000,

respectively. However, when ŇA was fixed at 35,000 during sex-reversal modeling, tallied

values of
→
N1 were 284,300 and 281,930 for M2A and M3A, respectively. Sex-specific

population abundances for NA+J and NA are reported in Table 3. Estimates of T̂ are

independent of modeled values of
→
N1. For the base model (M1), T̂ was estimated to be

20.99 years (Table 3). Whereas this model estimator was based on both fecundity and
mortality, the result was comparable to the coarsely approximated value of 21.5 years
based solely on xω and xα. When M2 and M3 sex-reversal dynamics were incorporated,
overall estimates of generation length decreased very slightly compared with those of M1.
Expectedly, male T values were slightly higher than those of females (Table 3).

Table 3. Sex-specific and overall generation lengths and population abundances. Bold type denotes
model input. Shaded area highlights differences between male and female abundances.

Model M1A M1B M2A M2B M3A M3B
ˇ
NA

10,000 35,000 35,150 35,000 35,446 35,000
→
N1 81,575 285,526 285,526 284,300 285,526 281,930

T̂ 20.99 20.99 20.90 20.90 20.92 20.92
T̂f 21.10 21.10 20.49 20.49 20.79 20.79
T̂m 20.89 20.89 21.31 21.31 21.05 21.05

NA+J,m 60,737 212,591 214,147 212,928 218,335 215,585
NA+J, f 60,737 212,591 211,033 210,429 206,845 204,242
NA+J 121,475 425,182 425,182 423,357 425,180 419,827
NA,m 6220 21,771 23,175 23,078 26,412 26,079
NA, f 3780 13,229 11,975 11,922 9003 8921
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The linear transition formula in M2 (Figure 5A) led to a relatively modest shift from

the initial female-to-male
↔
SRx=1 to α of ≈1:1 to that of

↔
SRx=38 ≈1:2.25. With a fixed value of

→
N1, this formula resulted in slightly more male breeders in the population and an overall

adult female-to-male ratio of
↔
SRx=α to ω ≈1:1.94. Likewise, minimal change was observed

when the value of ŇA was fixed;
↔
SRx=α to ω ≈1:1.94. The logistic transition formula in M3

(Figure 5B) led to a somewhat higher shift;
↔
SRx=38 ≈ 1:3.16. Overall adult ratios for M3

were
↔
SRx=α to ω ≈1:2.93, respectively, whether

→
N1 or ŇA were fixed.
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Figure 5. Modeled age-specific sex-reversal transitions for Epinephelus itejara. Red markers, male sex
ratios; black markers, female. (A) Linear M2A/B dynamics. (B) Logistic M3A/B dynamics.

3.3. Reproductive Success Metrics

All best-fit predictive curves from the logistic regression were recovered with high
precision (R2 > 0.999999999999). Robust predictive behavior was not unexpected given the

underlying deterministic process model. Thus,
→
φ can be extrapolated in predictive plots

with sufficient accuracy (Figure 6) during workflow step 3.2 (Figure 2).
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→
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Ńe. (A) ‘×’ = calibration points from the set {
..
Ne at

..
φ }; grey symbols = M1A; white = M1B. (B) White

symbols = M1B; red = M2B; grey = M3B.
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In scaled-model runs (step 4.1 of the scFHM workflow; Figure 2), all three model

constructions were first evaluated with common values of
→
N1 = {81,575; 285,526} and

model-specific
→
φ values. They were then evaluated with common values of ŇA = {35,000}

and model-specific
→
φ values (see Table 2). Overall, levels of ψ and ψ∗ were very high and

positively related to modeled values of
→
N1 (Table 4). Based on the point estimate for Ńe,

inferred values of V̂k and V̂∗k for goliath grouper were extremely high, ranging from 5354
to 22,811 for V̂k and from 10,395 to 36,390 for V̂∗k . Values of N̂b were very low, ranging
from 17.2 to 40.9. The incorporation of sex reversal had a minimal reductive effect on those
variance estimates, by way of a reductive effect on φ, and a minimal but enlarging effect on
the effective number of breeders. The effects were greater in M3 than in M2 and greatest in
M3B. Calibration data for φ̂ predictions; parameter values for logistic equations; and final

scFHM estimates of k̂
∗
, V̂∗k , N̂b, k̂, and V̂k based on upper and lower CI values of Ńe are

provided in Supplementary File S3.

Table 4. scFHM results for each model construction.

Model M1A M1B M2A M2B M3A M3B

Input

ŇA 10,000 35,000 35,151 35,000 35,446 35,000
→
N1 81,575 285,526 285,526 284,300 285,526 281,930
Ńe 658.77 658.77 658.77 658.77 658.77 658.77
→
φ 3898.64 16,896.17 16,781.89 16,703.58 16,454.12 16,226.14

ARS V̂k 5354 22,811 22,661 22,556 22,252 21,946
V̂k, f 5356 22,812 22,852 22,746 22,947 22,632
V̂k,m 5352 22,809 22,473 22,369 21,595 21,297

k̂ 1.34 1.34 1.34 1.34 1.34 1.34

k̂ f 1.34 1.34 1.35 1.35 1.38 1.38

k̂m 1.34 1.34 1.33 1.33 1.31 1.31
N̂B 40.9 33.6 33.8 33.9 34.5 34.5

N̂B, f 20.5 16.8 16.9 16.9 17.2 17.2
N̂B,m 20.5 16.8 16.9 16.9 17.3 17.3

ψ 2677 16,985 16,874 16,795 16,569 16,341
ψ f 2678 16,986 16,890 16,811 16,628 16,400
ψm 2676 16,984 16,859 16,781 16,510 16,282

LRS V∗k 10,395 36,390 36,233 36,077 36,267 35,811
ψ∗ 5198 18,195 18,117 18,038 18,134 17,906

4. Discussion

Here, a scaled version of Waples et al.’s [25] hybrid Felsenstein–Hill model was used
to infer sex-specific estimates of reproductive success metrics that, within the context of
relevant demographic rates and measures, were consistent with an independent estimate
of Ne. To the best of my knowledge, the empirical Ne estimate for this Florida Atlantic
population represents a first documentation of effective population size for goliath grouper.
The very low observed value of Ne was associated with highly overdispersed variance in
lifetime and annual reproductive success. Indeed, the modeled level of ψ∗ exceeded by two
orders of magnitude those inferred for red drum and southern bluefin tuna. The model
results were only minorly impacted at both annual and lifetime scales by the inclusion of
sex reversal dynamics, as will be reviewed in the following section.

The interpretation of results for this particular application of the hFHM relies on a
host of factors, but a major limiting factor appears to be the rigorous individual and allelic
sampling requirements for empirical Ne estimates, which have rarely been met in past
studies of large marine populations (see also [49]). For goliath grouper, a large number
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of moderately polymorphic loci were genotyped, permitting more than 43,000 paired
comparisons of k independent alleles. The number of the individuals surveyed was of
the same magnitude as the Ne estimate itself, which satisfied a general guideline from
Waples [49]. As a result, the coefficient of variation for the Ne estimate was very low,
suggestive of good precision. Empirical precision was also reflected in the upper and lower
CIs, which were close in value to the point estimate. Thus, it appears the estimate for the
time period to which it applies was sufficiently precise so as to robustly support the study
findings and conclusions. Other empirical approaches exist for estimating Ne (reviewed
in [51]) that carry conditions and assumptions that require careful consideration. It should
be noted that empirical estimates of NB, when available, can also be used to predict φ.

The choices of NA explored in the model may seem low at a glance, but for two aspects.
First, the empirical estimate of Ne used to scale the model is a generational estimate that
applies to the reproductive successes of the parents of study specimens, which were alive
and breeding back when adult abundances in the Florida Atlantic region were considerably
lower. This aspect will be discussed further in Section 4.2 in regard to kinship structure.
Second, when Ne is treated as a known value in the scFHM workflow, the magnitudes of
φ and Vk scale with the tallied value of Nη , which increases when larger values of NA are
modeled. If the exploratory values of NA were indeed too small, it would only serve to
heighten ramifications for CKMR associated with the very high levels of overdispersion.

A new genetic survey by FWC scientists of sampled-and-released adult and juvenile
goliath grouper is currently underway in both the Florida Atlantic and Florida Gulf of
Mexico, starting in 2019. Those data, when they become available for analysis, will provide
an opportunity to determine whether reproductive success dynamics have improved over
the interval period.

4.1. Influences of Fishing Pressure and Sex Reversal

The absence of information on possible compensatory or depensatory responses
precluded a direct examination of fishing pressure effects, alone and in conjunction with
sex reversal. Nonetheless, general impacts of harvest on reproductive success dynamics
are predictable. Even when compensatory responses maintain Nη , harvest can lead to
decreased generation lengths through the loss of older individuals [52,53] and perhaps
earlier maturation [54]. Ne would be expected to decrease with reductions in T caused by
age truncation and be exacerbated further by earlier maturation [38,55]. In populations
lacking a compensatory reserve [56] and/or subject to depensatory responses, fishing
mortality could simultaneously reduce V∗k , which could offset changes to Ne caused by
reductions in T, so the effects must be modeled jointly.

In diandric protogynous populations, some members are born as primary males
while others transition from females to secondary males during adulthood, presumably in
response to social, behavioral, or environmental cues [57]. Under intense fishing pressure,
sex reversal rates can also be a product of compensatory density dependence. Given these
circumstances, male abundance, fertilization success, and stock productivity can all be
affected by the spatio–temporal dynamics of asynchronous transitioning. Certain forms
of selective harvest can skew population sex ratios in a manner that reduces reproductive
potential [58–60]. For example, in gag (Mycteroperca microlepis), sex change is believed to
occur mostly (but not entirely) within the pre-spawning habitat. This habitat seems to
represent a critical source of male recruitment to the spawning grounds, where many males
are believed to become year-round residents. High fishing pressure in pre-spawning habitat
areas, while at the same time also causing age truncation, appears to have played a role

in the current female-to-male
↔
SR in the eastern Gulf of Mexico, which has been estimated

to be ~49:1 [61]. Gag likely represents a somewhat worst-case circumstance within the
grouper–snapper complex of Serranid fishes [12].

Neither Bullock et al. [10] nor Koenig and Coleman [11] found evidence that the adult
↔
SR of goliath grouper differs significantly from 1:1. The resultant sex ratios from M2A/B
and M3A/B were thus not consistent with the above field observations, as they resulted
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in ~1:2 and ~1:3 adult female-to-male ratios, respectively. More research data on the true
sex reversal dynamics of goliath grouper are needed for a species-specific assessment.
In both models of sex reversal investigated here, increases in T for males were offset by
decreases for females such that the overall estimated generation lengths did not differ
meaningfully from that of the base model (Table 3). M2 and M3 sex reversal dynamics
resulted in only very small decreases in Vk in comparison with M1B, with the more extreme
(logistic) transition pattern (M3) showing the greatest reduction. These decreases were

associated with reduced values of
→
N1 (Table 4). Consistent with the variance decreases,

values of NB showed corresponding but slight increases in M2 and M3.
Under fully identical male and female demographic rates and conditions (sx,m = sx, f ,

bx,m = bx, f , xαm = xα f , and xωm = xω f ), it would be expected that sex reversal would have
minimal, if any, enlarging effects on Vk and V∗k , and thus very slight reductive effects on
NB and Ne. However, modeled maturity schedules and age-specific fecundities were not
the same for goliath grouper males and females. Because sx,m = sx, f and xωm = xω f in
all goliath grouper models, the minor differences observed between M1B and M2/3 and
their directional effects must have been associated with earlier maturation in males. For the
most part, sex-specific changes in reproductive success metrics of goliath grouper caused
by sex reversal were offsetting, such that overall values (male + female) of ψ were not
greatly affected. These results suggested that sex reversal itself will not have a significant
impact on Vk, V∗k , NB, or Ne for goliath grouper unless it is accompanied by aggravating
factors that significantly and disproportionately alter fecundity and/or mortality in a
sex-specific manner, such as the size-selective fishing previously discussed for gag. The
offsetting tendencies and sensitivities to aggravating factors are expected to be similar for
protandrous hermaphroditic fishes (e.g., common snook, Centropomus undecimalis [62]).

4.2. Kinship Distribution and Spatial Dynamics of Close Kin

It would be a reasonable a priori expectation that the prevalence of full siblings (and
other ‘full’ relations) would be quite low in natural populations of iteroparous species with
indeterminate fecundity, especially broadcast-spawning species whose members aggregate
over protracted spawning seasons and repeat this over decadal time scales. Therefore,
some may find it surprising that so much of the optimized sampling probability mass was
assigned to full-sibling relationships (nearly one-third of that assigned to presumptive half-
siblings). Whereas other grouper species (e.g., gag and red grouper, Epinephelus morio) are
known to spawn in pairs, it has been posited based on male gonad size and sperm quantity
that goliath grouper spawn in multi-male groups [22]. That may indeed be the evolved
strategy, applicable when the temporospatial availability of breeders permits it. However,
the only documented direct observation of goliath grouper spawning involved one female
and only two males [22]. If it was true that females were accompanied more frequently than
presumed by only a few males during their “spawning rushes” to the surface, it would not
be unusual to have encountered littermates among offspring within year classes. Still, given
the lengthy reproductive lifespan of adults, a somewhat high prevalence of cross-year-class
FSPs is harder to reconcile biologically without evoking circumstances of frequent paired
mating, very high spawning site fidelity, or other special circumstances.

At the times and places that sampling occurred for this study (Figure 3), spawning
aggregations often consisted of ~15–20 individuals, although the mean value was likely
negatively biased owing to inclusion of non-spawning sites in the survey design [22].
Specimens were collected from ongoing reproductive studies and were not products of
a random sampling design. Nonetheless, supposition by SEDAR 47 panel members that
goliath grouper populations were age-truncated [18] was generally supported by the age
composition of sampled specimens, whose maximum observed age among the 264 aged
fish was x = 19 (Figure 4A). Procedures for fin-ray ageing for goliath grouper were estab-
lished in Murie et al. [41]. In that study, there was only 67% overall agreement between
two independent readers. Agreement improved to 89% for independent readings within
±1 year and to 100% within ±2 years. The close-kin findings in the present study were
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suggestive of ±1 ageing error, albeit to an unknown degree (Figure 4B). However, even if it
were assumed that all inferred FSPs with ≤1 year age differentials are littermates, nearly
40% of the full siblings still had age differentials ≥2 years and likely belonged to different
cohorts, as did the majority of presumptive half siblings.

In terms of relationship classification error, analytical false rejections and detections
were possible, as well as non-analytical false rejections. Without formulaic error tolerance,
IDP and POP relationships are subject to de facto exclusion (i.e., non-analytical false
rejection) when at least one member of the pair is mistyped. Conversely, mistypings do not
result in de facto exclusions for FSPs or HSP+s, they only reduce posterior probabilities,
and to a small degree when m is large. Thus, even when reductions in P(Ri|E, I ) occur, the
evaluation could still result in an accurate MAP classification, depending on the decision
rule. When genotyping error is low, the majority of occurrences in multiple-comparison
applications are ‘silent’—i.e., they do not involve members of close-kin pairs. Mutations
represent another source of type II error for POPs, FSPs, and HSP+s but, again, without de
facto exclusion and with the majority of occurrences being silent. Lab error and mutation
were not expected to result in a significant number of misclassifications in this study.
Analytically, given the very high burden on E for overcoming RUR in IR, it was more
likely that a portion of true close-kin pairs (predominantly HSP+s) were falsely rejected
than falsely detected, and to the extent that false rejections occurred, the conclusions of the
present study would be strengthened.

So, how can these kinship dynamics be explained? First, focus must be shifted to
the adult abundance at the time that parents of the classified sibling pairs were breeding.
The age composition of sampled specimens was dominated by age classes 8 to 11 and
the ages of the members of sibling pairs were generally similar (Figure 4A). Accordingly,
many of the full-sibling-pair members would have had birth dates during the late 1990s or
very early 2000s—i.e., during a period when Florida Atlantic spawning aggregations still
comprised only a few individuals and their spatial distributions were sparse (see Figure 2
of [22]). The above demographic circumstances are consistent with scFHM estimates of
N̂B, which suggested, population-wide, that reproductive contributions to annual cohorts
during that period were dominated by only ~17 to 20 adult males and females, respectively
(Table 4), and that zero-inflation was potentially a factor in the scale of overdispersion [63].

Second, spawning-site fidelity in adult goliath grouper appears to be very high
(>75–80%), at least over a period of a few consecutive years [19]. So, during that pe-
riod, it is not unlikely that dominant breeders returned to the same few spawning sites and
the same small spawning groups over a period of years. Regarding zero-inflation, there is
also the possibility that some spawning sites in the region are not suited to larval retention
if, for example, those spawned at certain deep-water offshore sites became entrained in the
powerful northward surface flow of the Florida Current [64] and settle in the South Atlantic
Bight [65] or elsewhere. Two POPs were identified in this relatively small population
genetic dataset, indicating that recruitment can be localized to a degree. However, if a
component of the Florida Atlantic larval supply is subject to unidirectional exportation,
then entire annual and perhaps lifetime reproductive contributions of certain site-faithful
breeders could be ‘lost’ to the Florida Atlantic population, with the resulting zero-inflation
contributing to both ψ and ψ∗.

It is not unexpected that half siblings would be observed over a broader range of age
differentials than full siblings (Figure 4B). If either parent suffers mortality, no additional
full siblings can be produced, but half-sibling production remains possible through the
surviving parent. Likewise, if successful female breeders transition to male breeders, they
can no longer produce full siblings to any offspring produced prior to sex reversal, while
half siblings remain possible. Under all or most of the above conditions and circumstances,
the kinship distribution observed for this particular sample becomes plausible, especially
when coupled with the potential for intrinsic forms of persistent individual differences
in LRS [66].
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Given that the observed kinship distribution is plausible, a new hypothesis—i.e., that
kinship dynamics have responded to continued population expansion—becomes testable
through investigation of the younger year classes now being surveyed by FWC. The alter-
nate hypothesis in this case would reflect a return toward expected dynamics—i.e., fewer
FSPs relative to HSP+s in the distribution, as well as FSP plus HSP+s jointly comprising
a significantly smaller proportion of the total sampling probability mass. However, if
the dynamics have not changed, it could suggest that the Florida Atlantic population is
indeed a net exporter of its reproductive potential and is largely sustained by the local
contributions of comparatively few adults, perhaps with occasional immigration and/or
larval import from the Florida Gulf.

4.3. Implications of Spatial Structure for CKMR

Preliminary plans for goliath grouper CKMR call for a POP-proxy-based design, with
sampling currently focused on both adult and juvenile populations. Estimation could
be extended to HSP+s if a DNA-based method of ageing is developed [67] and if other
technical/analytical hurdles can be overcome. Spatial structure, where reproduction is
concentrated in certain geographic locations, will not create bias in CKMR estimates either
when dispersal is population-wide (complete mixing exists) or when adult sampling
is not spatially biased. Under a hypothesis of “complete mixing”, fish are considered
sufficiently dispersed when the expected distance between closely related individuals is
approximately equal to that of randomly chosen unrelated individuals. In that case, it
would not matter if sampling were spatially non-random and opportunistic sampling can
provide unbiased estimates. However, when dispersal distances are limited, abundance
estimates are expected to be negatively biased when adult sampling is non-random [3,5].
Negative bias can also occur when dispersal is unidirectional.

Both home-site and spawning-site fidelity in adult goliath grouper appear to be very
high, although the distances between home sites and spawning sites, owing to a spatial
concentration of the latter, can be large [19]. Larval dispersal is expected to be complex and
potentially broad, given the lengthy pelagic larval duration (Table 1). Kinship spatial struc-
ture and geographic linkage between spawning and recruitment will be better understood
when enough POPs are mapped in relation to randomly selected unrelated pairs. Given
POP-based proxies, the a priori sampling design for goliath grouper adults should seek to
be spatially representative to the extent possible and include both home sites and spawning
sites. POP linkages with Florida Gulf specimens have not yet been observed, although two
second-degree relationship pairs have been (M.D. Tringali, unpublished data). Because
of limited demographic connectivity of goliath grouper between the Florida Atlantic and
Gulf coasts [19], spatially explicit estimates may be required. Larval exportation out of
the Florida Atlantic population into unsampled areas must also be considered. Sampling
of juveniles, apart from having broad and bi-coastal representation, need not to be fully
random and should be focused on sample size sufficiency while avoiding conditions and
tactics that would favor sampling of littermates.

4.4. Ramifications of Family-Size Variance for CKMR

As expected, levels of ψ and ψ∗ were sensitive and positively related to modeled

values of
→
N1 at the given value of Ńe. Nonetheless, even at the lowest modeled newborn

abundance values, variances in ARS and LRS were extremely high. Moreover, estimated
values of N̂B ≈ 30 to 40 were extremely low in comparison with those for southern bluefin
tuna (ŃB ≈ 79,000 to 120,000 [68]), which has become the exemplar marine fish species
for CKMR. As noted, inferences of numerous multi-sibling families among ~120 close-kin
classifications were consistent with the extremely high family-size variance elicited from
scFHM results, and both represent a ‘red flag’ for CKMR application. Should relatively
few goliath grouper parents continue to dominate reproduction, the observed numbers of
parent–offspring matches in a CKMR analysis would vary widely depending on whether
the prolific parents are sampled, thus the assumption of juvenile independence would be
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violated [3]. Quantifying the impact on precision would likely require individual-based
modeling. Unfortunately, the only remedy for this loss of precision would be an increased
investment in sampling, both in annual specimen numbers and collection years, which
may not be practical in an unharvested or minimally harvested population.

It should be noted that values of Vk and V̂∗k will differ when estimated using the
abundances of different pre-reproductive age-classes, so the ages at which offspring in
POPs are collected must be considered. For V̂∗k , because Ńe and T̂ are static in this model
workflow, differences in N̂η must be offset by nearly proportional changes in variance.
Generation length is not a factor in annual variances. However, given the linkage of N̂B to
Ńe in the deterministic model, proportionality between N̂η and ψ̂η is also expected.

For multi-year studies, parental mortality must be taken into account. As mentioned,
if analyses were to be extended to cross-year half-sibling matches as proxy recaptures, there
are additional complexities. When half-sibling pairs from different year classes serve as
CKMR proxies, age-specific mortality must also be accounted for and thus some method
of non-lethal ageing is required. Other factors, such as changes in fecundity with age and
other ‘BOFFFF’ effects [69,70], skipped spawning, and persistent individual differences in
reproductive success [66,71,72], can also affect estimation [5] if not evaluated (or modeled)
quantitatively and corrected in silico.

As a result of the study findings presented here, potential impacts from ψ on the
precision in CKMR-based abundance estimates cannot be neglected. The ongoing genetic
surveys in the Florida Atlantic and Gulf coastal populations will permit a more thorough
and timely view. If the unfavorable biological conditions indicated in the present data
have not significantly improved, alternatives to CKMR must be considered. For example,
proxy-associated problems could be circumvented altogether by instead searching the
genetic data instead for IDPs and adopting an individual-based method of GCMR, with
multi-year open-population extension, such as multi-state super-population modeling [73]
or multi-state open robust design [74]. Multi-state capture–mark–recapture approaches are
flexible in cases of transience or temporary emigration, and when individual heterogeneity
in capture probability is expected. Precision of estimates, as with any individual-based
mark–recapture approach, would be largely dependent on the robustness of sampling with
respect to capture probabilities, with both multi-state GCMR approaches being somewhat
forgiving to sampling designs and adaptable to ongoing sampling. In this application,
however, in silico adjustment for handling mortality would also be required. Close-kin
pairs identified within the same genetic database would remain useful to the extent that
they contribute to the understanding of spatial patterns and dynamics in dispersal and
recruitment, which remains a critical information need.

4.5. Conservation Genetic Implications

Natural selection and gene flow are directional evolutionary forces, often referred
to as countervailing (or balancing) linear pressures. Genetic drift, on the other hand, is
a directionally unpredictable force—one that counteracts and possibly disrupts the other
two [75]. The intensity of drift is directly related to Ne, such that ‘effective neutrality’ of
genetic variants can be assumed when selection coefficients are quantitatively less than
(1/(2Ne)) [76]. As a result, when Ne is very small (i.e., <200–300), natural selection may fail
to purify much of the newly arising (or imported) detrimental variation or to perpetuate
beneficial mutations [77]. Over time, selective environments change and small effective
population sizes can also impose limits on the rates of environmental change at which
populations remain viable [78]. Drift is a threshold dynamic—i.e., Ne needs only to be
‘large enough’ for its influence to become de minimus. Beyond providing a temporal
cushion, additional conservation genetic gains are not derived from Ne being a lot larger
than large enough.

Using reproductive success metrics that should be familiar to the reader at this point,

geneticists quantify ‘opportunity for selection’ as I = V∗k /
(

k
∗)2

[28,79–81]. Selective
opportunities that arise from overdispersed family-size variance are important for repro-
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ductive resilience and population persistence. However, although increased opportunities
for selection imply a greater potential for evolutionary change, the index above, as pointed
out by Waples and Reed [63], does not quantify selection itself. One of the things that
matters is the degree to which the associated trait variance is driven by random effects. So,
the question becomes, can reproductive strategies be adaptive [82] even when reproductive
success is very strongly skewed toward a relatively small fraction of potential breeders and
variance in that success is extremely high?

As it turns out, adaptation may indeed be possible under those circumstances (in theory,
at least) through a mechanism involving recurrent and pervasive selective sweeps of bene-
ficial mutations that arise as a consequence of enormous life-long fecundities [83]—another
possible benefit of the “small-eggs” strategy [84]. Individuals carrying these mutations
pass through numerous independently acting selective filters during their development to-
ward reproductive maturity, with the cumulative result being highly variable and skewed
offspring distributions and genetic constitutions of survivors that differ from those of
non-survivors. Here, I refer to the ‘recurrent selective sweepstakes’ hypothesis as RSS
to distinguish it from the ‘sweepstakes reproductive success’ hypothesis [85], commonly
known as SRS—the two concepts are quite different. Despite what SRS might portend,
lifetime reproductive success need not be a ‘jackpot’ system in which natural selection is a
bystander while winners and losers are determined by random extrinsic forces. Instead, the
reproductive resilience displayed by many marine populations and the diversification of
their reproductive strategies indicate that they have adapted to persist over ecological and
evolutionary timescales despite high-birthrate, high-early-mortality (type III) survivorship
in challenging and patchy environmental conditions.

For the recurrent sweeps imagined by RSS to happen, positive selective forces must
remain pervasive and strong. The Ne/NA ratio, which is the sole qualifying metric for
SRS [86], is not particularly meaningful with respect to the assessment of RSS, but associated
variables are. That is, Nh, which is linked to reproductive potential [87], must remain
consistently large enough to provide a steady supply of beneficial mutations. Ne must
(only) remain consistently large enough so that selection is not derailed by the effects
of drift. V∗k must provide sufficient ‘opportunities for selection’ and, in some cases, it
may also be beneficial when T is long enough to afford breeders that continue to survive
under challenging environmental conditions additional reproductive opportunities to
achieve LRS.

Recently, an RSS hypothesis based on the Durrett–Schweinsberg coalescent model
was shown to provide the best explanation for observed site-frequency spectra patterns
in whole-genome sequences of Atlantic cod, Gadus morhua [83], outperforming a ‘random
sweepstakes’ (Xi-Beta coalescent) model that mimicked the SRS concept. Spectra patterns
of differently sized fragments (25 kb, 100 kb, whole genome) and various functional classes
(e.g., 4-fold degenerate sites, introns, exons, promotors, 3-UTRs, and 5-UTRs) all maintained
best fit to expectations of the Durrett–Schweinsberg coalescent model. The RSS hypothesis
will not apply universally to marine populations. However, unlike SRS, it is fully compatible
with the broader ‘reproductive resilience paradigm’ of Barbieri et al. [82] and provides an
intuitively sensible alternative to SRS for those populations that consistently operate under
high levels of ψ∗.

The above considerations underscore the importance of monitoring fishery stocks
for genetically secure effective population sizes. Technology and analytical insight [6,49]
is allowing us to move beyond decades of underestimated Ne values, to the degree that
effective population size will probably not be a forefront conservation concern for most
large, natural (i.e., unstocked) populations of long-lived marine fishes. However, when it
is a concern, it should not be neglected—or exacerbated. Following severe overfishing or
other mass mortality events (e.g., red tides and cold kills), the best management approach
for populations having non-secure effective sizes may be to manage the stressors where
possible and patiently allow the fish to exercise their evolved reproductive resilience. Stock
‘restoration’ via captive propagation and release can have large and undesirable reductive
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effects on Ne [88–91] and also replaces the critically important selective filters operating on
early life stages with unnatural and counterproductive ones [92,93]. Stocking should be
avoided in population-crash scenarios [94] unless circumstances become dire enough that
short-term demographic risks outweigh forecasted intermediate- and long-term genetic
impacts, or unless ‘genetic rescue’ from inbreeding depression becomes necessary [95].

5. Conclusions

In this study, I have shown that the highly overdispersed reproductive success dy-
namics modeled for this population and its atypical kinship distribution have important
ramifications for planned close-kin mark–recapture analyses. Unless and until it can be
demonstrated that the observed dynamics have improved, the use of CKMR is not rec-
ommended as a tool to estimate abundance for goliath grouper in Florida Atlantic waters.
Fortunately, other genetic-based methods exist, and these should be considered. Further-
more, most conservation geneticists agree that Ne ≥ 500 is required for long-term genetic
security and population viability [78,96], especially for organisms such as marine fishes with
very high reproductive rates [97]. It appears that, for goliath grouper in Florida Atlantic
waters, the effective population size had reached a point in previous generations where it
was at or just above that critical threshold. This condition warrants continued monitoring.
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Appendix A. Statistical Framework for Close-Kin Classification

Nine possible categorical relationships, R, were considered for the present analysis
and specimen pairs were assigned probabilistically to these categories using a Bayesian
genealogical approach. Because some specimens were released after capture, the ‘identity’
relationship, ID, was retained in the analysis to screen for cases of individual resampling.
The eight remaining relationship categories considered were as follows: parent–offspring
(PO), full sibling (FS), half sibling/avuncular/grand (HS+), first cousin (FC), half-first
cousin (HFC), second cousin (SC), half-second cousin (HSC), and unrelated (UR). When
discussing related pairs of individuals, the above designations are appended with ‘P’;
e.g., HSP+.

The statistical framework for genealogical inference here builds on previously re-
ported likelihood-based models (e.g., [105]) but, as will be shown, extends generality for
the exploration of a multitude of empirical questions, including those involving complex
circumstances. Bayesian approaches can be explicitly framed to address specific empirical
questions by asking, what is the probability, P, that a research hypothesis, HR, is true,
given the evidence, E, and conditioning information, I, relative to a null hypothesis, ĤR̂?
The approach ultimately casts the categorical relationship ensemble as a mixture model
and adopts a stochastically approximated process prior to multiple comparisons. The
hypothesis-driven framework formulated here is general to all categorical forms of relation-
ship inference for pairs. It involves the evaluation of the posterior probability P(R|E, I )
that a hypothesized relationship R is true for a pair, given the observed genetic evidence E
from some total compared number GX,Y of genotyped pairs, such that E = {En}

GX,Y
1 , and a

conditioning variable I, relative to a mutually exclusive ‘null’ hypothesis R̂. The null term
R̂ implies ‘all else except R’, and thus necessitates a sufficient joint evaluation of plausible
competing hypotheses. The consideration of all plausible probability space is curiously
underappreciated in existing formulations and approaches. That is, for model specification,
it must be assumed within the context of a categorical probability distribution that the
interval of Ri rival relationships for the set {Ri} r

1 is sufficiently representative [106] of the
total probability space, such that ∑r

i=1[P(Ri|En, I )] ∼= 1. As such, the framework described
herein may be characterized as heuristic except for those applications involving strictly
controlled mating designs, for which ∑r

i=1[P(Ri|En, I )] = 1.
The base likelihood function P(E|R ) is evaluated as described below (Appendix B)

to obtain the conditional probability of obtaining y given the research hypothesis. The
prior probability P(R|I ) refers to the probability that the research hypothesis is true
independent of the (new) genetic evidence. Within this framework, the set {P(R|I )}
for a given evaluation may be analogous to the corresponding set of empirical sampling
probabilities {IR} of the rival relationships with cardinality |r|, which are taken to be
constant over multiple comparisons. Accordingly, {P(R|I )} can be based on naïve or
explicit prior information or optimized iteratively by empirical Bayes estimation during
the course of an experiment or study (Appendix C). A Bayes classifier, informed by the
maximum a posteriori probability (map) estimate [107], is available. That is, for each pair,
one of the evaluated relationships will attain plurality with respect to the total probability
mass as the posterior mode of the joint distribution of all plausible hypotheses (Appendix D).
Using top-down filtering, the classifier may be made subject to other decision rules as
warranted by empirical needs.

The statistical model for relationship classification is as follows. Consider two mu-
tually exclusive and exhaustive hypotheses, R and R̂. It holds from Bayes’ well-known
theorem [108] that

P(R|E, I ) =
P(E|R )P(R|I )

P(E)
=

P(E|R )P(R|I )
P(E|R )P(R|I ) + P

(
E
∣∣R̂)P(R̂|I ) (A1)
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Letting R1 , . . . , Rr denote r mutually exclusive and exhaustive hypotheses,
Equation (A1) can be generalized by the second law of probability to obtain the follow-
ing model:

P(Ri|En, I ) =
P(En|Ri )P(Ri|I )

∑r
j=i P

(
En
∣∣Rj

)
P
(
Rj|I

) for i = 1, . . . , r, (A2)

when ∑r
j=i P

(
En
∣∣Rj

)
P
(
Rj|I

)
6= 0. As can be seen from Equation (A2), two fundamental

terms—P(E|R ) and P(R|I )—comprise the model.
By way of example, for a pair of genotypes, the posterior probability for the POP

relationship will be calculated as follows:

Pr[HPO|E, I ] =
LPO·πPO

LID ·πID +LPO·πPO +LFS·πFS +LHS·πHS +LFC ·πFC +LHFC ·πHFC +LSC ·πSC +LHSC ·πHSC +LNR·πNR
(A3)

and compared to the posterior probabilities of the other relationships.
In Appendix B, I begin with the first term, describing the conditional single-locus and

cumulative likelihood functions.

Appendix B. Single-Locus and Cumulative Likelihoods

The model structure is extendable to other genetic systems (e.g., haplodiploidy) and
inheritance patterns (dominant, sex-linked, including Y-chromosome and mtDNA haplo-
types). However, the study organism here is assumed to be diploid and genetic markers
are assumed to be autosomal, codominant, unaffected by transmission bias, and unlinked;
VNTRs (i.e., microsatellites) and/or SNPs (single-nucleotide polymorphisms) would be the
markers of choice, with microsatellites utilized in the current study. Single-locus genotypes
G for pairs involving individuals X and Y, respectively, comprise the evidence. For the four
genes carried by X and Y at a given locus, there exists a set {Di, for i = 1, 2, . . . , 15} of
mutually exclusive and exhaustive identical-by-descent, IBD, modes. When distinctions
between paternal and maternal genes are neglected, the set condenses to the nine modes
shown in Figure A1.
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individuals, X and Y. By convention, the upper pair of closed circles represents the two genes from X
and the lower pair represents those from Y. Connecting lines indicate genes that are IBD.

For a given relationship, let the Cotterman coefficients k0, k1, and k2 represent the
probabilities of sharing zero, one, or two IBD genes, corresponding to descent modes D9,
D8, and D7, respectively [109]. Notation-wise, let the subscript in kn represent 0, 1, or 2
shared IBD genes, respectively. Cotterman coefficients for the nine R of interest are listed
in Table A1.
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Table A1. Relationship-specific values for Cotterman coefficients.

Relationship Type, R Abbreviation k0 k1 k2

Parent–offspring PO 0 1 0
Monozygotic twin/identity ID 0 0 1

Full sibling FS 1/4 1/2 1/4
Half sibling/grand/avuncular HS+ 1/2 1/2 0

First cousin FC 3/4 1/4 0
Half-first cousin HFC 7/8 1/8 0
Second cousin SC 15/16 1/16 0

Half-second cousin HSC 31/32 1/32 0
Unrelated UR 1 0 0

As is discussed in the main text, half relations—half siblings, half-first cousins, and
half-second cousins—are expected to occur more frequently than full relations in many
marine fish populations and so are included here. However, any ‘nominal’ relationship
of interest can be quantified in terms of Cotterman coefficients, fully generalizing the
approach. Simulation of this process has shown that it would be generally best to include
the nine relationship categories identified above for the current application and others
involving close-kin classifications in natural populations (M. Tringali, unpublished data).
However, when IDPs represent the exclusive classification target, there is no observable
loss of performance in more economical |r| ensembles, including that using only UR as an
alternate relationship in the null.

For a sampled population, let pi, pj, pk, and pl represent the reference allele frequencies
corresponding to the mutually exclusive alleles Ai, Aj, Ak, and Al. At a single locus,
two or more alleles are said to identical-by-state (IBS) if they exhibit the same marker
phenotype. Alleles that are IBD are assumed to be IBS, barring recent mutation; however,
the converse is not necessarily true. For each of the nine condensed IBD modes, there is
a corresponding set of IBS modes {Si, for i = 1, 2, . . . , 9}. Because they are not phased,
redundancy in genotype probabilities of modes 3 and 5 and 4 and 6, respectively, permits
the nine modes to be further reduced (collapsed) into seven. Rudimentary formulae for
joint genotype probabilities for collapsed IBS modes, defining P(Si) ≡ P

(
(GX , GY)Si

)
, are

given in Table A2.
Computationally, single-locus likelihood formulae are obtained for {Ri} given Si

from the product of matrix [Ri × kn]
T represented by the last three columns in Table A1

and matrix [P(Si)× kn] represented in Table A2.

Table A2. Generalized joint genotype probabilities for the seven fully collapsed IBS modes.

[P(Si)×kn]

GX GY IBS Mode k0 k1 k2

AiAi AiAi S1 P(Ai, Ai, Ai, Ai) P(Ai, Ai, Ai) P(Ai, Ai)
AiAi AjAj S2 P(Ai, Ai, Aj, Aj) - -
AiAi AiAj S3,5 2P(Ai, Ai, Ai, Aj) P(Ai, Ai, Aj) -
AiAi AjAk S4,6 2P(Ai, Ai, Aj, Ak) - -

AiAj AiAj S7 4P(Ai, Ai, Aj, Aj)
(P(Ai, Ai, Aj) +
P(Ai, Aj, Aj))

2P(Ai, Aj)

AiAj AiAk S8 4P(Ai, Ai, Aj, Ak) P(Ai, Aj, Ak) -
AiAj AkAl S9 4P(Ai, Aj, Ak, Al) - -
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That is, after transposing [Ri × kn]
T, formulae are generated by evaluating the follow-

ing product matrix and applying the third law of probability for dependent events:

lR =

P(S1)k0
· · · P(S1)k2

...
. . .

...
P(S9)k0

· · · P(S9)k2

×
k0R1 · · · k0Rr

...
. . .

...
k2R1 · · · k2Rr

 (A4)

as shown in Table A3.

Table A3. IBS probabilities for the seven fully collapsed modes.

Mode IBS Probability

S1 k0 pi
4 + k1 pi

3 + k2 pi
2

S2 k0 pi
2 pj

2

S3,5 2k0 pi
3 pj + k1 pi

2 pj
S4,6 2k0 pi

2 pj pk
S7 4k0 pi

2 pj
2 + k1 pi pj

(
pi + pj

)
+ 2k2 pi pj

S8 4k0 pi
2 pj pk + k1 pi pj pk

S9 4k0 pi pj pk pl

Thus, the probability of the observed genotypes for a given R describes the single-
locus likelihood lR of the hypothesized relationship; that is,

lR = P(Si|R ) (A5)

Because single-locus likelihoods are probabilities, the multiplicative rule can be applied
over multiple, unlinked loci to obtain the likelihood LR of the cumulative genetic evidence
for a given hypothetical relationship. For m loci,

P[E|R ] ≡ LR = ∏m
i=1 lR,i (A6)

Equations (A5) and (A6) show that the strength of the genetic evidence E will be
influenced by the amount and partitioning of allele polymorphism at each locus and the
number of loci assayed. Therefore, when discussing E-related matters, values for both m
and the average number of alleles (na) per m should be reported. Missing data should be
tallied on a per locus basis, as this information will be useful if the process is simulated
(see below). By setting lR,i = 1 in these cases, one or both missing genotypes at a given
locus present no difficulty beyond their failure to inform LR. It is further noted that LR

values of zero and thus ‘exclusions’ are possible for RPO and RID, but not for the other
relationships. Exclusions of these two relationships can be valid analytically or non-valid
when they result from mistyping.

Appendix C. Estimating Sampling Probabilities for Use as Mixing Weights

To satisfy Equation (A2), the term P(R|I ) must be parameterized over modeled relation-
ships. Let {IR} be defined as the proportional distribution of plausible relationships in a pop-
ulation or sample pool whose support is IR1, . . . , IRr , where ψRi > 0 and ∑r

i = 1 IRi = 1.
Without further treatment of priors, the analysis described thus far conforms to a fully Bayesian
approach. When an investigator has explicit knowledge I of the pair-specific propensities
for a given set of relationships, this knowledge can be specified as relationship-specific priors
P(Ri|I ). In the absence of explicit priors, naïve priors (alternatively referred to as ‘uniform’

priors) can be specified, taking the form
=
IRi ≡ (1/r), although this rather defeats the pur-

pose of empirical conditioning. When values of P(Ri|I ) are not known and mixing weights
are desired for model evaluation, {IR} can be estimated through its latent variables IRi
from the dataset itself. That is, when a sufficient number of dyads (i.e., pairwise comparisons,
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nD) from a population or sample pool are being evaluated and when specimens were sampled
under like conditions, priors can be optimized through an iterative process that estimates the
sampling probability distribution (IR) for each plausible relationship from the overall data.
In this case, the analysis becomes an empirical Bayes approach.

There are many process-based methods for latent variable estimation and model
updating, varying in computational efficiency and reliability. Kucukelbir and Blei [110]
provide a cogent summary of useful methods. In the current context, computational
efficiency may be a general concern. Fortunately, genotypes from a sufficient number
of GX,Y will usually be evaluated such that GX,Y � r. Moreover, sampling events are
likely to be exchangeable—i.e., occurring under like conditions such that {IR} may be
considered an empirical constant. Thus, to optimize P(Ri|I ), it is often practical to elicit
{IR} recursively using a stochastic approximation of the prior distribution via a compound
sampling model. The expectation optimization (EO) algorithm is as follows:

1. Beginning initially with any user-specified (e.g., uniform) prior and base likelihoods,
posterior probabilities P[HR|E, I ]t, where the subscript t denotes an iteration counter,
are evaluated for each pair in the sampled dataset for each R.

2. Posterior probability masses for each R from all evaluated dyads are used to inform
sampling distribution expectations through normalization and proportional allocation.

a. For each R, posterior probability mass is summed
(

∑nD
j=1 P[HR|E, I ]t,j

)
for

the dataset.
b. For normalization, a generalized rule of succession is adopted so that no sampling

probability for a plausible relationship iterates to a zero value. That is, values within the
set {IRi} take the normalized form ÍRi, t+1 ≡ 1

nD+r

[(
∑nD

j=1 P[HR|E, I ]t,j
)
+ 1
]
.

3. The normalized values of the distribution are used to update P[HR|I ]t+1.
4. Applying P[HR|I ]t+1 in step 1, steps 1–3 are repeated until the estimated sampling

distribution converges in measure, which is expected to occur reasonably quickly.

The convergence criterion is a function of the absolute value of differences between t
and t + 1 empirical sampling probabilities, each summed over all relationships. Stopping
values between 10−3 and 10−4 are recommended; a stopping value of 0.0001 was used
herein. Upon convergence of the EO run, the ‘optimized’ sampling distribution, IR,
was transformed into a sample-wide kinship distribution by multiplication of sampling
probabilities with nD. Simulations have shown that IR is robustly estimated when moderate
numbers of reasonably polymorphic microsatellite DNA loci are examined (e.g., m ≥ 15;
na ≥ 10) (M. Tringali, unpublished data).

Appendix D. Bayes Classifier

The description so far has focused on the model (Equation (A2)). A Bayes classifier
combines that model with a ‘decision rule’. As a starting point, it is common to choose
the hypothesis found to be most probable—the maximum a posteriori, or map, rule. Once
prior probabilities, however specified, are plugged into the (final) posterior probability
expectations for each pair, one relationship, Rmap, attains a maximum a posteriori value
Pmap(R|E, I ), where Pmap(R|E, I ) > 1/r. That is,

Pmap(Ri|En, I ) = arg maxP(En|Ri )
Ri

P(Ri|I ) (A7)

For convenience, the term Pmap(Ri|En, I ) is shortened to Pmap(Ri). The distinction
between map and mle (maximum-likelihood estimation) classifiers, where

Pmle = arg maxP(En|Ri )
Ri

(A8)

is evident from the term reduction in the latter, and the reduction becomes critically impor-
tant in multiple comparison testing, where values of both Pmap(Ri) and Pmle are simply
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point estimates whose credence must be interpreted on a ‘study-wise’ basis. Credence can
be established by first adopting the map rule for classification, followed by (r) binarization
of the contingency table and predictive marginalization (i.e., determination of positive and
negative predictive values, false detection rates, and false rejection rates).

In some cases, it may be helpful to rescale the relative incidences of type I and II
error—e.g., investigators may be willing to ‘trade’ an increase in false rejections for a
decrease in false detections. If so, one option is to recast the map classifier as an infimum
classifier Pin f (Ri), such that only map posteriors occur within a specified acceptance region
Λ = [λ, 1]:

Pin f (Ri|En, I ) = arg maxP(En|Ri )
{Λ:Ri∈Λ}

P(Ri|I )↔ P(En|Ri )P(Ri|I ) ≥ λ (A9)

The Bayesian genealogical approach described above was used to probabilistically in-
fer the categorical relationships for all paired combinations of 302 individuals (nD = 45,451).
For convenience, Pin f (Ri|En, I ) where λ = 0.5 was referred to as MAP50 (MAPλ∗100) and
applied as the classification criterion.
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